ANNALES SCIENTIFIQUES DE L'UNIVERSITÉ DE CLERMONT-FERRAND 2 Série Mathématiques

DANIEL LEIVANT
Failure of completeness properties of intuitionistic predicate logic for constructive models

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 60, série Mathématiques, n ${ }^{\circ} 13$ (1976), p. 93-107
http://www.numdam.org/item?id=ASCFM_1976__60_13_93_0
© Université de Clermont-Ferrand 2, 1976, tous droits réservés.
L'accès aux archives de la revue «Annales scientifiques de l'Université de ClermontFerrand $2 »$ implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FAILURE OF COMPLETENESS PROPERTIES OF INTUITIONISTIC PREDICATE LOGIC

FOR CONSTRUCTIVE MODELS

Daniel LEIVANT

University of Amsterdam, AMSTERDAM, Netherlands

ABSTRACT

We consider a principle of constructivity RED which states that every decidable predicate over the natural numbers is (weakly) recursively enumerable (r.e.). RED is easily seen to be derived from Church's thesis $\mathbf{C T}_{0}$ (《every construction is given by a recursive function»). Results :
(1) RED implies that the species of valid first order predicate schemata is not r.e., and hence - that intuitionistic first order predicate logic \mathcal{L}_{1} is incomplete.
(2) We construct a specific schema of \dot{L}_{1} which is valid if RED , but unprovable in \mathcal{L}_{1}.
(3) The two results above hold even when validity is generalized to validity with Kreisel-Troelstra [70]'s choice sequences as parameters.
(4) The method is used also to construct a schema of \mathcal{L}_{1}, unprovable in \mathcal{L}_{1}, but of whose all metasubstitutions with Σ_{1}^{0} number theoretic predicates are provable in Heyting's arithmetic G. This is a simple bound on possible improvements of the maximality result of Leivant [75] .

1. INTRODUCTION

For a general introduction to the subject matter of this note the reader is referred to Troelstra [76].

The main two results of this note are the following. Firstly, we show (along the line of Kreisel [70] p. 133) that the schema RED mentioned above in the abstract implies that the species of intuitionistically valid formulae of predicate logic is not r.e.. This we do by exhibiting a sequence $\left\{\mathrm{F}_{\mathrm{m}, \mathrm{n}}\right\}$ of formulae, the validity of $\mathrm{F}_{\mathrm{m}, \mathrm{n}}$ meaning intuitively : «the r.e. species W_{m} and W_{n} are not separable by any pair of decidable species». By RED decidable species are (weakly) r.e., so we may say instead $<W_{m}$ and W_{n} are recursively inseparable». The proof is then concluded by showing (intuitionistically) that the species
$\left\{\langle m, n\rangle \mid W_{m}\right.$ and W_{n} are recursively inseparable $\}$ is not r.e..
Secondly, we pick up m, n for which $F_{m, n}$ is not valid, but s.t. the recursive inseparability of W_{m} and W_{n} is provable in intuitionistic arithmetic. This last proof may be reshaped to apply to any given $\Sigma_{1}^{\mathbf{0}}$ model of arithmetic; we conclude that any
Σ_{1}^{0}-metasubstitution of $F_{m, n}$ is provable in arithmetic, thus proving result (4) of the abstract.

1.1. NOTATIONAL CONVENTIONS.

We use the logical constants $\&, \wedge, \rightarrow, \forall$, म and \perp (for absurdity ; negation \neg is then definable). The letters $P, Q, T, Z, S \ldots$ are used for predicate parameters (in the language of first-order predicate logic \mathcal{L}_{1}), while bold face $T, Z, S \ldots$ are used for certain number theoretic predicates explicitely defined below.

For recursion theoretic notions we use the notations of Kleene [52] and [69] : T^{n} for the computation predicate for n-ary functions, U for the result-extracting function, $\{e\}$ for the e'th partial recursive function, \sim for partial equality, etc.

We assume given an encodement of sequences

$$
\left\rangle: \quad \bigcup_{k} \mathbb{N}^{k} \rightarrow \mathbb{N}\right.
$$

i.e. - $\quad\left(n_{1}, \ldots, n_{k}\right) \longmapsto\left\langle n_{0}, \ldots, n_{k}\right\rangle \quad$, together with a length-function lth and inverse projection functions $(n) j$ which satisfy

$$
\underline{\operatorname{lth}}\left(\left\langle n_{o}, \ldots, n_{k}\right\rangle\right)=k \quad ; \quad\left(\left\langle n_{o}, \ldots, n_{k}\right\rangle\right)_{j}=n_{j} \quad(j \leq k)
$$

We also fix some Gödel-coding for syntactic objects, and write $\left\ulcorner_{\sigma}\right\urcorner$ for the code of σ. For formal r.e. theories τ we write $\operatorname{Prov}_{\tau}(\mathrm{p}, \mathrm{r})$ for a canonical proof predicate for τ, and $\underline{\operatorname{Pr}} \tau^{(r)}$ for ${ }^{\operatorname{B}} \mathrm{p} \underline{\operatorname{Prov}} \tau^{(p, r)}$.

1.2.-1.4. FORMAL SETTING.

1.2. LANGUAGE.

Our metamathematical setting is the intuitionistic theory of species, \mathcal{L}_{2}. An inspection on the proofs below shows that actually only a small fragment of \mathcal{L}_{2} is used, but since it is of little value for our purpose to delimit this fragment precisely we do not bother to do so.

Prawitz ([65] p. 72) has shown that Heyting's Arithmetic \mathcal{G} is interpretable in \mathcal{L}_{2}; however, to avoid notational complications we shall use lower case a,b,c etc. for numeric variables, and lower case x, y, x_{i} etc. for unrestricted first order variables. A list $z_{0}, \ldots, z_{i}, \ldots$ of unrestricted variables will be reserved for a specific use, and we shall assume that they do not occur in formulae otherwise. We also assume that G as well as \mathcal{L}_{2} contain symbols and defining equations for all primitive recursive functions.

The system we study is first order intuitionistic predicate logic \mathcal{L}_{1}, without equality and without function symbols. We shall find it convenient to refer also to \mathscr{L}_{1} extended to the language with all constants of $\mathcal{C}_{(}\left(=\right.$, numerals and prim. rec. functions). We write $\mathcal{L}_{1} \mathcal{G}^{\text {for }}$ the resulting system.

