ANNALES SCIENTIFIQUES DE L'UNIVERSITÉ DE CLERMONT-FERRAND 2 Série Mathématiques

SAHARON SHELAH
 Interpreting set theory in the endomorphism semi-group of a free algebra or in a category

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 60, série Mathématiques, $\mathrm{n}^{\circ} 13$ (1976), p. 1-29
http://www.numdam.org/item?id=ASCFM_1976__60_13_1_0
© Université de Clermont-Ferrand 2, 1976, tous droits réservés.
L'accès aux archives de la revue «Annales scientifiques de l'Université de ClermontFerrand $2 »$ implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

INTERPRETING SET THEORY IN THE ENDOMORPHISM SEMI-GROUP

OF A FREE ALGEBRA OR IN A CATEGORY

Saharon SHELAH
The Hebrew University, JERUSALEM, Israel
Université de LOUVAIN, LOUVAIN-LA-NEUVE, Belgique

Abstract

We prove that in the endomorphism semi-group of a free algebra ${ }_{\lambda}$ with λ-generators, we can interprete $<\mathrm{H}\left(\lambda^{+}\right), \epsilon>$ and get similar results for categories. The result was announced in [S 3].

I would like to thank R. McKenzie, that seeing the proof, pointed out the holding of 3.3 (A) (by [X]). I thank also M. Rubin for stimulating discussions on the problem during its solution, and for reading the previous version, and detecting errors. The readers should thank him for urging me to rewrite the paper, and in particular to state explicitely that \underline{B} is a Boolean algebra.

§ 0. INTRODUCTION.

This paper has two lines of thought as motivation : comparing category theory with set theory, and investigating the complexity of the theories of some natural structures.

Lawvere [L] proved that in the category of all maps between sets, we can interpret set theory (which is not surprising in view of Rabin [R] interpreting a general two-place relation by two one-place functions).

Eklof asked whether in Ab (the category of abelian group) we can define the free group of cardinality λ. He got a positive answer for $\lambda<\alpha_{(\omega} \omega_{\omega}, \lambda=2{ }^{\nu_{0}}$, and λ the first strongly compact cardinal. Feferman asked whether for some $\mu \quad \mathrm{Ab}_{\mu}<\mathrm{Ab}^{\boldsymbol{r a n}} \quad\left(\mathrm{Ab}_{\mu}\right.$ - the category of abelian group of cardinality $<\mu$).

It is natural to replace the class of abelian group by any variety, and to concentrate on the free members. (In fact, our results hold for more general categories; see §5).

From another direction, there was interest in the first order theories of permutations groups. Mycielski [My] asked it.

This problem was dealt in Ershov [L],
McKenzie [M], Pinus [P], Shelah [S1] , [S2] where it was totally solved, in fact.
The semi-group of endomorphism of a free algebra is a natural generalization.

For simplicity we shall restrict ourselves to $\lambda>|\mathrm{L}|, \mathrm{L}$ the language of V .
Let for regular $\lambda, H(\lambda)$ be the set of sets of hereditary power $<\lambda$, and for singular λ, $H(\lambda)=\bigcup_{\mu<\lambda} \mathrm{H}\left(\mu^{+}\right)$. Our main result is that for a variety V, in Cat ${ }_{\lambda}$ (the category of members of V of cardinality $<\lambda$), we can interpret uniformly a model M_{λ} consisting of some copies of $(H(\lambda), \epsilon)$. For $\lambda=\infty$ this generalizes Lauvere theorem, and it also solves Feferman problem (i.e. reduce it to a problem of set theory). In categories in which the set of free members is definable, Eklof problem is answered too (e.g. for Ab).

There is an example showing that not always we can define the set of free members. However, we can characterize the algebras of cardinality $\leqslant \mu$ if e.g. $\mu^{|L|}=\mu$ (L-the language of V), and μ is definable in $H(\lambda)$ and we can characterize algebras which are free sums of subalgebras of cardinality $\leq 2^{|L|}$.

REM.ARKS : (1) By [S1], [S2], we can give a total analysis of the category of one-to-one maps; by which we cannot interprete set theory in it.
(2) It is natural to ask what we can interpret in the automorphism group of a free algebra [or the category of monomorphism]. Clearly here the result depends on the variety. This converges with the question of M. Rubin who asked on the classificated of first-order theories, by biinterpretability of their saturated models automorphism groups.
In [Ru] he solved the problem for Boolean algebras. If we allow quantification over elements, we can essentially solved the problem.
(3) It will be interesting, to change somewhat our main theorem 5.5 to get biinterpretability. Of course, if the set of identities of variety is definable in $H\left(\lambda^{*}\right)$ and there are no non-trivial beautiful terms, this holds for M_{λ}.
(4) Sabbagh and the author note that if in Cat ${ }_{\lambda}, F_{1}$ is definable then each automorphism of the skelton of Cat_{λ} (i.e. the full subcategory of a set of representatives from each isomorphism class of objects) is induced by an automorphism of the (multi-sorted) algebras of terms.

NOTATION :
Let V be a fixed variety, and Cat : the category of all algebras in V with all homomorphisms. Let K be a fixed subcategory of Cat, usually we assume K is a full subcategory. Let F_{λ} be the
free algebra (in V) generated by λ free generators $\left\{a_{t}: t \in \quad I\right\}$. Let G_{λ} be the endomorphism semi-group of F_{λ}. Elements of I will be denoted by t, s and a_{t}, I, t, s will appear in no other context. Several times, we deal with $K=G_{\lambda}$.

Two endomorphisms (or elements, or subalgebras) of F_{λ} are called conjugate if some automorphism of F_{λ} takes one to the other. We denote elements of algebras by a, b, c, d (a-usually a generator) and also by $\mathrm{x}, \mathrm{y}, \mathrm{z}$ which serve as individual constants too.

For any f let Rnf be its range, and for a set $B \subseteq A \epsilon V, C 1 B$ is its closure in A, $\tilde{b}=C 1\{b\}$. Let $\bar{x}, \bar{y}, \bar{z}$ denote finite sequences of variables, $\bar{x}=\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ usually. For a term τ we write $\tau=\tau\left(x_{0}, \ldots, x_{n-1}\right)=\tau(\bar{x})$, if every variable appearing in τ belong to $\left\{x_{0}, \ldots, x_{n-1}\right\}$. We can assume w.l.o.g. that if $\tau(\bar{x}, \bar{y})=\tau(\bar{x}, \bar{z})$ is an identity (of $\left.V\right)$, $\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}}$ are pairwise disjoint, then for some term $\sigma(\overline{\mathrm{x}}), \sigma(\overline{\mathrm{x}})=\tau(\overline{\mathrm{x}}, \overline{\mathrm{y}})$ is an identity. Λ term $\tau\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right)$ is called reduced if for no i and σ is

$$
\sigma\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right)=\tau\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right)
$$

an identity.
Clearly for every term $\tau\left(x_{0}, \ldots\right)$ there is a reduced term $\sigma\left(x_{i(0)}, \ldots\right)$ such that (i(0), $i(1), \ldots$ are distinct and

$$
\tau\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots\right)=\sigma\left(\mathrm{x}_{\mathrm{i}(0)}, \mathrm{x}_{\mathrm{i}(1)}, \ldots\right)
$$

is an identity.
Clearly for every $b \in C 1 B(B \subseteq A \in V)$ there is a reduced τ and distinct $b_{i} \in B$ such that $b=\tau\left(b_{0}, b_{1}, \ldots\right)$. Also if $\tau(\bar{x})$ is reduced, $t_{i} \in I$ are distinct,

$$
\tau\left(a_{t_{1}}, \ldots, a_{t_{n}}\right)=\sigma\left(a_{s_{1}}, \ldots, a_{s_{m}}\right)\left(\text { all in some } F_{\lambda}!\right) \text { then }\left\{t_{1}, \ldots, t_{n}\right\} \subseteq\left\{s_{1}, \ldots, s_{m}\right\}
$$

We say $\tau\left(a_{t_{0}}, \ldots\right)$ is reduced if $\tau\left(x_{0}, \ldots\right)$ is reduced and the $t_{i} s$ are distinct. Notice that any function $h:\left\{a_{t}: t \in I\right\} \rightarrow A \in V$, has a unique extension $\hat{h} \in \operatorname{Hom}\left(F_{\lambda}, A\right)$. If $h: I \rightarrow I, \hat{h} \in G_{\lambda} \quad$ is defined by $\hat{h}\left(a_{t}\right)=a_{h(t)}$.

We consider any K as a model : with two universes (the algebras and the morphisms, and the relations $f \epsilon \operatorname{Hom}(A, B), g=f o h$. Naturally a first-order language L is associated with it. For convenience, we can consider this language for G_{λ} too.

§ 1. ON DEEPNESS.

DEFINITION 1.1. : Let h be a function from B into B. For every $x \in B$, we define its depth $\mathrm{Dp}(\mathrm{x})=\mathrm{Dp}(\mathrm{x}, \mathrm{h})$ as an ordinal or ∞ by defining when it is $\geq a:$

$$
\begin{aligned}
& \mathrm{Dp}(\mathrm{x}) \geqslant 0 \Leftrightarrow \mathrm{x} \in \mathrm{~B} \\
& \mathrm{Dp}(\mathrm{x}) \geq \delta \Leftrightarrow \mathrm{Dp}(\mathrm{x}) \geq a \text { for every } a<\delta \text { (where } \delta \text { denote a } \\
& \text { limit ordinal) }
\end{aligned}
$$

$$
\mathrm{Dp}(\mathrm{x}) \geq a+1 \Leftrightarrow \text { for some } y \in B, f(\mathrm{y})=\mathrm{x} \text { and } \mathrm{Dp}(\mathrm{y}) \geq a
$$

LEMMA 1.1.: Let $\left\{a_{t}: t \in I\right\}$ freely generate F_{λ}, and h is a function from I into I. Define \hat{h} by $\hat{h}\left(\tau\left(a_{t(1)}, \ldots, a_{t(n)}\right)\right)=\tau\left(a_{h(t(1))}, \ldots, a_{h(t(n))}\right)$. Then
(A) $\hat{h} \in G$.
(B) $\quad \operatorname{Dp}\left[\tau\left(a_{t(1)}, \ldots, a_{t(n)}\right), \hat{\mathrm{h}}\right] \geqslant \min _{\mathrm{e}=1, \mathrm{n}} \mathrm{Dp}[\mathrm{t}(\mathrm{e}), \mathrm{h}]$.
(C) If in (B), $\tau\left(x_{1}, \ldots, x_{n}\right)$ is reduced and the $t(e)$ are distinct, then equality holds.

PROOF.
(A) Immediate.
(B) We prove by induction on a that

$$
\min _{\mathrm{e}=1, \mathrm{n}} \mathrm{Dp}[\mathrm{t}(\mathrm{e}), \mathrm{h}] \geq a \Rightarrow \operatorname{Dp}\left[\tau\left(\mathrm{a}_{\mathrm{t}(\mathrm{l})}, \ldots, \mathrm{a}_{\mathrm{t}(\mathrm{n})}\right] \geqslant a\right.
$$

and this suffices. For $a=0$ or a limit, it is trivial. For $a=\beta+1$, by the assumption and definition of depth, there are $s(e) \epsilon \mathrm{I}, \mathrm{h}(\mathrm{s}(\mathrm{e}))=\mathrm{t}(\mathrm{e})$ and $\mathrm{Dp}(\mathrm{s}(\mathrm{e}), \mathrm{h}) \geq \beta$. Then $\min _{e} \operatorname{Dp}[\mathrm{~s}(\mathrm{e}), \mathrm{h}] \geqslant \beta$, hence by the induction hypothesis $\operatorname{Dp}\left[\tau\left(\mathrm{a}_{\mathrm{s}(1)}, \ldots, \mathrm{a}_{\mathrm{s}(\mathrm{n})}\right), \hat{\mathrm{h}}\right] \geqslant \beta$
but

$$
\begin{aligned}
& \hat{h}\left(\tau\left(a_{s(1)}, \ldots, a_{s(n)}\right)\right)=\tau\left(a_{t(1)}, \ldots, a_{t(n)}\right), \text { hence } \\
& D p\left[\tau\left(a_{t(1)}, \ldots, a_{t(n)}\right), \hat{h}\right] \geqslant \beta+1=a
\end{aligned}
$$

(C) It suffices to prove by induction on a that

$$
\operatorname{Dp}\left[\tau\left(\mathrm{a}_{\mathrm{t}(1)}, \ldots, \mathrm{a}_{\mathrm{t}(\mathrm{n})}\right), \hat{\mathrm{h}}\right] \geq a \Rightarrow \mathrm{Dp}(\mathrm{t}(\mathrm{e}), \mathrm{h}) \geq a
$$

(for all e). For $a=0$ or a a limit ordinal, this is trivial. For $a=\beta+1$, by the definition of depth, there is a reduced term $\sigma\left(x_{1}, \ldots, x_{m}\right)$ and distinct $s(e)(e=1, m)$ such that
(i) $\hat{\mathrm{h}}\left(\sigma\left(\mathrm{a}_{\mathrm{s}(\mathrm{l})}, \ldots, \mathrm{a}_{\mathrm{s}(\mathrm{m})}\right)=\tau\left(\mathrm{a}_{\mathrm{t}(\mathrm{l})}, \ldots, \mathrm{a}_{\mathrm{t}(\mathrm{n})}\right)\right.$ and
(ii) $\operatorname{Dp}\left[\sigma\left(\mathrm{a}_{\mathrm{s}(\mathrm{l})}, \ldots, \mathrm{a}_{\mathrm{s}(\mathrm{m})}\right), \hat{\mathrm{h}}\right] \geq \beta$.

