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FAILURE OF COMPLETENESS PROPERTIES OF INTUITIONISTIC PREDICATE LOGIC

FOR CONSTRUCTIVE MODELS

Daniel LEIVANT

University of Amsterdam, AMSTERDAM, Netherlands

ABSTRACT

We consider a principle of constructivity RED which states that every decidable predicate
over the natural numbers is (weakly) recursively enumerable (r.e.). RED is easily seen to be
derived from Church’s thesis CT 0 (every construction is given by a recursive function»).
Results :

(1) RED implies that the species of valid first order predicate schemata is not r.e., and
hence - that intuitionistic first order predicate logic .t 1 is incomplete.

(2) We construct a specific schema of £1 which is valid if RED , but unprovable 
(3) The two results above hold even when validity is generalized to validity with

Kreisel-Troelstra [ 70 ]’s choice sequences as parameters.

(4) The method is used also to construct a schema of 9, 1 , unprovable in L 1, but of
whose all metasubstitutions with L 0 number theoretic predicates are provable in

1 
p

Heyting’s arithmetic G. This is a simple bound on possible improvements of the

maximality result of Leivant [ 75 ] .
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1. INTRODUCTION

For a general introduction to the subject matter of this note the reader is referred

to Troelstra [76 ] . 
’

The main two results of this note are the following. Firstly, we show (along the line of
Kreisel [70] ] p. 133) that the schema RED mentioned above in the abstract implies that the

species of intuitionistically valid formulae of predicate logic is not r.e.. This we do by
exhibiting a sequence ( F  ) of formulae, the validity of Fm~n meaning intuitively :
othe r.e. species Wm and Wn are not separable by any pair of decidable species». By RED

decidable species are (weakly) r.e., so we may say instead Wm and Wn are recursively

inseparable». The proof is then concluded by showing (intuitionistically) that the species
((m,n) ~ I Wm and Wn are recursively inseparable) is not r.e..

Secondly, we pick up m,n for which Fm n is not valid, but s.t. the recursive

inseparability of Wm and Wn is provable in intuitionistic arithmetic. This last proof may be

reshaped to apply to any given 10 model of arithmetic ; we conclude that any
1

10 -metasubstitution of F m n is provable in arithmetic, thus proving result (4) of the
I ’

abstract.

1.1. NOTATIONAL CONVENTIONS.

We use the logical constants &#x26;, A , -~ , rr , rq and .1 (for absurdity ; negation -,

is then definable). The letters P,Q,T,Z,S... are used for predicate parameters (in the language
of first-order predicate logic 1), while bold face T,Z,S... are used for certain number

theoretic predicates explicitely defined below. 
’

For recursion theoretic notions we use the notations of Kleene [ 52 ] and [69 ] :

Tn for the computation predicate for n-ary functions, U for the result-extracting function,
~ e~ for the e’th partial recursive function, " for partial equality, etc.

We assume given an encodement of sequences

i.e. - (n~, ..., nk) 2013~ ( no, ..., nk) together with a length-function lth and inverse

projection functions (n) Iwhich satisfy

We also fix some G6del-coding for syntactic objects, and write ’ a ’ for the code of a .

For formal r.e. theories ct we write Prov (p,r) for a canonical proof predicate for Cc ,
and Pr (r) for 7 p Prov (p,r).
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1.2. -1.4. FORMAL SETTING.

1.2. LANGUAGE. 
°

Our metamathematical setting is the intuitionistic theory of species, ~ 2. An inspection
on the proofs below shows that actually only a small fragment is used, but since it is

of little value for our purpose to delimit this fragment precisely we do not bother to do so.
Prawitz ( [ 65 ] p. 72) has shown that Heyting’s Arithmetic Ci- is interpretable 

however, to avoid notational complications we shall use lower case a,b,c etc. for numeric variables, and
lower case x,y,xi etc. for unrestricted first order variables. A list zo, ..., zi, ... of unrestricted

variables will be reserved for a specific use, and we shall assume that they do not occur in
formulae otherwise. We also assume that G as well as L2 contain symbols and defining

equations for all primitive recursive functions.
The system we study is first order intuitionistic predicate logic .9 l’ without equality

and without function symbols. We shall find it convenient to refer also to extended to the

language with all constants of G ( = , numerals and prim. rec. functions). We write 1 G for

the resulting system.
1.4. THE VALIDITY PREDICATE.