1.4. THE VALIDITY PREDICATE.

Tarski's definition of a Π_{1}^{1} validity predicate Val for \mathcal{L}_{1} (analogously to the classical case) is standard (cf. e.g. Tarski [36]). The central property of Val is of course
for each schema G of \mathcal{L}_{1}, where $\vec{P}_{\text {is }}$ the list of all predicate parameters occurring in G, D^{1} is a (unary) predicate variable and G^{D} comes from G by restricting all quantifiers to D .

To avoid confusion one should note that the predicate Val does not express any analysis of the notion of constructive truth (contrary to truth definitions like Beth's and Kripke's semantics and the various realizability predicates). Here the constructive content of \mathfrak{L}_{1} shows only through the constructive meaning given (in \mathcal{L}_{2}) to the logical constants occurring in Val. Our discussion is therefore valid regardless of any specific analysis of constructivity.

1.4. THE SCHEMA RED.

We define the schema RED, for «recursive enumerability of decidable predicates» to be

$$
\forall a \quad[P(a) \vee \neg P(a)] \rightarrow \neg \neg \text { e } \forall a\left[P(a) \leftrightarrow \text { G b T}^{\mathbf{l}}(\mathrm{e}, \mathrm{a}, \mathrm{~b})\right]
$$

It is easily seen that RED is derivable from the following weak variant of Church's thesis $\mathbf{C T}_{0}$:

V. Lifshits has sown (in 1974, unpublished) that even the positive version CT_{o} ! of $\mathrm{CT}_{\mathrm{o}}^{-}$! is strictly weaker (in \mathbb{C}) than CT_{o}.

2. CHARACTERIZATION OF (WEAKLY) RECURSIVELY INSEPARABLE PAIRS OF R.E. SETS IN \mathcal{L}_{1} VIA RED.

2.1. A FINITE AXIOMATIZATION OF KLEENE'S PREDICATE T.

In the language of ${ }_{\mathcal{L}}{ }_{1}$, fix three predicates $\operatorname{Eq}(x, y), Z(x)$ and $S(x, y)$. We think of these as representing equality, zero and the successor relation. Let A^{S} (\equiv the axiom of the theory of successor) be the conjunction of the closure of the following formulae of \mathcal{L}_{1}.
(1) $\operatorname{Eq}(x, x)$
(2) $\quad \operatorname{Eq}(x, y) \& E q(x, z) \rightarrow E q(y, z)$
(3) $\quad \mathrm{Z}(\mathrm{x}) \rightarrow[\mathrm{Z}(\mathrm{y}) \longleftrightarrow \mathrm{Eq}(\mathrm{x}, \mathrm{y})]$
(4) $\quad S(x, y) \rightarrow[S(x, z) \mapsto E q(y, z)]$
(5) $\quad S(x, y) \rightarrow[S(z, y) \longleftrightarrow E q(x, z)]$
(6) $\quad Z(x) \rightarrow \neg S(y, x)$
(7) $\quad \mathrm{yz} \mathrm{Z}(\mathrm{z})$
(8) ヨy $S(x, y)$

Consider the familiar definig schemata for primitive recursive functions :
(1) (zero)

$$
f_{n}(x)=0
$$

(2) (successor)

$$
f_{n}(x)=x^{+} \quad(:=\quad \text { the successor of } x)
$$

$(3)_{\mathrm{q}, \mathrm{i}} \quad$ (projection)

$$
\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{q}}\right)=\mathrm{x}_{\mathrm{i}} \quad(\mathrm{i} \leq \mathrm{q})
$$

$\left.{ }^{(4)}\right)_{\mathrm{q}, \mathrm{r}} \quad$ (composition)

$$
\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{q}}\right)=\mathrm{f}_{\mathrm{m}}\left(\mathrm{f}_{\mathrm{i}_{0}}\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{q}}\right), \ldots, \mathrm{f}_{\mathrm{i}_{\mathrm{r}}}\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{q}}\right)\right)
$$

(recursion)

$$
\begin{equation*}
f_{n}(0, x)=f_{m}(x) \tag{5}
\end{equation*}
$$

$$
f_{n}\left(y^{+}, x\right)=f_{\ell}\left(y, x, f_{n}(y, x)\right)
$$

These equations may be axiomatized by
$\left(1^{*}\right) \quad F_{n}(x, v) \longleftrightarrow Z(v)$
$\left(2^{*}\right) \quad F_{n}(x, v) \longleftrightarrow S(x, v)$
$\left(3^{*}\right)_{q, i} \quad F_{n}\left(x_{0}, \ldots, x_{q}, x_{i}\right) \quad(i \leq q)$
$\left(4^{*}\right)_{q, r} \quad \underset{j}{M} \operatorname{Mr}_{\mathbf{F}_{j}}\left(x_{0}, \ldots, x_{q}, y_{j}\right) \rightarrow\left[F_{n}\left(x_{0}, \ldots, x_{q}, v\right) \leftrightarrow F_{m}\left(y_{0}, \ldots, y_{r}, v\right)\right]$
$\left(5^{*}\right)$
$\mathrm{Z}(\mathrm{z}) \rightarrow\left[\mathrm{F}_{\mathrm{n}}(\mathrm{z}, \mathrm{x}, \mathrm{v}) \longleftrightarrow \mathrm{F}_{\mathrm{m}}(\mathrm{x}, \mathrm{v})\right] \quad . \&$.
$S(y, w) \& F_{n}(y, x, z) \rightarrow\left[F_{n}(w, x, v) \leftrightarrow F_{\ell}(y, x, z, v)\right]$

The characteristic function τ of Kleene's predicate T is primitive recursive ; there is therefore a list

$$
\varepsilon_{0}, \ldots, \varepsilon_{m}
$$

of equations, each of which is an instance of one of (1) - (5) with some auxiliary function letters f_{0}, \ldots, f_{k}, t, which defines τ. Taking the corresponding instances of (1)* ${ }^{*}(5)^{*}$, with predicate letters F_{0}, \ldots, F_{k}, T corresponding to f_{0}, \ldots, f_{k}, t, we obtain a list B_{0}, \ldots, B_{m} of formulae of \mathcal{L}_{1} which defines T. We let

$$
A: \equiv A^{s} \&{ }_{i \leq m}^{M} C_{i}
$$

where C_{i} is the closure of $B_{i}(i \leq m)$ Let $z_{0}, \ldots, z_{i}, \ldots$ be a list of variables (not occurring in A) ; define

$$
A_{n} \equiv A_{n}\left(z_{0}, \ldots, z_{n}\right): \equiv A \& Z\left(z_{0}\right) \& \underset{i}{M_{n}} S\left(z_{i}, z_{i+1}\right)
$$