By (ii) and the induction hypothesis $\operatorname{Dp}[s(e), h] \geqslant \beta$ for $e=1, m$.
By (i) and the definition of \hat{h},

$$
\sigma\left(a_{h(s(1))}, \ldots, a_{h(s(m))}\right)=\tau\left(a_{t(1)}, \ldots, a_{t(n)}\right)
$$

As $\tau\left(x_{1}, \ldots, x_{n}\right)$ is reduced and the $t(e)$ are distinct, $\{t(1), \ldots, t(n)\} \subseteq\{h(s(1)), \ldots, h(s(m))\} \quad$. So for each $e=1, n$ there is $k_{e}, 1 \leq k_{e} \leq m$ such that $t(e)=h\left(s\left(k_{e}\right)\right)$ hence $\operatorname{Dp}[t(e), h] \geqslant \operatorname{Dp}\left[s\left(k_{e}\right), h\right]+1 \geq \beta+1=a$.

LEMMA 1.2.: Let h_{1}, h_{2} be functions from B into B which commute i.e.
$h_{1} o h_{2}=h_{2} o h_{1}$. Then for any $x \in B$

$$
\mathrm{Dp}\left[\mathrm{x}, \mathrm{~h}_{1}\right] \leqslant \mathrm{Dp}\left[\mathrm{~h}_{2}(\mathrm{x}), \mathrm{h}_{1}\right]
$$

PROOF : We prove by induction on a that

$$
\mathrm{Dp}\left[\mathrm{x}, \mathrm{~h}_{1}\right] \geqslant a \Rightarrow \mathrm{Dp}\left[\mathrm{~h}_{2}(\mathrm{x}), \mathrm{h}_{1}\right] \geqslant a
$$

For $a=0$, or a a limit ordinal, it is immediate.
For $a=\beta+1$.
If $\operatorname{Dp}\left[x, h_{1}\right] \geqslant \beta+1$, then for some $y \in B, h_{1}(y)=x$ and $D p\left[y, h_{1}\right] \geqslant \beta$.
So $h_{1}\left(h_{2}(y)\right)=h_{1} \circ h_{2}(y)=h_{2} \circ h_{1}(y)=h_{2}\left(h_{1}(y)\right)=h_{2}(x)$, and by the induction hypothesis $\operatorname{Dp}\left[\mathrm{h}_{2}(\mathrm{y}), \mathrm{h}_{1}\right] \geq \beta\left(\operatorname{as} \mathrm{Dp}\left[\mathrm{y}, \mathrm{h}_{1}\right] \geqslant \beta\right)$ hence $\mathrm{Dp}\left[\mathrm{h}_{2}(\mathrm{x}), \mathrm{h}_{1}\right] \geq \mathrm{Dp}\left[\mathrm{h}_{2}(\mathrm{y}), \mathrm{h}_{1}\right]+1 \geq \beta+1=a$.
LEMMA 1.3.: Let $\left\{\mathrm{a}_{\mathrm{t}}: \mathrm{t} \in \mathrm{I}\right\}$ freely generates $\mathrm{F}_{\lambda}, \mathrm{J} \leq \mathrm{I},|\mathrm{I} \cdot \mathrm{J}|=|\mathrm{I}|, \mathrm{J}=\underset{a<a(0)}{\cup} \mathrm{J}_{a}$ and let $B=C l\left\{a_{t}: t \in J\right\}$. Then we can find $f \in G_{\lambda}$, so that
(A) if $t \in J_{a}$ then $\operatorname{Dp}\left[a_{t}, f\right]=a$
(B) if $g \in G_{\lambda}$, g and f commute, and g maps B into B, then for every $a<a(0)$, $t \in J_{a}, g\left(a_{t}\right) \in \mathrm{Cl}\left\{\mathrm{a}_{\mathrm{s}}: \mathrm{s} \in \underset{a \leq \beta<a(0)}{ } \mathrm{J}_{\beta}\right\}$
(C) every function g from $\left\{a_{t}: t \in J\right\}$ into B satisfying the condition from (B), can be extended to an endomorphism of G_{λ}, commuting with f and mapping B into B
(D) f is the form mentioned in 1.1.

PROOF : By renaming we can assume I-J $=\mathrm{I}_{0} \cup\left\{<0, \mathrm{t}, \eta>: \mathrm{t} \in \mathrm{J}_{a}, a<a(0)\right.$ $\ell(\eta)>0, \eta$ a decreasing sequence ordinals, $\eta(0)<a\} \cup\{<1, \mathbf{t}, \mathrm{n}>: 0<\mathrm{n}<\omega\}$ and we identify $\langle 0, t,\langle \rangle\rangle$ and $\langle 1, t, 0\rangle$ with t. Let us define a function h on I :
(i) for $s \in I_{0} h(s)=s$
(ii). fort $\in J,\left\langle 0, t, \eta^{\wedge}\langle\beta\rangle\right\rangle \in I$

$$
\left.\mathrm{h}\left(\left\langle 0, \mathrm{t}, \eta^{\wedge}<\beta\right\rangle \quad\right\rangle\right)=\langle 0, \mathrm{t}, \quad \eta\rangle
$$

(iii) for $t \in J, h(\langle 1, t, n\rangle)=\langle 1, t, n+1\rangle$.

Let f be $\hat{\mathrm{h}}$ as defined in lemma 1.1. It is easy to prove that if $\mathrm{t} \epsilon \mathrm{J}, \ell(\eta)=\mathrm{n}$, then $\operatorname{Dp}[\langle 0, t, \eta\rangle, h]=\eta(n-1)$. Hence (A) follows immediately by 1.1 (C), and $\mathrm{f} \in \mathrm{G}_{\lambda}$ by 1.1 (A). As for part (B), if $g \in \mathrm{G}_{\lambda}$ commutes with f, g maps B into B , $\mathrm{t} \in \mathrm{J}_{a}, a<a(0), \operatorname{let} \mathrm{g}\left(\mathrm{a}_{\mathrm{t}}\right)=\sigma\left(\mathrm{a}_{\mathrm{s}(1)}, \ldots, \mathrm{a}_{\mathrm{s}(\mathrm{n})}\right)$ be reduced. As g maps B into B , $\mathrm{g}\left(\mathrm{a}_{\mathrm{t}}\right) \in \mathrm{B}$, hence necessarily $\mathrm{s}(\mathrm{e}) \in \mathrm{J}$ for $\mathrm{e}=1, \mathrm{n}$; so let $\mathrm{s}(\mathrm{e}) \in \mathrm{J}_{a}(\mathrm{e})$. By 1.1 (C) and a remark above

$$
\operatorname{Dp}\left[\mathrm{g}\left(\mathrm{a}_{\mathrm{f}}\right), \mathrm{f}\right]=\operatorname{Dp}\left[\sigma\left(\mathrm{a}_{\mathrm{s}(1)}, \ldots, \mathrm{a}_{\mathrm{s}(\mathrm{e}}\right), \mathrm{f}\right]=\min _{\mathrm{e}} \operatorname{Dp}[\mathrm{~s}(\mathrm{e}), \mathrm{h}]=\min _{\mathrm{e}} a(\mathrm{e}) .
$$

On the other hand by lemma 1.2 , as g commutes with f ,

$$
a=\operatorname{Dp}\left[a_{t}, f\right] \leq \operatorname{Dp}\left[g\left(\mathrm{a}_{\mathrm{t}}\right), \mathrm{f}\right] .
$$

Combining both we get $a \leq a(e)$ for $\mathrm{e}=1, \mathrm{n}$. Hence $\mathrm{g}\left(\mathrm{a}_{\mathrm{t}}\right) \in \mathrm{Cl}\left\{\mathrm{a}_{\mathrm{t}}: \mathrm{t} \epsilon \mathrm{J}_{\beta}\right.$, $a \leq \beta<a(0)\}$, so we proved (B).

As for (C), extend g to a function g_{1} from $\left\{a_{t}: t \in I\right\}$ into F_{λ}, by :

$$
\begin{aligned}
\text { if } g(t) & =\tau\left(a_{t(1)}, \ldots, a_{t(n)}\right) \\
\text { let } g_{1}\left(a_{<0, t, \eta>}\right) & =\tau\left(a_{<0, t(1), \eta>},{ }^{c}<0, t(2), \eta>, \ldots,{ }_{<0, t(n), \eta>}\right) \\
g_{1}\left(a_{<1, t, m>}\right) & =\tau\left(a_{<1, t(1), m>}, a_{<1, t(2), m>}, \ldots, a_{<1, t(n), m>}\right)
\end{aligned}
$$

and $g_{1}\left(a_{s}\right)=a_{s}$ for $s \in I_{0}$.
It is easy to check that g_{1} is well defined (because $\mathrm{t} \epsilon \mathrm{J}_{a}, \mathrm{t}(\mathrm{e}) \in \mathrm{J}_{\beta} \Rightarrow a \leq \beta$) and it has a unique extension to $g_{2} \epsilon G_{\lambda}$. In order to check that g_{2} and f commute, it suffices to prove that for every $\mathrm{s} \epsilon \mathrm{I}$, f o $\mathrm{g}_{2}\left(\mathrm{a}_{\mathrm{s}}\right)=\mathrm{g}_{2} \mathrm{of}\left(\mathrm{a}_{\mathrm{s}}\right)$ which is quite easy.

Now (D) holds by the definition of f.

§ 2. SIMPLE PROPERTIES EXPRESSIBLE IN FIRST-ORDER LOGIC.

LEMMA 2.1.: Each of the following properties (in a full subcategory K) is expressible by formulas (of L) :
(A) proj (f) - which means f is a projection
(B) f is an automorphism, aut(f) in short
$(\mathrm{C}) \mathrm{g}$ is a projection, and $\mathrm{Rn}(\mathrm{f}) \subseteq \mathrm{Rn}(\mathrm{g})$
(D) g is a projection, $\mathrm{Rn}(\mathrm{f} \uparrow \mathrm{Rng}) \subseteq \mathrm{Rn}(\mathrm{g})$
(E) g is a projection, $\operatorname{Rn}\left(f_{e}\right) \subseteq \operatorname{Rn}(g)$ for $e=1,2,3$ and

$$
\left[\mathrm{f}_{3} \upharpoonright \operatorname{Rn}(\mathrm{~g})\right]=\left[\mathrm{f}_{1} \upharpoonright \operatorname{Rn}(\mathrm{~g})\right] \text { o }\left[\mathrm{f}_{2} \upharpoonright \operatorname{Rn}(\mathrm{~g})\right]
$$

(F) g, f are projections and $\operatorname{Rn}(\mathrm{g})=\operatorname{Rn}(\mathrm{f})$.

REMARK : Clearly for any $f \in \operatorname{Hom}(A, B), \operatorname{Rn}(f)$ is a subalgebra of B.
PROOF : We give the expression or an indication of it in each case
(A) f of $=\mathrm{f}$
(B) $(\exists \mathrm{g}, \mathrm{A})\left(\mathrm{f}\right.$ og $=\mathrm{g}$ of $\left.=\mathrm{l}_{\mathrm{A}}\right)\left[\mathrm{l}_{\mathrm{A}}\right.$ - the identity of A define by $\left({ }_{\mathrm{f}}^{\mathrm{f}}, \mathrm{B}\right)(\mathrm{f} \epsilon \operatorname{Hom}(\mathrm{B}, \mathrm{A}) \rightarrow \mathrm{h}$ of $\left.=\mathrm{f})\right]$
(C) $\operatorname{proj}(\mathrm{g}) \wedge \mathrm{g}$ of $\mathrm{f}=\mathrm{f}$.

As g is a projection, $x \in \operatorname{Rn}(g) \oplus g(x)=x$. Hence when $\operatorname{proj}(g)$, and $f: B \rightarrow A$, $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{A}$.

$$
\begin{aligned}
g o f=f \Leftrightarrow(\forall x \in B)(g(f(x))=f(x)) & \Leftrightarrow(\forall x)[f(x) \in \operatorname{Rn}(g)] \Leftrightarrow \\
& \Leftrightarrow \operatorname{Rn}(f) \subseteq \operatorname{Rn}(g)
\end{aligned}
$$

(D) $\operatorname{proj}(\mathrm{g}) \wedge \mathrm{gofog}=\mathrm{fog}$ (the proof similar to the previous one)
(E) $\operatorname{proj}(g) \wedge \stackrel{3}{i}_{=}^{\prime}$ gof $f_{i}=f_{i} \wedge f_{1} \circ f_{2} \circ g=f_{3} \circ g$
(F) Immediate by (C).

CLAIM 2.2.

(A) If B is the range of some projection $f \epsilon G_{\lambda}$, then any homomorphism $h: B \rightarrow B$ (B considered as a subalgebra) can be extended to an $h^{\prime} \in G_{\lambda}$
(B) If $B=C 1\left\{a_{t}: t \in J\right\}$ where $J \subseteq I$ and $\left\{a_{t}: t \in I\right\}$ freely generates F_{λ}, then a homomorphism $h: B \rightarrow B$ is onto B iff for some homomorphism $g: B \rightarrow B \quad h o g$ is the identity.
PROOF.
(A) Clearly h of ϵG_{λ} extend h and its domain is F_{λ}.
(B) Clearly if h og is the identity (on B), then for any $y \in B, g(y) \in B$ and $h(g(y))=y$, hence h is into B.