Tarski’s definition of a II 1 validity predicate Val for £ 1(analogously to the1 1

classical case) is standard (cf. e.g. Tarski [36 J ). The central property of Val is of course

for each schema G where P is the list of all predicate parameters occurring in G,

D 1 is a (unary) predicate variable and GD comes from G by restricting all quantifiers to D.

To avoid confusion one should note that the predicate Val does not express any
analysis of the notion of constructive truth (contrary to truth definitions like Beth’s and

Kripke’s semantics and the various realizability predicates). Here the constructive content of

! 1 shows only through the constructive meaning given (in S- 2) to the logical constants

occurring in Val. Our discussion is therefore valid regardless of any specific analysis of

constructivity.

1.4, THE SCHEMA RED.

We define the schema RED, for orecursive enumerability of decidable predicates» to be

It is easily seen that RED is derivable from the following weak variant of Church’s thesis CTo :
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V. Lifshits has sown (in 1974, unpublished) that even the positive version CT ! of I

is strictly weaker (in G ) than CT 0 .

2. CHARACTERIZATION OF (WEAKLY) RECURSIVELY INSEPARABLE PAIRS OF R.E. SETS

VIA RED.

2.1. A FINITE AXIOMATIZATION OF KLEENE’S PREDICATE T.

In the language of ~ l, fix three predicates Eq(x,y), Z(x) and S(x,y). We think of

these as representing equality, zero and the successor relation. Let AS ( * the axiom of the

theory of successor) be the conjunction of the closure of the following formulae 

Consider the familiar definig schemata for primitive recursive functions :

These equations may be axiomatized by
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The characteristic function T of Kleene’s predicate T is primitive recursive ;
there is therefore a list

e ~~~, e.
of equations, each of which is an instance of one of (1) - (5) with some auxiliary function
letters f , ..., t , which defines T . Taking the corresponding instances of (1) * - (5) *,
with predicate letters F , ..., Fk, T corresponding to f , ..., t , we obtain a list

0 0

B , ..., Bm of formulae which defines T. We let

where Ci is the closure of Bi (i L m). Let z , ..., zi, ... be a list of variables (not occurring
0

in A) ; define

2.2. We refer below to the schema

Write (in the language of £ 2)

where W e is the number theoretic predicate

o

Val w, E1 (rG(a1,a2)7) then reads : the r.e. sets W a 1 and Wa2 are not separable by any pair
of decidable r.e. sets.

2.3. LEMMA. (in ~~)

where n : = max [ a,b,c ].
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PROOF : One proves

for each primitive recursive predicate Fi used in the definition of T, by induction on the

length of definition of Fi. The details are routine. 0

2.4. LEMMA. (in £ 2)

Hence

where Z, ..., T are the number theoretic predicates for zero, successor etc.

Since the premise of (1) is trivially true, we obtain Val~ as required.
II. Assume

Fix P and Q and assume

and

From (2) and (4) we then get

Assume

which, by lemma 2.3. and assumption (3) implies E [ T,P,Q ] (zm,zn). This being derived from

(6), we get by intuitionistic propositional logic that (5) implies -~2013 E [ T,P,Q ] (z , z~)
as required. o
2.5. LEMMA. (in £ 2&#x3E; RED implies
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PROOF : The implication from left to right is trivial. Assume on the other hand

and, fixing P and Q, assume D [P,Q ]. By RED D [ P,Q] implies the weak existence of some

el, e2 s.t.

which by (1) implies ,IE [1 ,P,Q] I (m,n) as required. 0
2,6. PROPOSITION, (in - 2) RED implies

PROOF : Immediate from 2.4 and 2.5. ~

3. WEAK INCOMPLETENESS OF I , (UNDER RED).

, 

/ w,E01 
3. 1. PROPOSITION. The species S : =  m,n) ( Val 1 is not r.e.

PROOF : Assume that the speciesS is r.e., i.e. - for some primitive recursive predicate lI.