2.2. We refer below to the schema

$$
\mathrm{G} \equiv \mathrm{G}[\mathrm{~T}, \mathrm{P}, \mathrm{Q}]: \equiv \mathrm{D}[\mathrm{P}, \mathrm{Q}] \rightarrow \mathrm{E}[\mathrm{~T}, \mathrm{P}, \mathrm{Q}]
$$

where

$$
\begin{aligned}
& \mathrm{D}[\mathrm{P}, \mathrm{Q}]: \equiv \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{x})] \quad \& \quad \forall \mathrm{x}[\mathrm{Q}(\mathrm{x}) \vee \neg \mathrm{Q}(\mathrm{x})] \\
& E[T, P, Q]\left(w_{1}, w_{2}\right): \equiv \quad \exists_{x} \quad\left[\exists y T\left(w_{1}, x, y\right) \& P(x)\right] \\
& \vee \mathbb{x} \quad\left[\exists_{y} T\left(w_{2}, x, y\right) \& Q(x)\right] \\
& \vee \exists_{x}[\neg P(x) \& \quad \neg Q(x)]
\end{aligned}
$$

Write (in the language of \mathcal{L}_{2})

$$
\begin{aligned}
& \operatorname{Val} \omega\left({ }^{r} \mathrm{G}_{\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)}{ }^{7}\right): \equiv \quad \forall \mathrm{P}, \mathrm{Q} \quad \mathrm{G}[\mathrm{~T}, \mathrm{P}, \mathrm{Q}]\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) \\
& \left.\operatorname{Val}^{\omega, \Sigma_{1}^{o}}\left(\Gamma_{G\left(a_{1}, a_{2}\right)}{ }^{7}\right): E \quad \forall \mathrm{e}_{1}, \mathrm{e}_{2} \quad \mathrm{G} \mid \mathrm{T}, \mathrm{~W}_{\mathrm{e}_{1}}, \mathrm{~W}_{\mathrm{e}_{2}}\right]\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)
\end{aligned}
$$

where W_{e} is the number theoretic predicate

$$
\mathbf{W}_{\mathbf{e}^{(a)}}: \equiv \quad \text { Ab T(e,a,b) }
$$

 of decidable r.e. sets.
2.3. LEMMA. (in ${ }^{2}{ }_{2}$)

$$
T(a, b, c) \& A_{n}\left(z_{0}, \ldots, z_{n}\right) \rightarrow T\left(z_{a}, z_{b}, z_{c}\right)
$$

where $n:=\max [a, b, c]$.

PROOF: One proves

$$
F_{i}\left(a_{o}, \ldots, a_{n_{i}}\right) \& A_{m} \rightarrow F_{i}\left(z_{a_{o}}, \ldots, z_{a_{n_{i}}}\right) \quad\left(m:=\max \left[a_{0}, \ldots, a_{n_{i}}\right]\right)
$$

for each primitive recursive predicate F_{i} used in the definition of T, by induction on the length of definition of $\mathbf{F}_{\mathbf{i}}$. The details are routine.
2.4. LEMMA. (in \AA_{2})

$$
\left.\left.\underline{\operatorname{Val}(}\left(\Gamma_{\mathrm{A}}^{\mathrm{n}}, \mathrm{G}\left(\mathrm{z}_{\mathrm{m}}, \mathrm{z}_{\mathrm{n}}\right)\right\urcorner\right) \hookleftarrow \underline{\operatorname{Val}}^{\omega}\left(\Gamma_{\mathrm{G}(\overline{\mathrm{~m}}, \overline{\mathrm{n}})}\right\urcorner\right) \quad(\mathrm{m}<\mathrm{n})
$$

PROOF: I. Assume Val($\left.{ }{ }^{A_{n}} \rightarrow G\left(z_{m}, z_{n}\right){ }^{\top}\right)$, i.e. \cdot

$$
\forall Z, S, E q, F_{1}, \ldots, F_{k}, T, P, Q\left\{A_{n}[Z, \ldots, T]\left(z_{0}, \ldots, z_{n}\right) \rightarrow G[T, P, Q]\left(z_{m}, z_{n}\right)\right\}
$$

Hence

$$
\begin{equation*}
A_{\mathbf{n}}[\mathbf{Z}, \mathrm{S}, \ldots, \mathrm{~T}](\overline{0}, \ldots, \overline{\mathrm{n}}) \rightarrow \forall P, Q \quad G[\mathbf{T}, P, Q](\bar{m}, \overline{\mathbf{n}}) \tag{1}
\end{equation*}
$$

where $\mathbf{Z}, \ldots, \mathbf{T}$ are the number theoretic predicates for zero, successor etc.
Since the premise of (1) is trivially true, we obtain $\underline{\mathrm{Val}^{\omega}}{ }^{\omega}(\ulcorner\mathrm{G}(\overline{\mathrm{m}}, \overline{\mathrm{n}})\urcorner)$ as required.
II. Assume
(2) $\left.\quad \underline{\operatorname{Val}}{ }^{\omega}(\Gamma \mathrm{G}(\overline{\mathrm{m}}, \overline{\mathrm{n}})\urcorner\right) \equiv \forall \mathrm{P}, \mathrm{Q} \quad\{\mathrm{D}[\mathrm{P}, \mathrm{Q}] \rightarrow \neg \neg \mathrm{E}[\mathrm{T}, \mathrm{P}, \mathrm{Q}](\overline{\mathrm{m}}, \overline{\mathrm{n}})\}$

Fix P and Q and assume
(3) $A_{n}\left[Z, S, E q, F_{1}, \ldots, F_{k}, T\right]\left(z_{o}, \ldots, z_{n}\right)$
and
(4) $\mathrm{D}[\mathrm{P}, \mathrm{Q}]$

From (2) and (4) we then get
(5) $\quad \neg-\mathrm{E}[\mathrm{T}, \mathrm{P}, \mathrm{Q}](\overline{\mathrm{m}}, \overline{\mathrm{n}})$

Assume
(6) $E[T, P, Q](\bar{m}, \bar{n})$
i.e. - either $T(\bar{m}, a, b) \& P(a) \quad$ for some a, b
or $T(\bar{n}, \mathbf{a}, \mathbf{b}) \& Q(\mathbf{a}) \quad$ for some \mathbf{a}, \mathbf{b}
or $\neg P(a) \cdot \& \neg Q(a) \quad$ for some a.
which, by lemma 2.3. and assumption (3) implies E[T,P,Q $]\left(z_{m}, z_{n}\right)$. This being derived from (6), we get by intuitionistic propositional logic that (5) implies $\neg-E[T, P, Q]\left(z_{m}, z_{n}\right)$ as required.
2.5. LEMMA. (in \AA_{2}) RED implies