Let h be onto B, so for every $t \in J, a_{t}=h\left(\tau{ }^{t}\left(a_{s}(1, t), \ldots\right)\right)$ for some term $\tau{ }^{t}$ and $s(e, t) \in J$. There is a unique homomorphism $g: B \rightarrow B, g\left(a_{t}\right)=\tau{ }^{t}\left(a_{s}(1, t), \ldots\right)$. Clearly for any $t \in J, h o g\left(a_{t}\right)=a_{t}$ hence $h o g$ is the identity. REMARK. Sabbagh had proved that «f is one-to-one» and «f is onto» are (first-order) definable in Cat λ_{λ}.

§ 3. BEAUTIFUL TERMS.

DEFINITION 3.1. : The term $\tau\left(x_{1}, \ldots, x_{n}\right)$ is called beautiful if
(A) For any term $\sigma\left(x_{1}, \ldots, x_{m}\right)$

$$
\begin{aligned}
& \tau\left(\sigma\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}\right), \sigma\left(x_{1}^{2}, \ldots, x_{m}^{2}\right), \ldots, \sigma\left(x_{1}^{n}, \ldots, x_{m}^{n}\right)\right)= \\
& \sigma\left(\tau\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{n}\right), \tau\left(x_{2}^{1}, \ldots, x_{2}^{n}\right), \ldots, \tau\left(x_{m}^{1}, \ldots, x_{m}^{n}\right)\right)
\end{aligned}
$$

is an identity (of $\mathrm{F}_{\boldsymbol{\lambda}}$)
(B) $\tau\left(\tau\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{n}^{1}\right), \tau\left(x_{1}^{2}, \ldots, x_{n}^{2}\right), \ldots, \tau\left(x_{1}^{n}, \ldots, x_{n}^{n}\right)\right)=\tau\left(x_{1}^{1}, x_{2}^{2}, \ldots, x_{n}^{n}\right)$
is an identity
(C) $\tau(x, \ldots, x)=x$ is an identity.

REMARK : The beautiful terms for $n>1$ cause us much trouble. For the free abelian group, only x is beautiful and reduced. However, if F is a free algebra of the identities $T\left(T_{1}(x), T_{2}(x)\right)=x, T_{1}(T(x, y))=x$ and $T_{2}(T(x, y))=y$ and $T_{3}(x, y)=T\left(T_{1}(x), T_{2}(y)\right)$, then the identities which hold in $\left(\left|F_{\lambda}\right| \quad ; T_{3}\right)$ define a variety for which $T_{3}(x, y)$ is a beautiful term.

LEMMA 3.1.
(A) The set of beautiful terms is closed under substitution, i.e. if $\sigma\left(x_{1}, \ldots, x_{m}\right), \tau_{i}\left(x_{1}, \ldots, x_{n(i)}\right)(i=1, \ldots, n)$ are beautiful terms, then so is

$$
\begin{array}{r}
\sigma^{*}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right)=\sigma\left(\tau_{1}\left(\mathrm{y}_{\mathrm{j}(1,1)}, \mathrm{y}_{\mathrm{j}(1,2)}, \ldots, \mathrm{y}_{\mathrm{j}(1, n(1))}\right), \tau_{2}\left(\mathrm{y}_{\mathrm{j}(2,1)}, \ldots\right), \ldots\right. \\
\left.\tau_{k}\left(\mathrm{y}_{\mathrm{j}(\mathrm{k}, 1)}, \mathrm{y}_{\mathrm{j}(\mathrm{k}, 2)}, \ldots, \mathrm{y}_{\mathrm{j}(\mathrm{k}, \mathrm{n}(\mathrm{k}))}\right)\right)
\end{array}
$$

(B) x is a beautiful term, and there is no other beautiful term $\tau(x)$; and $\tau\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is beautiful.
(C) The two-place beautiful terms ($\tau(x, y))$ generate by substitution all the beautiful terms. PROOF.
(A) The checking has no problems.
(B) By the third demand in Def. 3.1 ; the second phrase - by checking.
(C) If $\tau=\tau\left(x_{1}, \ldots, x_{n}\right),(n>2)$ let $\tau_{1}(x, y)=\tau(x, \ldots, x, y)$

$$
\tau_{2}\left(x_{1}, \ldots, x_{n-1}\right)=\tau\left(x_{1}, \ldots, x_{n-1}, x_{n-1}\right) . \text { So } \tau\left(x_{1}, \ldots, x_{n}\right)=
$$

$\tau_{2}\left(x_{1}, \ldots, x_{n-2}, \tau_{1}\left(x_{n-1}, x_{n}\right)\right)$ is an identity as
$\tau_{2}\left(x_{1}, \ldots, x_{n-2}, \tau_{1}\left(x_{n-1}, x_{n}\right)\right)=$
$\tau\left(x_{1}, \ldots, x_{n-2}, \tau_{1}\left(x_{n-1}, x_{n}\right), \tau_{1}\left(x_{n-1}, x_{n}\right)\right)=$
$\tau\left(\tau\left(x_{1}, \ldots, x_{1}\right), \ldots, \tau\left(x_{n-2}, \ldots, x_{n-2}\right), \tau\left(x_{n-1}, \ldots, x_{n-1}, x_{n}\right), \tau\left(x_{n-1}, \ldots, x_{n-1}, x_{n}\right)\right)=$ $\tau\left(x_{1}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right)$

So we can prove our assertion by induction on n.
DEFINITION 3.2. : The beautiful Boolean algebra of a variety is the Boolean algebra \underline{B} such that
(1) Its elements are beautiful terms of the form $\tau(\mathrm{x}, \mathrm{y})$ (x, y here are fixed).
(2) Its zero is y, its unit is x.
(3) The intersection is defined by

$$
\tau_{1}(x, y) \cap \tau_{2}(x, y)=\tau_{1}\left(\tau_{2}(x, y), y\right)=\tau_{2}\left(\tau_{1}(x, y), y\right) .
$$

(4) The complement is define by $\tau(x, y)^{\mathbf{c}}=\tau^{\prime}(x, y)$ where $\tau(x, y)=\tau^{\prime}(y, x)$.

DEFINITION 3.3. : For any filter T of \underline{B}, let $\approx T$ be the relation (defined on elements of members of Cat)

$$
a \approx \approx_{T} \text { iff } a=\tau(b, a) \text { iff } b=\tau(a, b)
$$

and it is similarly defined on each $\operatorname{Hom}(A, B), A, B \in$ Cat (see Def. 3.4 (A)).
DEFINITION 3.4. :
(A) If $f_{i}: A \rightarrow B$ (in Cat), τ a beautiful term, $\tau\left(f_{1}, \ldots, f_{n}\right): A \rightarrow B$ is defined by $\tau\left(f_{1}, \ldots, f_{n}\right)(a)=\tau\left(f_{1}(a), \ldots, f_{n}(a)\right)$
(B) If $\mathrm{A}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{n})$ belong to Cat, τ a beautiful term, the algebra $\tau\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ is defined as follows :
its elements are $\left\langle\mathrm{a}_{1}, \ldots, a_{n}\right\rangle$ where $a_{i} \in A_{i}$ and $\left.<a_{1}, \ldots, a_{n}\right\rangle=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ iff for each $i, a_{i} \approx T_{i} b_{i}$ where T_{i} is the filter generated by $\tau(y, \ldots, y, x, y, \ldots, y)$ (the x -in the ith place) ; for a term $\sigma, \sigma\left(\left\langle\mathbf{a}_{1}^{1}, \ldots,{\underset{\mathrm{a}}{\mathrm{n}}}_{\mathbf{l}}\right\rangle,\left\langle\mathrm{a}_{\mathbf{1}}^{2}, \ldots, \mathrm{a}_{\mathrm{n}}^{2}\right\rangle, \ldots\right)=$

$$
\left\langle\sigma\left(\mathrm{a}_{1}^{1}, \mathrm{a}_{1}^{2}, \ldots\right), \sigma\left(\mathrm{a}_{2}^{1}, \mathrm{a}_{2}^{2}, \ldots\right), \ldots\right\rangle
$$

(C) If $\mathrm{f}_{\mathrm{i}}: \mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{B}_{\mathrm{i}}($ in Cat) τ a beautiful term, then

$$
\tau\left(f_{1}, \ldots, f_{n}\right): \tau\left(A_{1}, \ldots, A_{n}\right) \rightarrow \tau\left(B_{1}, \ldots, B_{n}\right)
$$

is defined naturally.
REMARK : There is an ambiguity in the definition of $\tau\left(f_{1}, \ldots, f_{n}\right)$; so when both definitions are meaningful we prefer (A) ; and even better : in (B) if $\xlongequal[i=1]{\wedge} A_{i}=A$ or $\tau\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is an identity, we make $\tau\left(A_{1}, \ldots, A_{n}\right)=A_{i}$. In fact $\tau\left(A_{1}, \ldots\right)$ is essentially defined up to isomorphism.
NOTATION: If $\overline{\mathrm{x}}^{\mathrm{e}}=\left\langle\mathrm{x}_{0}^{\mathrm{e}}, \ldots, \mathrm{x}_{\mathrm{m}-\mathrm{l}}^{\mathrm{e}}\right\rangle$ then

$$
\tau\left(\overline{\mathbf{x}}^{0}, \ldots, \overline{\mathbf{x}}^{\mathrm{n}-1}\right)=\left\langle\tau\left(\mathrm{x}_{0}^{0}, \mathbf{x}_{0}^{1}, \ldots\right), \quad \tau\left(\mathbf{x}_{1}^{0}, \mathbf{x}_{1}^{1}, \ldots\right), \ldots\right\rangle
$$

IEMMA 3.2.:
(A) The beautiful Boolean algebra is really a Boolean algebra.
(B) For any filter T of \underline{B} and $A \in C a t, \approx$ congruence relation, so A / \approx_{T} is defined and ϵ Cat and $\tau(\mathrm{x}, \mathrm{y}) \in \mathrm{T}$ implies the identity $\tau(x, y)=x$ holds in A / \approx_{T}.
(C) For any $f_{i}: A \rightarrow B$ (in Cat) and any beautiful $\tau, \tau\left(f_{1}, \ldots, f_{n}\right)$ is a homomorphism from A into B. If $\Lambda=B, f_{i}$ a projection then $\tau\left(f_{1}, \ldots, f_{n}\right)$ is a projection.
(D) If $A_{i} \epsilon$ Cat, τ is beautiful then $\tau\left(A_{1}, \ldots, A_{n}\right) \in$ Cat.
(E) If $f_{i}: A_{i} \rightarrow B_{i}$ in Cat, τ beautiful then
$\tau\left(f_{1}, \ldots, f_{n}\right): \tau\left(A_{1}, \ldots, A_{n}\right) \rightarrow \tau\left(B_{1}, \ldots, B_{n}\right)$ is in Cat.
(F) If $T \subseteq \underline{B}$ is an ultrafilter, for the category $\left\{A / \approx_{T}: A \in\right.$ Cat $\}$, there are no beautiful terms. It is the category of the variety, whose identities are those of V and $\left\{\begin{array}{l}\tau \\ (x, y)\end{array}=\mathbf{x}: \tau \in \mathrm{T}\right\}$. This holds for filters T too.

PROOF: Easy.
LEMMA 3.3. :
(1) For every $\tau_{1}(x, y)=\tau_{2}(y, x)$, let T_{e} be the filter generated by $\tau_{e}(x, y)$. Then any $\mathrm{A} \in$ Cat is the direct product of $\mathrm{A} / \approx_{\mathrm{T}_{1}}$ and $\mathrm{A} / \approx_{\mathrm{T}_{\mathrm{e}}} . \operatorname{In} \mathrm{A} / \approx_{\mathrm{T}_{\mathrm{e}}}, \tau \mathrm{e}^{(\mathrm{x}, \mathrm{y})}=\mathrm{x}$ is an identity.
(B) If our variety V is the modules over a ring R, then the beautiful two-place terms are $a x+(1-a) y$ where a is in the center of R and is idempotent (i.e. $\left.a^{2}=a\right)$.
PROOF : Easy.
IEMMA 3.4.: Let τ be a beautiful term.
(A) Let $K \subseteq$ Cat be a subcategory, such that for $f_{i}: A \rightarrow B$ in $K, \tau\left(f_{1}, \ldots, f_{n}\right)$ is in K.