Let

where

Note that we may define a primitive recursive proof predicate Prov C+ for G as follows :

where imp is a primitive recursive function which satisfies

and where

Prov ~ is easily proved in G to satisfy the elementary derivability conditions. Let
G
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where neg is a primitive recursive function which satisfies neg( r F ’ ) = ~ 2013!F . for any

formula F in the language Since G is r.e., the consistency of G is equivalent to
the statement oWa 1 and Wa 2 are recursively inseparable» (see Smullyan [ 61 ] p. 6~. thm. 27 ;

notice that the proof there is intuitionistic).
Put formally :

where Con + : = - Pr +(r_l_7). In £2 we know however that Con + is true,
20132013C G 2 G

and consequently Va l’ a 2 must be an axiom of Ct,+. Together with (2) this implies

Con - +
which contradicts G6del second incompleteness theorem (since Prov , satisfies the elementary

derivability conditions). Thus the assumption that S is r.e. leads 2) to a contradiction. 8

REMARK : The reference to Smullyan’s theorem is made for the sake of brevity.
One may instead pick up any pair We , We of r.e. sets which are proved in G to be

1 2

recursively inseparable (cf. e.g. Rogers [ 67 1 p. 94 thm. XII(c), whose proof is intuitionistic).
Defining

we find that Con is equivalent (in C) to the recursive inseparability of Wd and Wd2.
C 1 2

THEOREM I. (Weak incompleteness). In L2 + RED we can prove that not every valid formula

is provable.

PROOF : If every valid formula of £, 1 is provable in ~ i then the species of valid formulae is
the same as the species of provable formulae, and so it must be r.e.. The formulae of the form

An - G(zm, zn) are recursively recognizable, and thus the valid formulae of this form make up
an r.e. species as well. By 2.6. S is then r.e., contradicting proposition :t 1. above.

3.2. The result of 3.1 can be classically improved by the following
o

PROPOSITION : Wm, Wn rec. inseparable) is II2-complete.
PROOF. (essentially due to C. Jockusch) Fix a pair Rl, R’2 of recursively inseparable r.e. sets.
Let k(e), hl(e), h2(e) be prim. rec. functions defined (through the s-m-n theorem) by
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Then : (i) We finite

(ii) We infinite

So the set

reduces to S. But I is known to be II02-complete (cf. Rogers [67] p. 326, 1.3), and hence
0

S is also n 2-complete. 8

3.3. PROPOSITION. There are numbers m,n for which we can prove + RED

that An "4 G(zm, zn) is valid but not provable in ¿ 1.
P ROOF : By the proof of 3.1. there are m, n s.t. and so by 2.6 An ~ G(zm, zn)
is valid, assuming RED. On the other hand, if

then

(1) ~ G[ T,P,Q ] (m,n) for any unary number theoretic predicates P,Q.

The G6del translation Go of G (see Kleene [ 52 ] p. 493) is therefore also provable in C ;

but Do is provable (idem, p.119 *51 a), and by intuitionistic predicate logic E[ T,P,Q] 
0

implies --7 --iE [ T,P,Q whenever P and Q do not contain Y , so (1) implies

which implies (in ~ 2) that -T E [ T,WM,Wn] (m,n) is true. For the m,n considered Wm
and wn are however (provably) disjoint, and so by the definition of E we have

-,E [T,Wm lwn (m,n), a contradiction. D

REMARK : A simpler proof of the above proposition runs as follows. Classically the schema G
is equivalent to E. E is obviously not valid classically, so it cannot be provable even in classical
first order logic, by G6del’s completeness theorem. The formalization of this proof in the
intuitionistic theory of species is however slightly problematic.
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3.4. INCOMPLETENESS W.R.T. VALIDITY WITH CHOICE PARAMETERS

Let a be a variable for choice sequences, and assume that for the kind of choice

sequences considered we have

which is the case for the choice sequences investigated by Kreisel-Troelstra r 70 ]

(cf. 6.2.1 there).
(1) implies quite trivially for every negated formula -,A(a )

Let us refer now to a notion of validity with choice parameters,

where Ga comes from G by replacing each atomic subformula P(tl, ..., tn) by

P(a , tl, ..., tn)- (This is not weaker than allowing the choice parameters to be distinct for

each predicate letter, as can readily be seen.)
A straightforward observation shows now that the discussion above remains correct

cs w,CS w 
when Val and Valw are replaced by Val and an analogue Val w,GS respectively, Val 1

remains unchanged and the schema RED is generalized to

But by (2) REDCS is implied outright by RED, since RED is negative, and (~-3) with a

varying over total recursive functions is just a special case of (the quantified variant of) RED.
To recapitulate, we have obtained

THEOREM II. In ~2 + RED we can prove that the species of formulae (of ~:1) which are
valid with choice parameters is not r.e., and we may exhibit a specific formula of 14 1 which

is valid with choice parameters but not provable in

4. ~ 1 IS NOT 

4.1. DEFINITION OF MAXIMALITY.

Let C be a class of number theoretic predicates and.  be a formal system in a

language extending the language of arithmetic. A formula H[ Po, ..., Pk J of 11 is a
C-schemaof 3 when

for every ..., * in C . We define formally for ’) = G , C = the class of 2 predicates :Po- I ..., pk in C. We define formally for 8 = a,C = the class of E I
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where (for m~ 1)

(In defining the predicate Sch we implicitly use a primitive recursive substitution function,
the definition of which is routine).