PROOF : The implication from left to right is trivial. Assume on the other hand
(1) Val ${ }^{\omega}, \Sigma_{1}^{0}{ }_{1}\left(\mathrm{G}(\overline{\mathrm{m}}, \overline{\mathrm{n}})^{\urcorner}\right): \equiv \mathrm{Ve}_{1}, \mathrm{e}_{2}\left\{\mathrm{D}\left[\mathrm{W}_{\mathrm{e}_{1}}, \mathrm{~W}_{\mathrm{e}_{2}}\right] \rightarrow \neg \neg \mathrm{E}\left[\mathrm{T}, \mathrm{W}_{\mathrm{e}_{1}}, \mathrm{~W}_{\mathrm{e}_{2}}\right](\overline{\mathrm{m}}, \overline{\mathrm{n}})\right\}$
and, fixing P and Q, assume $D[P, Q]$. By RED $D[P, Q]$ implies the weak existence of some $\mathrm{e}_{1}, \mathrm{e}_{2}$ s.t.

$$
\mathrm{P}(\mathrm{a}) \longleftrightarrow \mathrm{W}_{\mathrm{e}_{1}}(\mathrm{a}) \quad ; \quad \mathrm{Q}(\mathrm{a}) \longleftrightarrow \mathrm{W}_{\mathrm{e}_{2}}(\mathrm{a})
$$

which by (1) implies $\quad \neg \neg \mathrm{E}[\mathrm{T}, \mathrm{P}, \mathrm{Q}](\overline{\mathrm{m}}, \overline{\mathrm{n}})$ as required.
2.6. PROPOSITION. (in \mathcal{L}_{2}) RED implies

$$
\underline{\left.\operatorname{Val}\left({ }^{r} A_{n} \rightarrow\left(G\left(z_{m}, z_{n}\right)\right\urcorner\right) \mapsto \underline{\operatorname{Val}}^{\omega, \Sigma_{1}^{o}\left({ }^{r} G(\bar{m}, \bar{n})^{\urcorner}\right)} \text {) }{ }^{\top}\right)}
$$

PROOF: Immediate from 2.4 and 2.5.

3. WEAK INCOMPLETENESS OF \mathcal{L}_{1} (UNDER RED).

 PROOF : Assume that the species S is r.e., i.e. - for some primitive recursive predicate R

$$
\langle m, n\rangle \in S \longleftrightarrow \text { न } a R(a, m, n) \text {. }
$$

Let

$$
\mathrm{u}^{+}:=\mathrm{a}^{+}+\left\{\mathrm{V}_{\mathrm{m}, \mathrm{n}} \mid\langle\mathrm{m}, \mathrm{n}\rangle \in \mathrm{S}\right\}
$$

where

$$
\mathrm{V}_{\mathrm{m}, \mathrm{n}}: \equiv \quad \underline{\mathrm{Val}}^{\left.\omega, \Sigma^{o} \mathrm{l}_{\left(\mathrm{r}_{\mathrm{G}(\overline{\mathrm{~m}}, \overline{\mathrm{n}})\urcorner}\right)}\right) .}
$$

$$
\underline{\operatorname{Prov}}_{\mathrm{C}^{+}}\left(\langle\mathrm{p}, \mathrm{q}, \mathrm{~m}, \mathrm{n}\rangle,{ }^{\circ} \mathrm{F}^{\urcorner}\right): \equiv \underline{\operatorname{Prov}}_{\mathrm{C}}\left(\mathrm{p}, \underline{\mathrm{imp}}\left(\mathrm{~m}, \mathrm{n},{ }^{\ulcorner } \Gamma^{\urcorner}\right)\right) \& R^{*}(\mathrm{q}, \mathrm{~m}, \mathrm{n})
$$

where imp is a primitive recursive function which satisfies

$$
\underline{\operatorname{imp}}\left(m, n, r^{\prime}{ }^{\urcorner}\right)=r_{j<\underline{\operatorname{lth}}(m)} V_{(m)_{j},(n)_{j}} \rightarrow F^{\urcorner}
$$

and where

$$
R^{*}(q, m, n): \equiv \underline{\operatorname{lth}}(q)=\underline{\operatorname{lth}}(m)=\underline{\operatorname{lth}}(n) \& \forall j<\underline{\operatorname{lth}}(q) R\left((q)_{j},(m)_{j},(n)_{j}\right)
$$

$\underline{Q r o v}^{\text {Pr }}+$ is easily proved in G to satisfy the elementary derivability conditions. Let

$$
\begin{align*}
& \dot{W}_{\mathrm{a}_{1}}=\left\{\mathrm{q} \mid{\underset{\mathrm{Pr}}{\mathrm{C}^{+}}}^{(\mathrm{q})}\right\} \\
& \mathrm{w}_{\mathrm{a}_{2}}=\left\{\mathrm{q} \mid{\underset{\mathrm{Pr}}{\mathrm{a}^{+}}}^{(\operatorname{neg}(q))}\right\} \tag{1}
\end{align*}
$$

where neg is a primitive recursive function which satisfies neg $\left({ }^{「} F^{7}\right)=\ulcorner\neg F ?$ for any formula F in the language of L. Since G^{+}is r.e., the consistency of G^{+}is equivalent to the statement $« W_{\mathrm{a}_{1}}$ and $\mathrm{W}_{\mathrm{a}_{2}}$ are recursively inseparable» (see Smullyan [61] p. 63. thm. 27; notice that the proof there is intuitionistic).
Put formally :

$$
\begin{equation*}
\vdash_{\mathrm{a}} \quad \underline{\text { Con }_{\mathrm{c}^{+}}^{+}} \leftrightarrow \mathrm{V}_{\mathrm{a}_{1}}, \mathrm{a}_{2} \tag{2}
\end{equation*}
$$

where $\underline{\text { Con }}_{\mathrm{C}^{+}}: \equiv \neg \underline{\operatorname{Pr}}_{\mathrm{a}^{+}}\left(\Gamma^{\Gamma} \perp^{\prime}\right)$. In \mathcal{L}_{2} we know however that $\underline{\text { Con }_{\mathrm{C}^{+}}}$is true, and consequently $\mathrm{V}_{\mathrm{a}_{1}}, \mathrm{a}_{2}$ must be an axiom of \mathfrak{a}^{+}. Together with (2) this implies