In the proper language L^{*} (i.e. with variables for objects, and for morphisms, and a partial operation of composition, and the relation $f \in \operatorname{Hom}(A, B)$ plus our τ) for every first order formula $\phi_{0}\left(f_{1}, \ldots ; A_{1}, \ldots\right)$, there is a finite set Φ of formulas of $L{ }^{*}$ with the same free variables such that :
(i) ${ }_{0} \in \Phi$
(ii) if $g_{i}^{j}: B_{i(1)} \rightarrow B_{i(2)}, g_{i}=\tau\left(g_{i}, \ldots, g_{i}^{n}\right)$, then the sets

$$
\Phi \mathrm{j}=\left\{\phi\left(\mathrm{f}_{1}, \ldots ; \mathrm{A}_{1}, \ldots\right) \epsilon \Phi: \mathrm{K} \vDash \phi\left[\mathrm{~g}_{1}, \mathrm{~g} \mathrm{j}_{2}, \ldots ; \mathrm{B}_{1}, \ldots\right]\right\}
$$

totally determine $\Phi^{*}=\left\{\phi\left(\mathrm{f}_{1}, \ldots ; \mathrm{A}_{1}, \ldots\right) \epsilon \Phi: \mathrm{K} \vDash \phi\left[\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots ; \mathrm{B}_{1}, \ldots\right]\right\}$
hence in particular the truth of $\phi_{0}\left(\mathrm{~g}_{1}, \ldots ; \mathrm{B}_{1}, \ldots\right)$
(iii) if in (ii) the $\Phi \mathrm{j}$'s are equal then $\Phi^{*}=\Phi \mathrm{j}$.
(B) We can expand L^{*} by letting in variables for elements, and more terms of our variety ; and also let in (ii) $\underset{i}{\mathrm{j}}: \underset{\mathrm{i}(1)}{\mathrm{Bj}} \rightarrow \underset{\mathrm{i}(2)}{\mathrm{Bj}}$; and the same conclusion holds, provided that we are careful for the question when

$$
\left.\tau\left(B_{i(1,1)}, B_{i(1,2)}, \ldots\right)=\tau\left(B_{i(2,1}\right), B_{i(2,2)}, \ldots\right) .
$$

REMARK :This is just a varient of Feferman Vaught [FV], as refined by Weinstein [W] and Galvin [G].
PROOF:
(A) We define $\Phi=\Phi_{\phi_{0}} \quad$ by induction on the structure of ϕ_{0}.

Let $\tau \mathrm{j}_{(\mathrm{x}, \mathrm{y})}=\tau(\mathrm{y}, \ldots, \mathrm{y}, \mathrm{x}, \mathrm{y}, \ldots, \mathrm{y})(\mathrm{x}-$ in the jth place) for $\mathrm{j}=1, \mathrm{n}$.
If ϕ_{0} is $f_{i} \in \operatorname{Hom}\left(A_{i(1)}, A_{i(2)}\right)$ or $A_{i}=A_{j}$ let $\Phi_{\phi_{0}}=\left\{\phi_{0}\right\}$
If $\quad \phi_{0}$ is $f_{k(1)}=f_{k(2)}{ }^{o f} f_{k(3)}$ let

$$
\begin{aligned}
& \Phi_{\phi_{0}}=\left\{f_{k(1)}=\tau j\left(f_{k(2)} o f_{k(3)}, f_{k(1)}\right): j=1, n\right\} \quad U\left\{\phi_{0}\right\} \\
& \text { (if } \tau(f, g) \text { is not defined, } h=\tau(f, g) \text { is false) }
\end{aligned}
$$

If $\quad \phi_{0}=f_{k}=\tau\left(f_{k(1)}, \ldots, f_{k(n)}\right)$ let

$$
\Phi_{\phi_{0}}=\left\{f_{k}=\tau j\left(f_{k(1)}, \ldots, f_{k(n)}\right): j=1, n\right\} \cup\left\{\phi_{0}\right\}
$$

If $\phi_{0}=-\psi$ or $\phi_{0}=\psi_{1} \wedge \psi_{2}$ then $\Phi_{\phi_{0}}=\Phi_{\psi} \cup\left\{\phi_{0}\right\}, \Phi_{\phi_{0}}=\Phi_{\psi_{1}} U \Phi_{\psi_{2}} \cup\left\{\phi_{0}\right\}$ resp.
If $\phi_{0}=(\mathrm{Ig}) \psi$ then $\Phi_{\phi_{0}}=\left\{(\mathrm{I} \mathrm{g}) \psi_{1}: \psi_{1}\right.$ a boolean combination of $\left.\Phi_{\psi}\right\}$.
It is now easy to prove (ii) by induction and (iii) follows trivially by choosing
$\mathrm{g}_{\mathrm{i}}^{\mathrm{j}}=\mathrm{g}_{\mathrm{i}} \mathrm{for}$ all i, j.
(B) Left to the reader.

§ 4. DEFINING ARBITR ARY SETS WITH PARAMETERS.

THEOREM 4.1. : There is a formula $\phi_{\mathrm{m}}^{\mathbf{b}}$ such that the following holds. Let K be a full subcategory of Cat, and $F_{\mu} \in K$. Suppose $A, B \in K,|A|+|B| \leqslant \mu$, and $\bar{f}_{i}\left(i<i(0)<\mu^{+}\right.$) is an m-tuple of members of Hom (A,B). Then we can find \bar{g} (from K) such that :

$$
K \vDash \phi_{m}^{b}[\bar{f}, \bar{g}] \quad \text { iff } \bar{f}=\tau\left(\bar{f}_{i(1)}, \ldots, \bar{f}_{i(n)}\right)
$$

for some beautiful term τ and $i(1)<\ldots<i(n)$.
REMARK : (1) The f_{i}^{*} are added as individual constant during the proof, in order not to mention them explicitely during the proof. In the end, we include them in $\overline{\mathrm{g}}$.

$$
\text { (2) Let } \phi_{1}^{b}=\phi^{b}
$$

PROOF : Let $\left\{a_{t}: t \in I^{*}\right\}$ freely generate F_{μ}, and let $J \subseteq I^{*}, \mu=|J|=\left|I^{*}-J\right|$. For notational simplicity let $\mathrm{J}=\{\langle a, \beta\rangle: a, \beta<\mu\}, \mathrm{a}_{\langle a, \beta>}={ }_{a}^{\beta}{ }_{a}^{\beta}$, and $\mathrm{i}(0)=\mu$ (as we can allow repeations).
MAIN LEMMA 4.2. : There is a formula $\phi(f)$, such that $G_{\mu} \vDash \phi$ [f] iff there is a beautiful $\tau=\tau\left(x_{1}, \ldots, x_{n}\right)$ and ordinals $a(1), \ldots, a(n)$, so that for every $\beta<\mu, f\left(a_{0}^{\beta}\right)=$ $\tau\left(\mathrm{a}_{a(1)}^{\beta}, \ldots, \mathrm{a}_{a(\mathrm{n})}^{\beta}\right)$.
PROOF OF 4.1 FROM 4.2 :
Let $\mathrm{f}_{0}^{*}: \mathrm{F}_{\mu} \mapsto \mathrm{A}$, be such that it maps $\left\{\mathrm{a}_{0}^{a}: a<\mu\right\} \quad$ onto A , and $\mathrm{f}_{0}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{f}_{0}^{*}\left(\mathrm{a}_{0}^{\beta}\right)$ Let $\overline{\mathrm{f}}_{\mathrm{i}}=\left\langle\mathrm{f}_{\mathrm{i}}^{0}, \ldots, \mathrm{f}_{\mathrm{i}}^{\mathrm{m}-\mathrm{l}_{>}} \quad\right.$, and let $\mathrm{f}_{0, \mathrm{e}}^{*}: \mathrm{F}_{\mu} \rightarrow \quad \mathrm{B}$, , he such that $\mathrm{f}_{0, \mathrm{e}}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{f}_{a}^{\mathrm{e}}$ of $\mathrm{f}_{0}^{*}\left(\mathrm{a}_{a}^{\beta}\right)$, for $\mathrm{e}<\mathrm{m}$. Let $f_{1}^{*}: F_{\mu} \rightarrow F_{\mu} \operatorname{maps}\left\{a_{t}: t \in I^{*}\right\}$ onto $\left\{a_{0}^{\beta}: \beta<\mu\right\}$ Let ${\underset{m}{b}}_{b_{0}}\left(f_{0}, \ldots, f_{m-1}\right)$ says that there is $f: F_{\mu} \rightarrow F_{\mu}$, such that $\phi(f)$ and $\mathrm{e}<\mathrm{m} \mathrm{f}_{\mathrm{e}}$ of f_{0}^{*} of $\mathrm{f}_{1}^{*}=\mathrm{f}_{0, \mathrm{e}}^{*}$ of of f_{1}^{*}.

PROOF OF 4.2 :
We partition our proof to three cases [it suffice to prove each one separately, and then by comining the formulas and choosing the parameters for each case, we can easily find a unique formula].

We shall use $\S 2$ freely : and restrict ourselves to F_{μ} and G_{μ}.

Case I : $\mu=\mathcal{K}_{0}$
Let $f_{2}^{*} \in G_{\mu}$ be such that $f_{2}^{*}\left(a_{t}\right)=a_{0}^{0}$ for each $t \in I^{*}$ and $f_{i}^{*} \in G_{\mu}(i=3,7)$ be such that :
$t \in I^{*} \cdot J$ implies $f_{i}^{*}\left(a_{t}\right)=a_{0}^{0}, f_{3}^{*}(\underset{n}{m})=\underset{n+1}{m}, f_{4}^{*}\left(\underset{n}{\left(a_{n}^{m}\right.}\right)=\underset{n}{a_{n}^{m}}{ }^{m}$,

$B_{2}=C l\left\{\underset{n}{a_{n}^{m}}: n, m\right\}, B_{0}=C l\left\{a_{0}^{0}\right\}$.
Clearly there are first order formulas $\phi_{e}(X)$ such that :
(1) $\phi_{1}(f)$ says that $f \upharpoonright B_{1}$ is into B_{1} and it commutes with $f_{3}^{*} \upharpoonright B_{1}$
(by 2.1 D, as f_{7}^{*} is a projection, and $\operatorname{Rn} \mathrm{f}_{7}^{*}=\mathrm{B}_{1}$)
(2) ϕ_{2} (f) says that ϕ_{1} (f) and $f \upharpoonright B_{2}$ is into B_{2} and it commutes with $f_{4}^{*} \upharpoonright B_{2}$
(3) ϕ_{3} (f) says that $\phi_{2}(f)$ and for any $g, \phi_{2}(g)$ implies that $f \upharpoonright B_{2}$ and (f_{5}^{*} ogof $\left.f_{5}^{*}\right) \upharpoonright B_{2}$ commute.
(4) ϕ_{4} (f) says that $\phi_{3}(f)$ and (f_{5} of of f_{5}^{*} of) $\upharpoonright B_{0}=\left(f_{6}^{*} o f\right) \upharpoonright B_{0}$
(5) ϕ_{5} (f) says that $\phi_{4}(f)$ and ($\left.f_{2}^{*} o f\right) \upharpoonright B_{0}=f_{2}^{*} \upharpoonright B_{0}$
(6) $\phi_{6}(f)$ says that for some $f^{\prime}, f^{\prime} \upharpoonright B_{3}=f \upharpoonright B_{3}$ and $\phi{ }_{5}\left(f^{\prime}\right)$ where $B_{3}=\operatorname{cl\{ }\left\{\begin{array}{l}a_{0}^{m}\end{array}: m<\omega\right\}$

Now we notice
$\left(\underline{l^{*}}\right) G_{\mu} \vDash \phi_{1}[f]$ iff $f\left(\mathbf{a}_{n}^{0}\right)={ }_{\tau}\left(\mathbf{a}_{n+\ell(1)}^{0}, \ldots, a_{n+\ell(k)}^{0}\right)$ (for some $\tau, \ell(i)$, for every n)
[Clearly the «if» part holds; for the other direction, as $f\left(\mathrm{a}_{0}^{0}\right) \in \mathrm{B}_{1}$,
$\left.f\left(\mathbf{a}_{0}^{0}\right)=\tau\left(a_{\ell .(1)}^{0}\right), \ldots, a_{\ell(k)}^{0}\right)$ for some $\tau, \ell(i) ;$ apply $f_{3}^{*} n$ times and we get our result $]$.
$\underline{\left(2^{*}\right)} \mathrm{G}_{\mu} \vDash \phi_{2}[\mathrm{f}]$ iff $\left.\underset{\mathrm{f}}{\mathrm{f}} \underset{\mathrm{a}}{\mathrm{m}}\right)=\tau\left(\mathrm{a}_{\mathrm{n}+\ell(1)}^{\mathrm{m}}, \ldots, \mathrm{a}_{\mathrm{n}+\ell(\mathrm{k})}^{\mathrm{m}}\right)$
the «if» part is immediate, and for the «only if» use (1^{*}), and apply $f_{4}^{*} m$ times on the right side
 ${ }^{\tau}\left(x_{1}, \ldots, x_{k}\right)$ satisfies condition (A) for being beautiful.
[Suppose $\mathrm{G}_{\mu} \vDash \phi_{3}[\mathrm{f}]$, then clearly $\mathrm{G}_{\mu} \vDash \phi_{2}\left[\mathrm{f}\right.$] hence by $\left(2^{*}\right)$ for some $\tau, \ell(\mathrm{i})$,
for every $n, m \underset{n}{f\left(a_{n}^{m}\right)}=\tau\left(a_{n+\ell(1)}^{m}, \ldots, a_{n+\ell(k)}^{m}\right)$.
Now for every term $\sigma\left(x_{1}, \ldots, x_{p}\right)$ let $g \in G_{\lambda}$ be such that $\underset{n}{\left(a_{n}^{m}\right)}=\sigma\left(a_{n+1}^{m}, \ldots, a_{n+p}^{m}\right)$.
So clearly f_{5}^{*} ogof $f_{5}^{*}\left(a_{n}^{m}\right)=\sigma\left(a_{n}^{m+1}, \ldots, a_{n}^{m+} p\right) . B y\left(2^{*}\right), G_{\lambda} \vDash \phi_{2}[g]$, hence by ϕ_{3} 's definition, $\left(f_{5}^{*}\right.$ ogof $\left.f_{5}^{*}\right)$ of $\left[a_{0}^{0}\right]=\mathrm{fo}\left(f_{5}^{*} \circ \mathrm{gof}{ }_{5}^{*}\right)\left[a_{0}^{0}\right]$, computing we get

$$
\begin{aligned}
& \tau\left(\sigma\left(\mathrm{a}_{\ell(1)}^{\mathrm{l}}, \ldots, \mathrm{a}_{\ell(1)}^{\mathrm{p}}\right), \sigma\left(\mathrm{a}_{\ell(2)}^{1}, \ldots, \mathrm{a}_{\ell(2)}\right), \ldots, \sigma\left(\mathrm{a}_{\ell(\mathrm{k})}^{1}, \ldots,{\underset{\ell(k)}{ }))}^{\mathrm{p}_{\ell}}\right)\right. \\
& =\sigma\left(\tau\left(\mathrm{a}_{\ell(1)}^{1}, \ldots, \mathbf{a}_{\ell(k)}^{1}, \tau\left(\mathrm{a}_{\ell(1)}^{2}, \ldots, \mathrm{a}_{\ell(k)}^{2}\right), \ldots, \tau\left(\mathrm{a}_{\ell(1)}^{\mathrm{p}}, \ldots, \mathrm{a}_{\ell(\mathrm{k})}^{\mathrm{p}}\right)\right) .\right.
\end{aligned}
$$