A system L of logic is said to be C -maximal for a if

~ = ~ H ( H in the language His - C -schema of S . }
de Jongh has proved (in 1969) that the intuitionistic propositional logic is

E01-maximal for intuitionistic arithmetic G (and certain extensions of C). 141 Leivant 1
1

(chs. B3-B5) it is proved that £1 is IT 2-maximal for G (and certain extensions of C ).
We shall now show that - is not E01-maximal even for a fragment of G .1 1, .

4.2, For a schema H =. H [Z,S,Eq,F 0’ ..., Frg T ; P ..., Pt ] Of 1 we define the schema

G , and the schema

of L1G, where Z, ..., T are the intended number theoretic predicates, i.e. -

Z(x) : = x = 0, etc.

If the r.e. interpretations

of the zero, successor and equality predicates satisfy the axiom of successor AS (cf. 2.1), then

Z ~ and S ~ generate a structure isomorphic to through a recursive (total) function,
defined as follows :

We let then
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For a formula H of G we now write for the sdwma of jiG I 1I1I1t’. II I 
,

by restricting all quantifiers to N d’
4.3. I,EMMA. (in G ) Let 

where n : = defined as in 2.], but with defining formulae for all 1

predicates TJ , where j ranges over the dimensions)) of the pre()1(’" If’ iii I I .

PROOF : Let G be given by a Gentzen natural deduction system (rl.e.g PraBBit7 ! 7! !).

ForaformulaH = I (n ...,nm) of G for
0 

H [Z,S,Eq,..., T] (zno, ...znm] as defined in 4.2. above. I.e. -

It is easy to verify that for each inference rule of the (;entzen ~) ...1, 111 

(where n , ..., np is the list of all numerals occurring in the formulae shown) the
0 P

isaderivedruleofG+ An d, where n:= max P if a formula

11(ii0 , ,...,n )of G is derivable by a natural deduction A then the tormnh
0 P

H[d I Id (zn 0 
occurring in A . By the existential conjuncts of the axiom Xs t, (.). and (B) in 2 i 

q may be cut down to n : :=~ max I i ~ pl. .

Assume now the premise of (1),

and fix d and e. For j - t let the predicate letter p. be In..  I pLH’1 i iiil d,’l’íllt iliiilil.t I

J J

e*= ((e*) 0 , ..., (e*)t &#x3E; through the s-m-n theorem by0
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where the function v , which depends on d, is defined as in 4.2. above.

Further, let e 1 = « e 1) o ,..., (e 1 )t) be defined by0

By (2) now

and so by the above argument

where n : = max [nj|j  p J . It is readily seen however that forJ

where for j ~ t

Here T d is the d-interpretation of the predicate Ti i.e. - T d : z W(d)a for some q.

by the definition of the interpretation generated by d, provided A n d holds

Since in H d ~ all quantifiers are indeed restricted to N , we thus have from (6)
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(provided And ), and so (5) implies the provability in Ci of

This being the case for arbitrary d and e we have obtained the concliisinn of (1 ), as 

4.4. THEOREM III. £. 1 is not E01-maximal for G . Specifically - are m and n f’or whiuh

AT, 1.4 E [ T,P,Q ] zn) is a 2: 0 -schema of C , but is not provable iii Y, 1. (Here the
schema E is defined as in 2.2.).

PROOF : Let W~, Wn be a pair of r.e. sets, proved in G to be recursively inseparable (as in 

I.e. - for each e0, el

which by lemma 4.3 implies that for any d,e

But E is existential, and therefore I implies (in predicate tB. So (1) for arbitrary
o

d,e actually states that An -&#x3E; E(zm, zn) 01-schema of L .

On the other hand this formula cannot he proved ~n as vBc seen in 
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