$$
\vdash_{\mathrm{C}^{+}} \quad \underline{\mathrm{Con}} \mathrm{C}^{+}
$$

which contradicts Gödel second incompleteness theorem (since $\underline{\text { Prov }}_{\mathrm{G}}{ }^{+}$satisfies the elementary derivability conditions). Thus the assumption that S is r.e. leads (in \mathcal{L}_{2}) to a contradiction. REMARK :The reference to Smullyan's theorem is made for the sake of brevity. One may instead pick up any pair $W_{e_{1}}, W_{e_{2}}$ of r.e. sets which are proved in G_{i} to be recursively inseparable (cf. e.g. Rogers [67] p. 94 thm. XII(c), whose proof is intuitionistic). Defining

$$
\mathrm{w}_{\mathrm{d}_{\mathrm{i}}}:=\left\{\mathrm{a} \mid \mathrm{J}_{\mathrm{b}} \mathrm{~T}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{a}, \mathrm{~b}\right) \& \quad \forall \mathrm{c}<\mathrm{a} \quad \neg \underline{\operatorname{Prov}}_{\mathrm{C}^{+}}\left(\mathrm{c}, \perp^{\urcorner}\right)\right\} \quad \mathrm{i}=1,2
$$

we find that $\underline{C o n}{ }_{C^{+}}$is equivalent (in G) to the recursive inseparability of $W_{d_{1}}$ and $W_{d_{2}}$.
THEOREM I. (Weak incompleteness). In $\mathcal{L}_{2}+$ RED we can prove that not every valid formula of \mathcal{L}_{1} is provable.
PROOF : If every valid formula of \mathscr{L}_{1} is provable in \mathcal{L}_{1} then the species of valid formulae is the same as the species of provable formulae, and so it must be r.e.. The formulae of the form $A_{n} \rightarrow G\left(z_{m}, z_{n}\right)$ are recursively recognizable, and thus the valid formulae of this form make up an r.e. species as well. By 2.6. S is then r.e., contradicting proposition 3.1. above.
3.2. The result of 3.1 can be classically improved by the following

PROPOSITION: $S:=\left\{\langle m, n\rangle \mid W_{m}, W_{n}\right.$ rec. inseparable $\}$ is H_{2}^{0}-complete.
PROOF. (essentially due to C. Jockusch) Fix a pair $\mathrm{R}_{1}, \mathrm{R}_{2}$ of recursively inseparable r.e. sets.
Let $k(e), h_{1}(e), h_{2}(e)$ be prim. rec. functions defined (through the $s-m-n$ theorem) by

$$
\begin{aligned}
& x \in W_{k(e)} \equiv \exists y<x y \in W_{e} \\
& W_{h_{1}(e)}=W_{k(e)} \cap R_{1} ; \quad W_{h_{2}(e)}=W_{k(e)} \cap R_{2}
\end{aligned}
$$

Then : (i) W_{e} finite $\Rightarrow W_{k(e)}$ finite

$$
\begin{aligned}
& \Rightarrow \quad W_{h_{1}}(e) \text { and } W_{h_{2}(e)} \text { finite } \\
& \Rightarrow \quad\left\langle h_{1}(e), h_{2}(e)\right\rangle \notin S
\end{aligned}
$$

(ii) W_{e} infinite $\Rightarrow W_{k(e)}=\mathbb{N}$

$$
\Rightarrow \quad W_{h_{i}(e)}=R_{i} \quad(i=1,2)
$$

$$
\Rightarrow\left\langle\mathrm{h}_{1}(\mathrm{e}), \mathrm{h}_{2}(\mathrm{e})\right\rangle \in \mathrm{S}
$$

So the set

$$
\mathrm{I}:=\left\{\mathrm{e} \mid \mathrm{W}_{\mathrm{e}} \text { is infinite }\right\}
$$

reduces to S . But I is known to be Π_{2}^{0}-complete (cf. Rogers [67] p.326, 1.3), and hence S is also Π_{2}^{0}-complete.■
3.3. PROPOSITION. There are numbers m, n for which we can prove in $\mathcal{L}_{2}+$ RED that $A_{n} \rightarrow G\left(z_{m}, z_{n}\right)$ is valid but not provable in \mathcal{L}_{1}.

PROOF : By the proof of 3.1. there are m, n s.t. $V_{m, n}$, and so by $2.6 \quad A_{n} \rightarrow G\left(z_{m}, z_{n}\right)$ is valid, assuming RED. On the other hand, if

$$
\digamma_{\mathcal{L}^{c}} \quad A_{n} \rightarrow G[T, P, Q]\left(z_{m}, z_{n}\right)
$$

then
(1) $\vdash_{\mathrm{G}} \quad \mathrm{G}[\mathrm{T}, \mathrm{P}, \mathrm{Q}](\overline{\mathrm{m}}, \overline{\mathrm{n}}) \quad$ for any unary number theoretic predicates P, Q.

The Gödel translation G^{0} of G (see Kleene [52] p.493) is therefore also provable in G ; but D^{O} is provable (idem, p. $119^{*} 51 \mathrm{a}$), and by intuitionistic predicate logic E[T,P,Q] ${ }^{\circ}$ implies $\neg \neg E[T, P, Q$] whenever P and Q do not contain V, so (l) implies

$$
\vdash_{\mathrm{G}} \quad \neg \neg \mathrm{E}\left[\mathrm{~T}, \overline{\mathbf{W}}_{\mathrm{m}}, \overline{\mathbf{W}}_{\mathrm{n}}\right](\overline{\mathrm{m}}, \overline{\mathbf{n}})
$$

which implies (in \mathscr{L}_{2}) that $\neg \neg E\left[T, \bar{W}_{m}, \bar{W}_{n}\right](\bar{m}, \bar{n})$ is true. For the m, n considered W_{m} and W_{n} are however (provably) disjoint, and so by the definition of E we have $\neg \mathrm{E}\left[\mathrm{T}, \overline{\mathrm{W}}_{\mathrm{m}}, \overline{\mathrm{W}}_{\mathrm{n}}\right](\mathrm{m}, \mathrm{n})$, a contradiction. I

REMARK : A simpler proof of the above proposition runs as follows. Classically the schema G is equivalent to E. E is obviously not valid classically, so it cannot be provable even in classical first order logic, by Gödel's completeness theorem. The formalization of this proof in the intuitionistic theory of species is however slightly problematic.