As this holds for any σ, we prove that τ satisfies condition (A) from Definition 3.1. The other direction in $\left(3^{*}\right)$ should be easy now].
$\left(4^{*}\right): G_{\mu} \vDash \phi_{4}(f)$ iff $G_{\lambda} \vDash \phi_{3}[f]$, and the τ from (3^{*}) satisfies condition (B) from Def. 3.1.
[Assuming $G_{\mu} \vDash=\phi_{3}[f], \tau$ as in $\left(4^{*}\right), f_{5}^{*}$ of of f_{5}^{*} of $\upharpoonright B_{2}=f_{6}^{*}$ of $\upharpoonright B_{2}$ is equivalent to the equality of

$$
\begin{aligned}
& f_{6}^{*} \text { of }\left(a_{0}^{0}\right)=f_{6}^{*}\left(\tau\left(a_{\ell(1)}^{0}, \ldots, a_{\ell(k)}^{0}\right)\right)=\tau\left(a_{\ell(1)}^{\ell(1)}, \ldots, a_{\ell(k)}^{\ell(k)}\right) \\
& \text { and } f_{5}^{*} \text { of of } f_{5}^{*} \text { of }\left(\mathrm{a}_{0}^{0}\right)=f_{5}^{*} \text { of of } f_{5}^{*} \quad\left(\tau\left(\mathrm{a}_{\ell(1)}^{0}, \ldots, a_{\ell(k)}^{0}\right)\right) \\
& \left.=f_{5}^{*} \text { of(} \tau\left(a_{0}^{\ell(l)}, \ldots, a_{0}^{\ell(k)}\right)\right) \\
& =f_{5}^{*}(\tau(\tau\left(a_{\ell(1)}^{\ell(1)}, a_{\ell(2)}^{\ell(1)}, \ldots\right), \quad \underbrace{}_{\ell\left(a^{\ell(2)}\right.}, a_{\ell(2)}^{\ell(2)}, \ldots), \ldots, \tau\left(a_{\ell(1)}^{\ell(k)}, a_{\ell(2)}^{\ell(k)}, \ldots\right))
\end{aligned}
$$

This clearly is equivalent to condition (B) from Def. 3.1 on τ. The other direction is easy.] $\left(5^{*}\right) G_{\mu}=\phi_{5}[f]$ iff $\underset{n}{f\left(a_{n}^{m}\right)}=\tau\left(a_{n+\ell(1)}^{m}, \ldots, a_{n+\ell(k)}^{m}\right)$ (the ℓ (i) are distinct) where $\tau\left(x_{1}, \ldots, x_{k}\right)$ is beautiful.
[Because, assuming $G_{\lambda} \vDash \phi_{4}(f), f_{2}^{*}$ of $\upharpoonright B_{0}=f_{2}^{*} \upharpoonright B_{0}$ is equivalent to $a_{0}^{0}=\tau\left(a_{0}^{0}, \ldots, a_{0}^{0}\right)$] $\left(6^{*}\right) G_{\mu} \vDash \phi_{6}[$ f $]$ iff $f\left(a_{0}^{n}\right)=\tau\left(a_{\ell(1)}^{n}, \ldots, a_{\ell(k)}^{n}\right)$
for some beautiful τ, and $\ell(i)<\omega$, for every $n<\omega$.
[Immediate, by (5), noticing f_{5}^{*} of ${ }_{7}^{*}$ of f_{5}^{*} is a projection onto B_{3}].
So we clearly finish case I.
Case II : $\quad \mu=|\mathrm{J}|$ is regular $>\mathcal{N}_{0}$.
Let $\mathrm{I}^{*} \cdot \mathrm{~J}=\mathrm{I}_{0} \cup\left\{<a, \delta, \mathrm{n}>: a<\mu, \delta<\mu_{1}\right.$, cf $\left.\delta=\kappa_{0}, \mathrm{n}<\omega\right\}$.
$\left.\right|_{0} \mid=\mu$, and let us denote $\mathrm{a}_{a}^{\beta, \mathrm{n}}=\mathrm{a}_{<a, \beta, \mathrm{n}>}$; where $\mu_{1}=\mu$. But for using in case III, we from now up to the end of the proof of claim 4.3 , assume only $\mu_{1} \leqslant \mu \quad, \mu_{1}$ is regular. For each limit $\delta<\mu_{1}, \operatorname{cf} \delta=火_{0}$ choose an increasing sequence $\delta(n)(n<\omega)$ of ordinals $<\delta$, whose limit is δ; such that for each $\beta^{<} \mu_{1}, \mathrm{n}<\omega,\left\{\delta<\mu_{1}: \beta=\delta(\mathbf{n})\right\}$ is a stationary subset of μ_{1} (see e.g. Solovay [So]). Let us define some $\mathrm{f}_{\mathrm{e}}^{*}$ s, by defining $f_{e}^{*}\left(a_{t}\right)\left(t \in I^{*}\right)$ understanding that when $f_{e}^{*}\left(a_{t}\right)$ is not explicitely defined, it is a_{0}^{0}. So let, for $a<\mu, \quad \beta<\mu_{1}, f_{2}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{0}^{0}, \mathrm{f}_{3}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{a}^{0}, \mathrm{f}_{4}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{0}^{\beta}, \mathrm{f}_{5}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{\beta}^{a}$, $\mathrm{f}_{6}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{a}^{a}$, and when $\delta<\mu_{1}, \operatorname{cf} \delta=\mathcal{\kappa}_{0}, \mathrm{f}_{7}^{*}\left(\mathrm{a}_{a}^{\delta}\right)=\mathrm{a}_{a}^{\delta, 0} ;$ $\mathrm{cf} \beta \neq \kappa_{0} \rightarrow \mathrm{f}_{7}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{a}^{\beta} ; \mathrm{f}_{8}^{*}\left(\mathrm{a}_{a}^{\beta}\right)=\mathrm{a}_{a}^{\beta} ; \mathrm{f}_{8}^{*}\left(\mathrm{a}_{a}^{\delta, \mathrm{n}}\right)=\mathrm{a}_{a}^{\delta, \mathrm{n}+1}$,
 $B_{2}=\operatorname{Cl}\left\{\mathbf{a}_{0}^{\beta}: \beta<\mu_{1}\right\}, B_{3}=\operatorname{Cl}\left\{a_{a}^{\beta}: a<\mu, \beta<\mu_{1}\right\}$, $\mathrm{B}_{4}=\mathrm{Cl}\left\{\underset{a}{\left\{\mathrm{a}_{a}^{\beta}, \mathrm{a}_{a}^{\beta, \mathrm{n}}: a<\mu, \beta<\mu_{1}, \mathrm{n}<\omega\right\} \text { and } \mathrm{B}_{5}=\operatorname{Cl}\left\{\mathrm{a}_{0}^{\beta}, \mathrm{a}_{0}^{\beta}, \mathrm{n}: \beta<\mu_{1}, \mathrm{n}<\omega\right\}, ~}\right.$ $\mathrm{B}_{6}=\mathrm{Cl}\left\{\mathrm{a}_{0}^{\beta}: \beta<\mu_{1}, \operatorname{cf} \beta=\kappa_{0}\right\}_{0} \mathrm{~B}_{7}=\operatorname{Cl}\left\{\mathrm{a}_{a}^{\beta}: a<\mu, \beta<\mu_{1}, \mathrm{cf} \beta=\kappa_{0}\right\}$
Clearly $f_{3}^{*}, f_{4}^{*}, f_{9}^{*}$ are projections onto B_{1}, B_{2}, B_{3} resp. and let $f_{10}^{*}, f_{11}^{*}, f_{12}^{*}$ be projections onto $\mathrm{B}_{4}, \mathrm{~B}_{5}, \mathrm{~B}_{6}$ resp.

Now we apply lemma 1.3 , with $\left\{<a, \beta>: a<\mu, \beta<\mu_{1}\right\} \quad$ for J, and $\{<a, \beta>: a<\mu\} \quad$ for J_{β}, and I^{*} for I , and get $\mathrm{f}_{13}^{*} \epsilon \mathrm{G}_{\lambda}$ as mentioned there.

Let the first order formula $\phi_{1}(f, g)$ says that f, g are conjugate to $f_{2}^{*}, \operatorname{Rnf}, \operatorname{Rng} \subseteq B_{3}$ and there is $h \in G_{\mu}$ commuting with f_{13}^{*}, and mapping B_{3} into itself, such that h of $=g$. We shall write $\phi_{1}(f, g)$ also in the form $\mathrm{f} \leq \mathrm{g}$. So by 1.3 , if f, g are conjugate to f_{2}^{*} and

Let the first order formula $\phi_{2}(f)$ says that $f \ B_{2}, f \upharpoonright B_{5}, f \upharpoonright B_{0}, f \upharpoonright B_{6}$ are into $B_{3}, B_{4}, B_{1}, B_{7}$ resp. and for any g conjugate to f_{2}^{*}, if Rng $\& B_{2}$, then $g \leq f o g$; and $f \upharpoonright B_{5}$ commute with $\mathrm{f}_{7}^{*}, \mathrm{f}_{8}^{*}, \mathrm{f}_{9}^{*}$ and $\mathrm{f}{ }^{\mathrm{l}} \mathrm{B}_{3}$ commute with f_{3}^{*}.
CLAIM 4.3: $\mathrm{G}_{\lambda} \vDash \phi_{2}$ [f] iff for each $\beta<\mu_{1}$
$\mathrm{f}\left(\mathrm{a}_{0}^{0}\right)=\tau\left(\mathrm{a}_{a(\mathrm{l})}^{\beta}, \ldots, \mathrm{a}_{a(\mathrm{k})}^{\beta}\right), \mathrm{f}\left(\mathrm{a}_{0}^{\beta, \mathrm{n}}\right)=\tau\left(\mathrm{a}_{a(\mathrm{l})}^{\beta, \mathrm{n}}, \ldots, \mathrm{a}_{a(\mathrm{k})}^{\beta, \mathrm{n}}\right)$
for some $\tau, a(\mathrm{e})$ (which do not depend on β !).
PROOF: Assume $\mathrm{G}_{\mu} \vDash \phi_{2}[\mathrm{f}]$, and let

$a(\beta, e)$ increase with e,w.l.o.g. By part of ϕ_{2} saying :g conjugate to f_{2}^{*}, Rng $\subseteq B_{2}$ implies $\mathbf{g} \leq \mathbf{f o g}$; it follows that $\beta \leq \gamma(\beta, \mathrm{e})$ (choose \mathbf{g} such that $g\left(\mathrm{a}_{\mathrm{t}}\right)=\frac{\mathrm{a}_{0}^{\beta}}{0}$)).
As μ_{1} is regular, $\mu_{1}>\kappa_{0}$, for any $\beta_{0}<\mu_{1}$
$\sup \left\{\gamma(\beta, \mathrm{e}): \mathrm{e}=1, \ldots, \mathrm{k}(\beta), \beta<\beta_{0}\right\}<\mu_{1}$, hence
$\mathrm{S}=\left\{\beta_{0}: \beta_{0}<\mu_{1} ;\right.$ and $\beta<\beta_{0}, \mathbf{l} \leq \mathrm{e} \leq \mathrm{k}(\beta)$ implies $\left.\gamma(\beta, \mathrm{e})<\beta_{0}\right\}$
is an unbounded subset of μ_{1}; and by its definition it is closed.
Now we shall prove that for $\delta \in \mathrm{S}, \mathrm{cf} \delta=\kappa_{0}$ implies $\gamma(\delta, \mathrm{e})=\delta$. For suppose $\gamma=\gamma\left(\delta, \mathrm{e}_{0}\right) \neq \delta$ then as said above $\delta<\gamma\left(\delta, \mathrm{e}_{0}\right)$. As $\delta_{1}(\mathrm{n})$ is increasing (as a function of n) and its limit is δ_{1}, (or $\delta_{1}(n)$ is not defined) for some $n<\omega$ big enough, $\delta<\gamma\left(\delta, e_{0}\right)(n)$, and $\gamma\left(\delta, \mathrm{e}_{1}\right) \neq \gamma\left(\delta, \mathrm{e}_{2}\right) \Rightarrow \gamma\left(\delta, \mathrm{e}_{1}\right)(\mathrm{n}) \neq \gamma\left(\delta, \mathrm{e}_{2}\right)(\mathrm{n})$ (when they are defined).
As $\mathrm{f} \uparrow \mathrm{B}_{6}$ is into B_{7} necessarily $\gamma(\delta, \mathrm{e})$ has cofinality $火_{0}$, and as $\mathrm{f} \mathrm{PB}_{5}$ commutes with f_{7}^{*}

$$
\mathrm{f}\left(\mathrm{a}_{0}^{\delta, 0}{ }^{2}\right)=\tau_{\delta}\left(\begin{array}{c}
\mathrm{a}^{\gamma(\delta, 1), 0} \\
a(\delta, 1)
\end{array}, \mathrm{a}_{a(\delta, 2)}^{\gamma(\delta, 2), 0}, \ldots\right)
$$

As f / B_{5} commutes with f_{8}^{*}

As $f \upharpoonright B_{5}$ commutes with f_{9}^{*}

$$
\left.\mathrm{f}\left(\mathrm{a}_{0}^{\delta(\mathrm{n})}\right)=\tau_{\delta}{ }^{\left(\mathrm{a}^{\gamma(\delta, 1)(\mathrm{n})}\right.} \underset{a(\delta, 1)}{\gamma}, \mathrm{a}_{\mathrm{a}(\delta, 1)}^{\gamma(\delta, 2)(\mathrm{n})}, \ldots\right)
$$

and $\left.\tau_{\delta}{ }_{a}{ }_{a(\delta, 1)}^{\gamma(\delta, 1)(n)}, \ldots\right)$ is reduced (by the choice of τ_{δ} and of n).

Hence $\gamma\left(\delta, \mathrm{e}_{0}\right)(\mathrm{n}) \in\{\gamma(\delta(\mathrm{n}), \mathrm{e}): 1 \leq \mathrm{e} \leq \mathrm{k}(\delta(\mathrm{n}))\}$
but on the one hand $\delta<\gamma\left(\delta, \mathrm{e}_{0}\right)(\mathrm{n})$ by the choice of e_{0} and n ,
and on the other hand $\delta(\mathrm{n})<\delta \Rightarrow \gamma(\delta(\mathrm{n}) \mathrm{e})<\delta$ as $\delta \in \mathrm{S}$, contradiction.
Hence $\gamma(\delta, \mathrm{e})=\delta$ for every $\delta \in \mathrm{S}$.
Now for every $\beta<\mu_{1}$, n we know $\left\{\delta<\mu: \operatorname{cf} \delta=\mathcal{K}_{0}, \delta(\mathrm{n})=\beta\right\}$
is stationary, so there is $\delta \in \mathrm{S}, \mathrm{cf} \delta={ }_{0}$ such that $\delta(\mathrm{n})=\beta$.

$=\tau_{\delta(\mathrm{n})} \mathrm{a}_{\mathrm{a}}^{\gamma(\delta(\mathrm{n}), 1)} \begin{aligned} & \mathrm{a}(\delta(\mathrm{n}), \mathrm{l})\end{aligned}, \ldots, \mathrm{a}_{a(\delta(\mathrm{n}), \mathrm{k}(\delta(\mathrm{n}))}^{\gamma(\delta(\mathrm{n}) \mathrm{k}(\mathrm{n}))}$ and the last is reduced.
Hence $\gamma(\delta(\mathrm{n}), \mathrm{e}) \in\{\delta(\mathrm{n})\}$ for each e , hence $\gamma(\delta(\mathrm{n}) \mathrm{e})=\delta(\mathrm{n})$, that is $\gamma(\beta, \mathrm{e})$
 $1 \leq \mathrm{e} \leq \mathrm{k}(\beta)$ are distinct.

As $\mathrm{f} \mid \mathrm{B}_{3}$ commutes with f_{3}^{*}, for every β

$$
\left.{ }_{\beta}^{\tau} \stackrel{(a}{a}(\beta, 1)_{0}^{0}, \ldots, \mathbf{a}_{a(\beta, \mathrm{k}(\beta))}^{0}\right)=\tau_{0}\left({ }_{a}^{\left(\mathrm{a}_{a(0,1)}^{0}, \ldots, \mathrm{a}_{a(0, \mathrm{k}(0))}^{0}\right)}\right.
$$

As the $a(\beta, \mathrm{e})$ are distinct, necessarily $\{a(\beta, \mathrm{e}): \mathrm{l} \leq \mathrm{e} \leq \mathrm{k}(\mathrm{e})\}=$ $\{a(0, \mathrm{e}): 1 \leq \mathrm{e} \leq \mathrm{k}(0)\}$, but as $a(\beta, \mathrm{e})$ is increasing with e (for each β, by the choice of $\left.{ }^{\tau}{ }_{\beta}(, \ldots),\right)$ necessarily $a(\beta, \mathrm{e})=a(0, \mathrm{e}), \mathrm{k}(\beta)=\mathrm{k}(0)$ and we can assume that $\tau_{\beta}={ }^{\tau}{ }_{0}$.
Now clearly as before

$$
\mathrm{f}\left(\mathrm{a}_{0}^{\beta, \mathrm{n}}\right)=\tau_{0} \underset{a(0,1)}{ }\left(\begin{array}{l}
\beta, \ldots)
\end{array}\right.
$$

So we finish one direction of claim 3.3 where as the other is immediate.

Let $\quad \phi_{3}(f)$ say that f maps B_{2} into B_{3} and if there is $f_{1}, f_{1} \upharpoonright B_{2} \quad f \uparrow B_{2}$ and $\phi_{2}\left(f_{1}\right)$. It is easy to check that for every β; for some $\tau, \gamma(e)$:
$G_{\mu} \vDash \phi_{3}[f] \leftrightarrow f\left(a_{0}^{\beta}\right)=\tau\left(a_{\gamma(1)}^{\beta}, \ldots a_{\gamma(k)}^{\beta}\right)$.
Let $\quad \phi_{4}(f)$ say that f maps B_{2} into $B_{3}, \quad \phi_{3}(f)$, and if $\phi_{3}(\mathrm{~g})$, then
 f_{2}^{*} of $\upharpoonright \tilde{a}_{0}^{0}=f_{2}^{*} \upharpoonright \tilde{\mathrm{a}}_{0}^{0}$. (note that $\left.\tilde{\mathrm{a}}_{0}^{0}=R n f_{2}^{*}\right)$. As in case I we can check that
$\left.\left.\mathrm{G}_{\mu} \vDash{ }_{\phi}[\mathrm{f}] \Longleftrightarrow \mathrm{f}\left(\mathrm{a}_{0}^{\beta}\right)={ }^{\tau}{ }_{0}{ }_{0}{ }^{\mathrm{a}}{ }_{\gamma(\mathrm{l}}{ }^{\prime}\right), \ldots, \mathrm{a}_{\gamma(\mathrm{k})}^{\beta}\right)$ (w.l.o.g. reduced)
and τ_{0} is beautiful.
Case III: μ a singular cardinal.
We give this case with less details.
We let $\mu_{1}<\mu$ and $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ be as in case II, μ_{1} regular, $\mu_{1}>K_{0}$. By case II we can define $f_{e}^{*,}$ s properly, so that, for some $\phi^{0} \quad G_{\lambda} \vDash \phi^{0}(f)$ iff there are τ and distinct $a_{1}, \ldots, a_{\mathrm{n}}$ so that for each $\beta<\mu_{1}, f\left(\mathrm{a}_{0}^{\beta}\right)=\tau\left(\mathrm{a}_{a_{1}}^{\beta}, \ldots, \mathrm{a}_{a_{\mathrm{n}}}^{\beta}\right)$.
Let $\phi^{1}(\mathrm{f})$ say that $\mathrm{f}\left(\mathrm{a}_{0}^{0}\right) \subseteq \mathrm{B}_{2}$ and for every $\mathrm{g}, \phi^{0}(\mathrm{~g})$ implies that
 distinct $\beta(1), \ldots, \quad \beta(\mathrm{m})$ such that for every $a, f\left(\mathrm{a}_{a}^{0}\right)=\sigma\left(\mathrm{a}_{a}^{\beta}(1), \ldots, \mathrm{a}_{a}^{\beta}(\mathrm{m})\right)$, σ satisfying (A) of Def. 3.1.
As μ_{1} is regular, we can use case II. So there is $\phi{ }^{2}$ such that $G_{\lambda} \vDash{ }_{\phi}{ }^{2}[\mathrm{f}]$ iff there are a beautiful term σ and distinct β (i) such that for every $a, f\left(\mathrm{a}_{a}^{0}\right)=\sigma\left(\mathrm{a}_{a}^{\beta(1)}, \ldots, a_{a}^{\beta(\mathrm{m})}\right.$),

Let $\mu=\Sigma \mu(\mathrm{i}), \mu(\mathrm{i})<\mu \quad, \mu(\mathrm{i})$ increaṣing.
i < cf μ
We just prove that for every $\gamma<\operatorname{cf} \mu$, there is $\overline{\mathrm{f}}_{\gamma}^{*}$ as constructed in case II and above, such that
(i) $\mathrm{G}_{\lambda} \vDash \phi^{2}\left[\mathrm{f}, \overline{\mathrm{f}}_{\gamma}^{*}\right]$ iff there are a beautiful term σ and distinct $\beta(\mathrm{i})<\mu(\gamma)^{\dagger}$, such that for every $a<\mu, \mathrm{f}\left(\mathrm{a}_{a}^{0}\right)=\sigma\left(\mathrm{a}_{a}^{\beta(1)}, \ldots, \mathrm{a}_{a}^{\beta(\mathrm{m})}\right)$
(ii) $\overline{\mathrm{f}}_{\gamma}^{*}(0)$ is a projection onto $\mathrm{Cl}\left\{\mathrm{a}_{a}^{\beta}: a<\mu, \beta<\mu(\gamma)^{+}\right\}$

Checking the construction carefully, we see that :
if τ, σ are beautiful terms, $\beta(\mathrm{i})<\mu\left(\gamma_{\ell}\right)^{+} \quad(\mathrm{i}=1, \ldots, \mathrm{~m}, \ell=1, \ldots, \mathrm{n})$

Now checking the proof of 4.1 from 4.2, the existence of the \bar{f}_{γ}^{*} mentioned above, is sufficient to prove 4.1 when $\mathrm{i}(0)<\mu$.
Hence there are ϕ^{3} and g^{*} such that
$\mathrm{G}_{\mu} \vDash \phi^{3}\left[\overline{\mathrm{f}}, \mathrm{g}^{*}\right]$ iff $\overline{\mathrm{f}}=\tau\left(\overline{\mathrm{f}}_{\gamma(1)}^{*}, \cdots, \overline{\mathrm{f}}_{\gamma(\mathrm{n})}^{*}\right)$ for some beautiful τ. So let the formula $\phi^{4}\left[f, g^{*}\right]$ say «there is \bar{f}_{1}, such that $\phi^{3}\left[\bar{f}_{1}, \bar{g}^{*}\right]$ and for every \bar{f}_{2} which satisfies $\phi{ }^{3}\left[\overline{\mathrm{f}}_{2}, \overline{\mathrm{~g}}^{*}\right] \wedge \operatorname{Rn} \overline{\mathrm{f}}_{1}(0) \subseteq \operatorname{Rn} \overline{\mathrm{f}}_{2}(0)$ satisfies also $\phi^{2}\left[\mathrm{f}, \overline{\mathrm{f}}_{2}\right] »$.
Clearly $\mathrm{G}_{\mu} \vDash \phi^{4}\left[\mathrm{f}, \overline{\mathrm{g}}^{*}\right]$ iff for some beautiful τ and $\beta(\mathrm{i})<\mu$, for every $a<\mu$, $\mathrm{f}\left(\mathrm{a}_{a}^{0}\right)=\tau\left(\mathrm{a}_{a}^{\beta(1)}, \ldots\right)$ and $\phi^{4}\left(\mathrm{f}_{5}^{*}\right.$ o f o $\left.\mathrm{f}_{5}^{*}, \mathrm{~g}^{*}\right)$ is our desired formula.
THEOREM 4.4 : We can find formulas $\phi^{\mathbf{b}}, \phi^{\mathrm{eq}}, \phi^{\mathbf{r}}, \phi^{\mathrm{x}}$ (in the language of G_{λ}) such that for any ultrafilier $T \subseteq \underline{B}, \lambda$, and free set of generators $\left\{a_{t}: t \in I^{*}\right\} \subseteq F_{\lambda}$ and $f_{t} \in F_{\lambda}$ defined by $f_{t}\left(a_{s}\right)=a_{t}$; there is $\bar{f}^{*} \in G_{\lambda}$ such that $f_{0}^{*}=f_{t}$ for some t and
(A) $G_{\lambda} \vDash \phi^{b}\left[f, \bar{f}^{*}\right]$ iff $f=\tau\left(f_{t_{1}}, \ldots\right)$ for some beautiful τ.
(B) For any f, g, (see Def. 3.3)

$$
\mathrm{G}_{\lambda} \vDash \phi^{\mathrm{eq}}\left[\mathrm{f}, \mathrm{~g} ; \mathrm{f}^{*}\right] \text { iff } \phi^{\mathrm{b}}\left[\mathrm{f}, \overline{\mathrm{f}}^{*}\right] \wedge \phi^{\mathrm{b}}\left[\mathrm{~g}, \overline{\mathrm{f}}^{*}\right] \text { and } \mathrm{f} \approx_{\mathrm{T}} \mathrm{~g}
$$