3.4. INCOMPLETENESS W.R.T. VALIDITY WITH CHOICE PARAMETERS

Let a be a variable for choice sequences, and assume that for the kind of choice sequences considered we have
(1) $\forall a \quad \neg \neg$ e $a \simeq\{$ \{ $\}$
which is the case for the choice sequences investigated by Kreisel-Troelstra [70] (cf. 6.2.1 there).
(1) implies quite trivially for every negated formula $\neg A(a)$

$$
\begin{equation*}
{ }^{\forall} \mathrm{e} \neg \mathrm{~A}(\{\mathrm{e}\}) \rightarrow \forall a \neg \mathrm{~A}(a) \tag{2}
\end{equation*}
$$

Let us refer now to a notion of validity with choice parameters,

$$
\underline{\mathrm{Val}}^{\mathrm{CS}}\left({ }^{\left.\left.r_{\mathrm{G}}{ }^{\urcorner}\right): \equiv{ }^{H} a \underline{\operatorname{Val}}\left({ }^{r_{G}}{ }^{a\urcorner}\right), ~()^{\urcorner}\right)}\right.
$$

where G^{a} comes from G by replacing each atomic subformula $P\left(t_{1}, \ldots, t_{n}\right)$ by $\mathrm{P}\left(a, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathbf{n}}\right)$. (This is not weaker than allowing the choice parameters to be distinct for each predicate letter, as can readily be seen.)

A straightforward observation shows now that the discussion above remains correct when Val and Val^{ω} are replaced by $\mathrm{Val}^{\mathrm{CS}}$ and an analogue $\mathrm{Val}{ }^{\omega, \mathrm{CS}}$, respectively, $\mathrm{Val}^{\omega}, \Sigma_{1}^{\boldsymbol{O}}$ remains unchanged and the schema RED is generalized to
(3) $\operatorname{RED}{ }^{\mathrm{CS}}: \forall a\left\{\forall \mathrm{~B}[\mathrm{P}(a, \mathrm{a}) \vee \neg \mathrm{P}(a, \mathrm{a})] \rightarrow \neg \neg \mathcal{G}{ }^{\mathrm{H}} \mathrm{a}[\mathrm{P}(a, \mathrm{a}) \leftrightarrow \mathrm{Gb} \mathrm{T}(\mathrm{e}, \mathrm{a}, \mathrm{b})]\right\}$

But by (2) RED ${ }^{C S}$ is implied outright by RED, since RED is negative, and (3) with a varying over total recursive functions is just a special case of (the quantified variant of) RED.

To recapitulate, we have obtained
THEOREM II. In $\mathcal{L}_{2}+$ RED we can prove that the species of formulae (of \mathscr{L}_{1}) which are valid with choice parameters is not r.e., and we may exhibit a specific formula of \mathfrak{L}_{1} which is valid with choice parameters but not provable in $\mathfrak{L}^{\mathfrak{L}} 1$.
4. \mathcal{L}_{1} IS NOT $\Sigma_{1}^{o}{ }_{1}^{\text {M MAXIMAL. }}$

4.1. DEFINITION OF MAXIMALITY.

Let C be a class of number theoretic predicates and \mathcal{C} be a formal system in a language extending the language of arithmetic. A formula $H\left[P_{0}, \ldots, P_{k}\right]$ of \mathcal{L}_{1} is a C-schema of δ when

$$
\vdash_{S} \quad H\left[\mathrm{P}_{\mathrm{o}}^{*}, \ldots, \mathrm{P}_{\mathrm{k}}^{*}\right]
$$

for every $P_{0}^{*}, \ldots, P_{k}^{*}$ in C. We define formally for $\delta=C, C=$ the class of $\Sigma{ }_{1}{ }_{1}$ predicates:

$$
\begin{equation*}
\left.\left.\underline{\operatorname{Sch}}\left({ }^{\Gamma_{H}}\left[P_{0}, \ldots, P_{k}\right]^{7}\right): \equiv \forall \operatorname{e~} \underline{\operatorname{Pr}}_{G}\left({ }^{\ulcorner } \mathrm{H}\left[W_{(e}\right)_{0}, \ldots, W_{(e)_{k}}\right]\right\urcorner\right) \tag{1}
\end{equation*}
$$

where (for $m \geq 1$)

$$
W_{e}\left(a_{1}, \ldots, a_{m}\right): \equiv \quad 3 b T^{m}\left(e, a_{1}, \ldots, a_{m}, b\right)
$$

(In defining the predicate Sch we implicitly use a primitive recursive substitution function, the definition of which is routine).

A system \mathcal{L} of logic is said to be C -maximal for 8 if

$$
\mathcal{L}=\{H \mid H \text { in the language of } \mathcal{L}, H \text { is a } C \text {-schema of } 8 .\}
$$

D.H.J. de Jongh has proved (in 1969) that the intuitionistic propositional logic is Σ_{1}^{o}-maximal for intuitionistic arithmetic G (and certain extensions of G). In Leivant [75] (chs. B3-B5) it is proved that \mathscr{L}_{1} is $\Pi{ }_{2}^{0}$-maximal for \mathcal{C} (and certain extensions of G).
We shall now show that \mathscr{L}_{1} is not Σ_{1}^{0}-maximal even for a fragment of \mathbb{C}.
4.2. For a schema $H \equiv H\left[Z, S, E q, F_{0}, \ldots, F_{r}, T ; P_{0}, \ldots, P_{t}\right]$ of \dot{L}_{1} we define the schema

$$
H^{d} \equiv H^{d}\left[P_{0}, \ldots, P_{t}\right]: \equiv H\left[W_{(d)_{0}}, \ldots, W_{(d)_{r}+3} ; P_{0}, \ldots, P_{t}\right]
$$

of $\mathcal{L}_{1} \mathcal{G}$, and the schema

$$
\left.H^{\omega} \equiv H^{\omega} \mathbb{P}_{0}, \ldots, P_{t}\right]: \equiv H\left[Z, S, E q, \ldots, T ; P_{0}, \ldots, P_{t}\right]
$$

of $\mathcal{L}_{1}{ }^{\mathcal{G}}$, where Z, \ldots, T are the intended number theoretic predicates, i.e. $\mathbf{Z}(\mathbf{x}): \equiv \mathbf{x}=0$, etc.

$$
\begin{aligned}
& H^{\mathrm{d}, \mathrm{e}}: \equiv H^{\mathrm{d}}\left[\mathrm{~W}_{(\mathrm{e})_{0}}, \ldots, \mathrm{~W}_{\left.(\mathrm{e})_{t}\right]}\right. \\
& H^{\omega, e}: \equiv H^{\omega}\left[\mathrm{W}_{(\mathrm{e})_{0}}, \ldots, W_{(e)_{t}}\right]
\end{aligned}
$$