(C) For any $h: I^{*} \rightarrow I^{*}$ and $f, g \in G_{\lambda}$, -. $\phi^{\mathrm{eq}}\left[\mathrm{f}, \mathrm{g}: \overline{\mathrm{f}}^{*}\right]$ implies $\phi^{\mathrm{eq}}\left[\hat{\mathrm{h}}\right.$ of,$\hat{\mathrm{h}}$ og $; \overline{\mathrm{f}}^{*}$]
(D) For any two-place relation R on the class of $\phi^{\text {eq }}$-equivalence classes, there is $\bar{g} \epsilon G$ such that for any $f_{1}, f_{2} \in G_{\lambda}$
(E) $G_{\lambda} \vDash{ }{ }^{X}$ [f]ifff $\in G_{\lambda}$ is a projection onto some $C l\left\{\tau e^{\left.\left(a_{t(e, l)}, \ldots\right): e<n\right\}}\right.$ (for some $\mathrm{n}<\omega$, beautiful τ_{e}, and $\mathrm{t}(\mathrm{e}, 1), \ldots \in \mathrm{I}^{*}$.
PROOF: The set
$R=\left\{\langle f, g\rangle: f, g \in \quad\left\{\tau\left(f_{t(1)}, \ldots\right): \tau\right.\right.$ beautiful, $\left.t(e) \in I^{*}\right\}$ and for some $\tau(x, y) \in T, f=\tau(g, f)\}$
is closed under beautiful terms, hence by 4.1 is definable by some ϕ.
This observation suffice for (A), (B). Now (C) is a statement on \approx_{T}, in fact, which is easy to verify.
Now (D) follows by (C), as by (C) we can define arbitrary one-place functions from the set of $\phi^{\mathrm{eq}}\left(\mathrm{X}, \mathrm{Y} ; \overline{\mathrm{f}}^{*}\right)$-equivalence classes into itself, so by Rabin [Ra] , we can define arbitrary relations. Lastly, (E) follows by 4.1.

Now any such subalgebra is the range of a projection, because by Def. 3.1 and 3.1 (A) we can assume the subalgebra is

$$
B=\operatorname{cl}\left\{\tau\left(a_{\mathbf{t}}(\mathbf{i}, \mathbf{0}), a_{\mathbf{t}}^{(\mathbf{i}, \mathbf{l})}, \ldots, \mathrm{a}_{\mathbf{t}(\mathbf{i}, \mathrm{m}-\mathrm{l})}\right): \mathrm{i}<\mathrm{n}\right\} .
$$

Choose $\mathrm{b} \boldsymbol{\epsilon} \mathrm{B}$ and let

$$
h\left(a_{t}\right)=\tau\left(c_{s(t, 0)}, \ldots, c_{s(t, m-l)}\right)
$$

where $c_{s(t, j)}=a_{t}$ if for some $i, t(i, j)=t$ and $c_{s(t, j)}=b$ otherwise.

§ 5. INTERPRATING SET THEORY IN A CATEGORY.

Here K will be a full subcategory of Cat,
$\mathrm{A} \in \mathrm{K} \rightarrow|\mathrm{A}|<\lambda^{*}$, and $\lambda<\lambda^{*} \rightarrow \mathrm{~F}_{\lambda} \in \mathrm{K}$, and $|\mathrm{L}(\mathrm{V})|<\lambda^{*}$ (in fact $\left(\forall \lambda<\lambda^{*}\right)(\mathbb{G} \mu \geqslant \lambda)\left(\mathrm{F}_{\mu} \in \mathrm{K}\right)$ suffice $)$.
In the formulas from 4.4 we now put $F_{\mu} \quad$ explicitely as a parameter.
DEFINITION 5.1: Let $\overline{\mathrm{f}}$ be of the length of $\overline{\mathrm{f}}^{*}$ (of 4.4) and let $\psi^{\mathrm{a}}(\overline{\mathrm{f}}, \mathrm{A})$ be the formula saying (in K) :
(0) $f_{e} \in \operatorname{End} A(=\operatorname{Hom}(A, A))$
(1) f_{0} is a projection
(2) $\phi^{b}(g ; \bar{f}, A)$ implies g is conjugate to $f_{0}($ so $g \in$ End $A)$
and $\phi^{b}\left(g_{1}, \bar{f}, A\right) \wedge \phi^{b}\left(g_{2}, \bar{f}, A\right) \rightarrow g_{2}=g_{2}$ of ${ }_{1}$
(3) ${ }_{\phi}{ }^{\mathrm{eq}}\left(\mathrm{g}_{1}, \mathrm{~g}_{2} ; \overline{\mathrm{f}}, \mathrm{A}\right)$ is an equivalence relation $\mathrm{E}_{\overline{\mathrm{f}}}$ over
$\mathrm{W}_{\mathrm{A}}^{\bar{f}}=\left\{\mathrm{g}: \quad \phi^{\mathrm{b}}(\mathrm{g} ; \overline{\mathrm{f}}, \mathrm{A})\right\}$ with >1 equivalence classes
(4) $\phi^{\mathbf{b}}(\mathrm{g} ; \overline{\mathrm{f}}, \mathrm{A})$ implies $\phi^{\mathbf{x}}(\mathrm{g} ; \overline{\mathbf{f}}, \mathrm{A})$ which implies $g \epsilon$ End $\mathrm{A} \wedge \operatorname{proj} g$
(5) Suppose $\phi^{\mathbf{x}}\left(\mathrm{g}_{1} ; \overline{\mathrm{f}}, \mathrm{A}\right) \wedge \phi^{\mathrm{X}}\left(\mathrm{g}_{2} ; \overline{\mathrm{f}}, \mathrm{A}\right)$, then there is a g_{3} such that :
(i) $\quad \phi^{\mathbf{x}}\left(\mathrm{g}_{3} ; \overline{\mathrm{f}}, \mathrm{A}\right) \wedge \mathrm{Rng}_{1} \subseteq \mathrm{Rn} \mathrm{g}_{3} \wedge \mathrm{Rn} \mathrm{g}_{2} \subseteq \mathrm{Rng}_{3}$
(ii) if $\phi^{\mathrm{b}}\left(\mathrm{g}_{4} ; \overline{\mathrm{f}}, \mathrm{A}\right) \wedge R \mathrm{Rn}_{4} \subset \mathrm{Rn}_{3}$

(6) ${ }_{\phi} \mathrm{P}\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3} ; \overline{\mathrm{f}}, \mathrm{A}\right)$ represent a pairing function on the set of $\mathrm{E}_{\overline{\mathrm{f}}}$-equivalence classes.
(7) If (i) $\phi^{b}\left(g_{e} ; \bar{f}, A\right)(e=1,6), h \in$ End A,
(ii) $(\forall \mathrm{g}) \quad\left[\phi^{\mathrm{X}}(\mathrm{g} ; \overline{\mathrm{f}}, \mathrm{A}) \wedge \mathrm{Rn} \mathrm{g}_{1} \subseteq \mathrm{Rng} \wedge \mathrm{Rn}_{\mathrm{g}} \subseteq \mathrm{Rng} \rightarrow \mathrm{Rn}_{3} \subseteq \mathrm{Rng}\right]$
(iii) $\mathrm{hog}_{\mathrm{e}}=\mathrm{g}_{\mathrm{e}}+3$ for $\mathrm{e}=1,2,3$
then for $\mathrm{e}=1,2 \quad \phi^{\mathrm{eq}}\left(\mathrm{g}_{3}, \mathrm{~g}_{\mathrm{e}} ; \overline{\mathrm{f}}, \mathrm{A}\right) \equiv \phi^{\mathrm{eq}}\left(\mathrm{g}_{6}, \mathrm{~g}_{\mathrm{e}+3} ; \overline{\mathrm{f}}, \mathrm{A}\right)$
(at least one of them holds by (5))
(8) If $\phi^{x}\left(g^{*}, \bar{f}, A\right)$ then there is g_{2}^{*}, such that $\phi^{b}\left(g_{2}^{*}, \bar{f}, A\right)$ and for each g_{1}^{*}
satisfying $\quad \phi^{b}\left(\mathrm{~g}_{1}^{*}, \overline{\mathrm{f}}, \mathrm{A}\right) \wedge \mathrm{Rn}_{1}^{*} \subseteq \mathrm{Rn}_{\mathrm{g}}{ }^{*}$ the following holds: $\neg \phi^{\mathrm{eq}}\left(\mathrm{g}_{1}^{*}, \mathrm{~g}_{2}^{*} ; \overline{\mathrm{f}}, \mathrm{A}\right)$ and
 $\mathrm{hog}_{1}^{*}=\mathrm{g}_{3}, \mathrm{hog} \mathrm{g}_{2}^{*}=\mathrm{g}_{4}$ and $(\mathrm{V} \mathrm{g}) \quad\left[\phi \mathrm{b}_{(\mathrm{g}, \overline{\mathrm{f}}, \mathrm{A})} \rightarrow \phi^{\mathrm{b}}(\mathrm{h} \circ \mathrm{g}, \overline{\mathrm{f}}, \mathrm{A})\right]$
(9) If $\phi^{b}\left(g_{e}, \bar{f}, A\right)(e=1,2)$ then for some $h \epsilon$ End A, h o $g_{e}=g_{1-e}$ and $\left({ }^{\forall g}\right)\left(\phi^{\mathbf{b}}(\mathbf{g}, \overline{\mathrm{f}}, \mathrm{A}) \equiv \phi^{\mathbf{b}}(\mathrm{h}\right.$ o $\left.\mathrm{g}, \overline{\mathrm{f}}, \mathrm{A})\right)$

CLAIM 5.1 :

(A) For each $\lambda<\lambda^{*}$, let $\bar{f}_{\lambda}^{*} \epsilon$ End F_{λ} be as constructed in 4.4.

Then $K \vDash \psi^{\mathbf{a}}\left[\overline{\mathbf{f}}_{\lambda}^{*}, F_{\lambda}\right]$
(B) Suppose $K \vDash \psi^{\mathrm{a}}[\overline{\mathrm{f}}, \mathrm{A}]$. Then
(1) If $\begin{gathered}n+1 \\ \mathrm{n}=1\end{gathered} \phi^{\mathrm{b}}\left(\mathrm{g}_{\mathrm{e}}, \overline{\mathrm{f}}, \mathrm{A}\right)$ and $\operatorname{Rn} \mathrm{g}_{\mathrm{n}+1} \subseteq \mathrm{Cl} \underset{\mathrm{e}=1}{\cup} \mathrm{Un}_{\mathrm{e}}$
then $\quad \begin{gathered}\mathrm{n} \\ \mathrm{e}= \\ \mathrm{V}\end{gathered} \quad \phi^{\mathrm{eq}}\left(\mathrm{g}_{\mathrm{n}+1}, \mathrm{~g}_{\mathrm{e}} ; \overline{\mathrm{f}}, \mathrm{A}\right)$
(2) $\left\{\mathrm{g}: \phi^{\mathrm{b}}(\mathrm{g}, \overline{\mathrm{f}}, \mathrm{A})\right\}$ is closed under beautiful terms
(3) There is an ultrafilter $T=T(\bar{f}, A)$ such that
$\stackrel{2}{\wedge}=\phi^{\mathrm{b}}\left(\mathrm{g}_{\mathrm{e}}, \overline{\mathrm{f}}, \mathrm{A}\right)$ implies $\phi^{\mathrm{eq}}\left(\mathrm{g}_{\mathrm{e}}, \tau\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right), \overline{\mathrm{f}}, \mathrm{A}\right)$ where $\mathrm{e}=1 \Leftrightarrow \tau(\mathrm{x}, \mathrm{y}) \epsilon \mathrm{T} \Leftrightarrow \mathrm{e} \neq 2$.
(4) $E_{\bar{f}}$ has infinitely many equivalence classes

PROOF :
(A) Immediate.
(B) (1) Easy, by part (5) (and (4)) of Def. 5.1 (for $n=1$, use (2)).
(B) (2), (3). By part (8) of Def. 5.1 we can define inductively $g_{i}^{*}(\mathrm{i}<\omega)$ such that $\phi^{b}\left(g_{i}^{*}, \bar{f}, A\right)$ and if $i<j, \phi^{b}\left(g^{l}, \bar{f}, A\right) \wedge \phi^{b}\left(g^{2}, \bar{f}, A\right)$ then for some $h \in$ End A $h \circ g_{i}^{*}=g^{1}, h \circ g_{j}^{*}=g^{2}$ and $\left({ }^{\forall} g\right)\left(\phi^{b}(g, \bar{f}, A) \rightarrow \phi^{b}(h \circ g, \bar{f}, A)\right)$.
Let $\tau(x, y)$ be a beautiful term .
Let us apply 3.4 to Φ^{b}, and get $\Phi=\left\{\psi_{\mathrm{e}}: \mathrm{e}<\mathrm{k}<\omega\right\}$
So there are $\mathrm{i}<j \leq 2^{k}$ such that $\underset{e<k}{\wedge} \psi_{e}\left(g_{i}, \bar{f}, A\right) \equiv \phi_{e}\left(g_{j}, \bar{f}, A\right)$ hence
$\phi^{b}\left(\tau\left(g_{i}, g_{j}\right), \bar{f}, A\right)$. Now for any g^{1}, g^{2} satisfying $\phi^{b}\left(g^{1}, \bar{f}, A\right) \wedge \phi^{b}\left(g^{2}, \bar{f}, A\right)$,
there is h such that $\mathrm{hog}_{\mathrm{i}}=\mathrm{g}^{\mathrm{l}}, \mathrm{hog} \mathrm{g}_{\mathrm{j}}=\mathrm{g}^{2}$ and
$(\forall g)\left(\phi^{b}(g, \bar{f}, A) \rightarrow \phi^{b}(h o g, \bar{f}, A)\right)$. Hence $\tau\left(g^{l}, g^{2}\right)=h\left(\tau\left(g_{i}, g_{j}\right)\right)$ satisfy $\phi^{b}(x, \bar{f}, A)$; hence (2) is proved. For (3) note that by (B) $\phi^{\mathrm{eq}}\left(\tau\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}\right), \mathrm{g}_{\mathrm{p}}, \mathrm{f}, \mathrm{A}\right)$, hence by (7)
for any g^{1}, g^{2} as above $\phi^{e q}\left(\tau\left(g^{1}, g^{2}\right), g^{q}, \bar{f}, A\right)$ where $p=i_{\leftrightarrow} q^{\prime}=1$.
(B) (4). By Def. 5.1, (7) and (8).