If the r.e. interpretations

$$
Z^{*}(a): E W_{(d)_{0}} ; S^{*}(a, b): E W_{(d)_{1}} ; E q^{*}(a, b): \equiv W_{(d)_{2}}
$$

of the zero, successor and equality predicates satisfy the axiom of successor A^{6} (cf. 2.1), then Z^{*} and S^{*} generate a structure isomorphic to $\langle\omega, Z, S\rangle$ through a recursive (total) function defined as follows :

$$
\begin{aligned}
& \nu(0):=\left(\mu \mathrm{a} \cdot \mathrm{~T}^{1}\left((\mathrm{~d})_{0},(\mathrm{a})_{0},(\mathrm{a})_{1}\right)\right)_{0} \\
& \nu(\mathrm{n}+1):=\left(\mu \mathrm{a} \cdot \mathrm{~T}^{2}\left((\mathrm{~d})_{1}, \nu(\mathrm{n}),(\mathrm{a})_{0},(\mathrm{a})_{1}\right)\right)_{0}
\end{aligned}
$$

We let then

$$
N_{d}(a): \equiv b \nu(b) \approx a
$$

 by restricting all quantifiers to $\mathbf{N}_{\mathbf{d}}$.
4.3. LEMMA. (in G) Let $H\left(b_{0}, \ldots, b_{m}\right)$ be a formula of' 'I.

where $n:=\max \left[n_{i} \mid i<m\right]$, and A, A_{n} are defined as in 2.1 , bul with defining formulad for all predicates T , where j ranges over the «dimensions» of the predicall Ielters occtarring in II.
 For a formula $H \equiv H[Z, S, E q, \ldots, T]\left(n_{0}, \ldots, n_{m}\right)$ of Q let us wril. $\| I^{\prime}$ for $H[\dot{Z}, S, E q, \ldots, T]\left(z_{n_{0}} \ldots . . z_{n_{m}}\right)^{d}$ as defined in 4.2. above. I.e. .

$$
H^{d}: \equiv H\left[W_{(d)} \ldots, W_{(d)_{r}+3}\right]\left(z_{n_{0}} \ldots, z_{n_{m}}\right)
$$

It is easy to verify that for earh inference rule of the Gentzen sy-lim considered.

$$
\frac{\left\{J_{i}\left(\bar{n}_{0}, \ldots, \bar{n}_{p}\right)\right\}_{i}}{K\left(\bar{n}_{0}, \ldots, \bar{n}_{p}\right)}
$$

(where $\overline{\mathrm{n}}_{0}, \ldots, \overline{\mathrm{n}}_{\mathrm{p}}$ is the list of all numerals occurring in the formul.w hown) the infiremer
is a derived rule of $\mathcal{C}_{\mathrm{a}}+{t_{n}}^{d}$, where $n:=\max \left|n_{i}\right| i<p \mid$. | $1 \cdot \mathrm{i} \ldots$ if ، |commia $H\left(\bar{n}_{0}, \ldots, \bar{n}_{p}\right)$ of G is derivable by a natural deduction Δ lher, la liormula

 q may be cut down to $n:=\max \left[n_{i}|i \leq p|\right.$.

Assume now the premise of (1),

$$
\begin{equation*}
\operatorname{Ve}_{\mathrm{Pr}}^{G_{L}}\left({ }^{\Gamma} H^{\left.\omega \cdot r^{\prime}\left(\bar{n}_{0}, \ldots, \bar{n}_{m}\right)^{\urcorner}\right)}\right. \tag{2}
\end{equation*}
$$

 $\mathrm{e}^{*}=\left\langle\left(\mathrm{e}^{*}\right)_{0}, \ldots,\left(\mathrm{e}^{*}\right)_{\mathrm{t}}\right\rangle$ through the s-m-n theorem by

$$
\begin{equation*}
\left\{\left(\mathrm{e}^{*}\right)_{\mathrm{j}}\right\}\left(\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}_{\mathrm{j}}}\right): \simeq\left\{(\mathrm{e})_{\mathrm{j}}\right\} \quad\left(\nu\left(\mathrm{a}_{0}\right), \ldots, \nu\left(\mathrm{a}_{\mathrm{n}_{\mathrm{j}}}\right)\right) . \quad \mathrm{j}<1 \tag{3}
\end{equation*}
$$

where the function ν, which depends on d , is defined as in 4.2. above.
Further, let $e_{1}=\left\langle\left(e_{1}\right)_{0}, \ldots,\left(e_{1}\right)_{t}\right\rangle \quad$ be defined by

$$
\begin{equation*}
\left(\mathrm{e}_{1}\right)_{\mathrm{j}}:=\nu\left(\left(\mathrm{e}^{*}\right)_{\mathrm{j}}\right), \quad \mathrm{j} \leq \mathrm{t} \tag{4}
\end{equation*}
$$

By (2) now

$$
\vdash_{\mathrm{C}} \mathrm{~J} \quad \text { where } \mathrm{J}: E \quad \mathrm{H}^{\omega, \mathrm{e}} \mathbf{1}\left(\overline{\mathrm{n}}_{0}, \ldots, \overline{\mathrm{n}}_{\mathrm{m}}\right)
$$

and so by the above argument

$$
\begin{equation*}
\vdash_{G} A_{n}^{d} \rightarrow j^{\left.[d] d_{\left(z_{n}\right.}, \ldots, z_{n_{m}}\right)} \tag{5}
\end{equation*}
$$

where $n:=\max \left[n_{j} \mid j \leqslant p\right]$. It is readily seen however that for

$$
H \equiv H\left[Z, \ldots, T ; P_{0}, \ldots, P_{t}\right]
$$

$$
\begin{equation*}
J^{\left.\left.[d] d_{\left(z_{n}\right.}, \ldots, z_{n_{m}}\right) \equiv H^{[d]_{\left[w_{(d)}\right.}}, \ldots, w_{(d)_{r}+3} ; w_{\left(e_{1}\right)_{0}}^{\prime}, \ldots, w^{\prime}{\left.\left(e_{1}\right)_{t}\right]_{0}^{]}\left(z_{n_{n}}, \ldots, z_{n_{m}}\right)}\right) .} \tag{6}
\end{equation*}
$$

where for $\mathrm{j} \leq \mathrm{t}$

$$
\begin{aligned}
W^{\prime}\left(\mathrm{e}_{1}\right)_{j}\left(\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}_{\mathrm{j}}}\right) & : \equiv \mathrm{T}_{\mathrm{b}} \in \mathrm{~N}_{\mathrm{d}} \mathrm{~T}_{\mathrm{d}}\left(\left(\mathrm{e}_{1}\right)_{\mathrm{j}}, \mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}_{\mathrm{j}}}, \mathrm{~b}\right) \\
& \leftrightarrow \text { 可b } \quad \mathrm{T}_{\mathrm{d}}\left(\nu\left(\left(\mathrm{e}^{*}\right)_{\mathrm{j}}\right), \mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}_{\mathrm{j}}}, \nu(\mathrm{~b})\right) \quad \text { by (4) }
\end{aligned}
$$

Here T_{d} is the d-interpretation of the predicate $T^{m_{j}}$ i.e. $-T_{d}: \equiv W_{(d)}$ for some q.

$$
\text { If } \quad a_{0}, \ldots, a_{m_{j}} \in N_{d} \text { then }
$$

$\mathrm{a}_{\mathrm{i}}=\nu\left(\mathrm{c}_{\mathrm{i}}\right)$ for some $\mathrm{c}_{\mathrm{i}}\left(\mathrm{i} \leq \mathrm{m}_{\mathrm{j}}\right)$. So for such $\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}}$

$$
\begin{aligned}
\left.\mathrm{W}^{\prime}\left(\mathrm{e}_{1}\right)_{\mathrm{j}} \mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}_{\mathrm{j}}}\right) & \leftrightarrow \exists \mathrm{Gb} \mathrm{~T}_{\mathrm{d}}\left(\nu\left(\left(\mathrm{e}^{*}\right)_{\mathrm{j}}, \nu\left(\mathrm{c}_{0}\right), \ldots, \nu\left(\mathrm{c}_{\mathrm{m}_{\mathrm{j}}}\right), \nu(\mathrm{b})\right)\right. \\
& \leftrightarrow \text { ヨb T}^{\mathrm{m}_{\mathrm{j}}\left(\left(\mathrm{e}^{*}\right)_{\mathrm{j}}, \mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{m}_{\mathrm{j}}}, \mathrm{~b}\right)}
\end{aligned}
$$

by the definition of the interpretation generated by d, provided $A_{n}{ }^{d}$ holds

$$
\begin{aligned}
& \leftarrow \text { Gb T }^{\left.\mathrm{m}_{\left((e)_{j}\right.}, a_{0}, \ldots, a_{m_{j}}, b\right)} \\
& \equiv: W_{(e)_{j}}\left(a_{0}, \ldots, a_{m_{j}}\right)
\end{aligned}
$$

Since in $H^{[d]}$ all quantifiers are indeed restricted to N_{d}, we thus have from (6)

$$
\mathrm{J}^{\left.[\mathrm{d}] \mathrm{d}_{\left(\mathrm{z}_{\mathrm{n}_{0}}\right.}, \ldots, \mathrm{z}_{\mathrm{n}_{\mathrm{m}}}\right)} \longleftrightarrow \mathrm{H}^{\left.[\mathrm{d}] \mathrm{d}, \mathrm{e}_{\left(\mathrm{z}_{n_{0}}\right.}, \ldots, \mathrm{z}_{\mathrm{n}_{\mathrm{m}}}\right)}
$$

(provided $A_{n}{ }^{d}$), and so (5) implies the provability in C of

$$
A_{n}^{d} \rightarrow H^{\left.[d] d, e_{\left(z_{n}\right.}, \ldots, z_{n_{m}}\right)}
$$

This being the case for arbitrary d and e we have obtained the conclusion of (1), as required.
4.4. THEOREM III. \mathscr{L}_{1} is not $\Sigma{ }_{1}^{o}$-maximal for \mathcal{G}. Specifically - there are m and n for which $A_{n} \rightarrow E[T, P, Q]\left(z_{m}, z_{n}\right)$ is a Σ_{1}^{o}-schema of C, but is not provable in \mathcal{L}_{1}. (Here the schema E is defined as in 2.2.).
PROOF : Let W_{m}, W_{n} be a pair of r.e. sets, proved in G to be recursively inseparable (as in 3.1).
I.e. - for each $\mathrm{e}_{0}, \mathrm{e}_{1}$

$$
\left.\vdash_{\mathrm{C}} \quad \mathrm{E} \mid \mathrm{T}, \mathrm{~W}_{\mathrm{e}_{0}}, \mathrm{w}_{\mathrm{e}_{1}}\right](\overline{\mathrm{m}}, \overline{\mathrm{n}})
$$

which by lemma 4.3 implies that for any d, e

$$
\begin{equation*}
r_{G} A_{n}^{d} \rightarrow F_{i}^{\left.[d] d, e_{(}, z_{n}\right)} \tag{1}
\end{equation*}
$$

But E is existential, and therefore $E^{[d]}$ implies (in predicate logic) E. So (1) for arhitrary d,e actually states that $A_{n} \rightarrow E\left(z_{m}, z_{n}\right)$ is a Σ_{1}^{o}-schema of \mathcal{L}.

On the other hand this formula cannot be proved in \mathfrak{L}_{1}, as we have seen in 3.3 .

REFERENCES

KLEENE, S.C. [52] , Introduction to Metamathematics, Wolters-Noordhoff, Groningen, 1952.
[69], Formalized Recursive Functionals and Formalized Realizability, Memoirs of the AMS 89 (1969).

KREISEL, G. [70], Church's thesis : a kind of reducibility axiom of constructive mathematics ; in Intuitionism and Proof Theory. (eds. Kino, Myhill, Vesley) (North Holland, Amsterdam, 1970), pp. 121-150.

KREISEL, G. and TROELSTRA, A.S. [70], Formal systems for some branches of intuitionistic analysis ; Annals of Mathematical Logic 1 (1970), pp. 229-387.

LEIVANT, D. [75], Absoluteness of Intuitionistic Logic ; PhD dissertation, University of Amsterdam (Mathematisch Centrum, Amsterdam, 1975).

PRAWITZ, D. [71], Ideas and results of Proof Theory ; in Proceedings of the Second Scandinavian Logic Symposium (ed. Fenstad) (North Holland, Amsterdam 1971), pp. 235-307.

ROGERS, H. [67], The Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York, 1967).

TARSKI, A. [36], Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Phil. 1 (1936) 261-405. English translation in : Logic, Semantics, Metamathematics, Clarendon Press, Oxford, 1956, pp. 152-278.

TROELSTRA, A.S. [76], Completeness and validity for intuitionistic predicate logic ;