LEMMA 5.2 :

(A) There is a formula ψ^{8} such that
(1) $K \vDash \psi^{\mathrm{s}}\left[\overline{\mathrm{f}}_{\lambda}, \mathrm{F}_{\lambda}\right] \wedge(\forall \overline{\mathrm{f}}, \mathrm{A})\left[\psi^{\mathrm{s}}(\overline{\mathrm{f}}, \mathrm{A}) \rightarrow \psi^{\mathrm{a}}(\overline{\mathrm{f}}, \mathrm{A})\right]$
(2) If $K \vDash \psi^{s}[\bar{f}, A]$ then for any subset R of $W_{A}^{\bar{f}} / E_{-},|R|<\lambda^{*}$, there is $g^{*} \epsilon K \quad$ such that $g / E_{\bar{f}} \in R \Leftrightarrow K \vDash \phi^{r} \quad\left[g, g^{*}, \bar{f}, A\right]$
(3) Like (2), for a two-place relation R.
(B) There is a formula ψ^{t} such that
if $K \vDash \psi^{s}\left[\bar{f}^{e}, A^{e}\right] \quad(e=1,2)$ then :
$K \vDash \psi^{t}\left[\bar{f}^{1}, A^{1}, \bar{f}^{2}, A^{2}\right]$ iff $T\left(\bar{f}^{1}, A^{1}\right)=T\left(\bar{f}^{2}, A^{2}\right)$
(C) There are formulas $\psi^{\mathrm{e}}, \theta$ such that
(1) $K \vDash \psi^{e}\left[\bar{f}_{\lambda}, F_{\lambda}\right] \wedge(\forall f, A) \quad\left[\psi^{\mathrm{e}}(\bar{f}, \mathrm{~A}) \rightarrow \psi^{\mathrm{s}}[\overline{\mathrm{f}}, \mathrm{A})\right]$
(2) $K \vDash \psi^{e}\left[\bar{f}^{1}, A^{1}\right] \wedge \psi^{e}\left[\bar{f}^{2}, A^{2}\right] \wedge \psi^{t}\left[\bar{f}^{1}, A^{1}, \bar{f}^{2}, A^{2}\right]$
implies : for every $g_{i}^{l} \in{\overline{W^{\prime}}}_{A^{1}}$
pairwise non $E_{\mathbf{f}^{1}} 1^{\text {-equivalent, }}\left(\mathrm{i}<\lambda<\lambda^{*}\right)$ and $\mathrm{g}_{\mathrm{i}}^{2} \in \frac{\mathrm{~W}^{2}}{\mathrm{~A}^{2}}$ there is $\overline{\mathrm{h}}$ such that
$\theta\left[g^{1}, g^{2}, \bar{h}\right] \propto($ (i$) \quad\left[g^{1} \underset{\mathbf{f}^{1}}{\mathrm{E}_{1}^{1}} \wedge \mathrm{~g}^{2} \underset{\overline{\mathrm{f}}^{2}}{ } \mathrm{~g}_{\mathrm{i}}^{2}\right]$
(D) There is a formula ψ^{m} such that
(1) $K \vDash \psi^{\mathrm{m}}\left[\overline{\mathrm{f}}_{\lambda}, \mathrm{F}_{\lambda}\right] \wedge(\forall \overline{\mathrm{f}}, \mathrm{A})\left[\psi^{\mathrm{m}}(\overline{\mathrm{f}}, \mathrm{A}) \rightarrow \psi^{\mathrm{e}}(\overline{\mathrm{f}}, \mathrm{A})\right]$
(2) $K \vDash \psi^{m}$ [f,A] implies $E_{-\mathbf{f}}$ has $<\lambda^{*}$ equivalence classes.

PROOF OF 5.2 :
(A) Immediate by 4.1 and claim 5.1 (B) (2), (3) (for (3), use (2) and ϕ^{P}).
(B) Suppose $K \vDash \psi^{s} \quad\left[\overline{\mathrm{f}}^{\mathrm{e}}, A^{e}\right] \quad(\mathrm{e}=1,2)$ and $T=T\left(\bar{f}^{1}, A^{l}\right)=T\left(\bar{f}^{2}, A^{2}\right)$.

For $\mathrm{e}=1,2$ let $g_{n}^{e} \in W_{A^{-}}^{\bar{f}}{ }^{\bar{e}}(n<\omega)$ be pairwise non- $E_{\bar{f}}^{e^{-e q u i v a l e n t . ~}}$
Let $\left|A^{1}\right|+\left|A^{2}\right| \leqslant \lambda<\lambda^{*}$, let $\left\{a_{i}: i<\lambda \omega\right\}$ freely generate F_{λ}, and $f_{n} \in$ End F_{λ} be a projection onto $\left\{a_{i}: \lambda n \leqslant i<\lambda(n+1)\right\}$.
Let \bar{f}^{*} be such that
$\Phi^{\mathbf{b}}\left(\mathrm{g}, \overline{\mathrm{f}}^{*}, \mathrm{~F}_{\lambda}\right) \oplus \mathrm{g}=\tau\left(\mathrm{f}_{\beta(1)}, \ldots\right), \tau \quad$ beautiful
$\phi^{\mathrm{eq}}\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \overline{\mathrm{f}}^{*}, \mathrm{~F}_{\lambda}\right) \Leftrightarrow \phi^{\mathrm{b}}\left(\mathrm{g}_{1}, \overline{\mathrm{f}}^{*}, \mathrm{~F}_{\lambda}\right) \wedge \phi^{\mathrm{b}}\left(\mathrm{g}_{2}, \overline{\mathrm{f}}^{*}, \mathrm{~F}_{\lambda}\right)$
and for some $\tau(x, y) \in T$
$\mathrm{g}_{1}=\tau\left(\mathrm{g}_{2}, \mathrm{~g}_{1}\right)$
Let $h_{e} \operatorname{maps}\left\{a_{i}: \lambda n \leq i<\lambda(n+1)\right\}$ onto $R n g_{n}^{e}$.
Let $\quad \theta^{2}\left(g^{1}, g^{2}\right)=\theta^{2}\left(g^{1}, g^{2} ; \mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{f}, \overline{\mathrm{f}}^{1}, \overline{\mathrm{f}}^{2}, \mathrm{~A}^{1,}, \mathrm{~A}^{2}, \overline{\mathrm{f}}^{*}, \mathrm{~F}_{\lambda}\right)$ says :
$\phi^{\mathbf{b}}\left(g^{e}, \bar{f}^{\mathrm{e}}, A^{\mathrm{e}}\right) \quad(\mathrm{e}=1,2)$ and for some $\mathrm{g}_{1}^{\mathrm{e}}(\mathrm{e}=1,2)$

$$
\mathbf{g}^{\mathrm{e}} \underset{\bar{f}^{\mathrm{e}}}{ } \mathrm{~g}_{1}^{\mathrm{e}}
$$

and there is $f, \phi^{\mathbf{b}}\left(\mathbf{f}, \bar{f}^{*}, F_{\lambda}\right)$ such that
$R n h_{e}$ of $\subseteq \operatorname{Rng}_{1}^{e}$ and for every $g_{0}^{e} \quad(e=1,2)$
$g_{0}^{e} \in \operatorname{End} A^{e} \wedge \operatorname{proj} g_{0}^{e} \wedge R n h_{e}$ of $\subseteq g_{0}^{e} \rightarrow R n g_{0}^{e} \varsigma R n g g_{0}^{e}$
Then $\theta^{2}\left(g^{1}, g^{2}\right)$ iff there are beautiful τ, and

$$
\begin{aligned}
& n(1), \ldots \text { such that } \\
& g^{e^{E}}{\underset{\bar{f}}{ }}^{e} \quad \tau\left(g_{n(1)}^{e}, \ldots\right) \text { for } e=1,2
\end{aligned}
$$

Let $\psi^{\mathrm{t}}\left[\overline{\mathrm{f}}^{1}, \mathrm{~A}^{1}, \overline{\mathrm{f}}^{2}, \mathrm{~A}^{2}\right]$ say that $\psi^{\mathrm{s}}\left[\mathrm{f}^{\mathrm{e}}, \mathrm{A}^{\mathrm{e}}\right], \mathrm{e}=1,2$ and for some $\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{f}^{*}, \mathrm{~B}, \theta^{2}\left(\mathrm{~g}^{1}, \mathrm{~g}^{2}\right)=$

$$
=\theta^{2}\left(g^{1}, g^{2}, h_{1}, h_{2}, \overline{\mathbf{f}}^{1}, \bar{f}^{2}, A^{1}, A^{2}, \bar{f}^{*}, B\right)
$$

define a one-to-one map from a subset of $W_{A^{-}}^{\bar{f}}$ into $W_{A^{\prime}}^{\bar{f}^{2}}$; and this set is infinite (i.e. is
ordered in an order of type ω, see (A)).
We have just proved that

$$
\psi^{\mathrm{s}} \quad\left[\overline{\mathrm{f}}^{\mathrm{e}}, \mathrm{~A}^{\mathrm{e}}\right] \quad(\mathrm{e}=1,2) \text { and } \mathrm{T}\left(\overline{\mathrm{f}}^{\mathrm{l}}, \mathrm{~A}^{\mathrm{l}}\right)=\mathrm{T}\left(\overline{\mathrm{f}}^{2}, \mathrm{~A}^{2}\right) \text { implies } \psi^{\mathrm{t}}\left[\overline{\mathrm{f}}^{1}, \mathrm{~A}^{1} ; \overline{\mathrm{f}}^{2}, \mathrm{~A}^{2}\right] .
$$

Suppose the conclusion holds, then clearly $\psi^{\mathrm{s}}\left[\overline{\mathrm{f}}^{\mathrm{e}}, \mathrm{A}^{\mathrm{e}}\right]$; if $\tau(\mathrm{x}, \mathrm{y}) \in \mathrm{T}\left(\overline{\mathrm{f}}^{1}, \mathrm{~A}^{\mathbf{l}}\right)$, $\tau(\mathrm{x}, \mathrm{y}) \notin \mathrm{T}\left(\overline{\mathrm{f}}^{2}, \mathrm{~A}^{2}\right)$ we get contradiction by 3.4.
(C) The same proof as (B), essentially.
(D) Let $\psi^{\mathrm{m}}(\overline{\mathrm{f}}, \mathrm{A})$ says that $\left.\psi^{\mathrm{e}} \overline{(\mathrm{f}}, \mathrm{A}\right)$ and there is A^{1} such that for every $\overline{\mathrm{f}}^{1}$, if $\psi^{\mathrm{t}}\left[\overline{\mathrm{f}}, \mathrm{A} ; \overline{\mathrm{f}}^{1}, \mathrm{~A}^{1}\right] \quad$ (and there is at least one such $\overline{\mathrm{f}}^{1}$) then for some $\overline{\mathrm{f}}^{2}$ and automorphism h of A^{1} :
(0) $\left.\psi^{\mathrm{e}} \overline{\mathrm{f}}^{2}, \mathrm{~A}^{1}\right)$
(1) for some $\overline{\mathrm{h}}, \theta\left(\mathrm{g}^{\mathbf{l}}, \mathrm{g}^{2}, \overline{\mathrm{~h}}\right)$ define a map from the $\mathrm{E}_{\overline{\mathrm{f}}^{2}}$-equivalence classes onto the $\mathrm{E}_{-\mathrm{f}}$-equivalence classes

$$
\text { (2) if } \phi^{\mathrm{b}}\left(\mathrm{~g}^{\mathrm{l}}, \overline{\mathrm{f}}^{2}, \mathrm{~A}^{\mathrm{l}}\right) \wedge \phi^{\mathrm{b}}\left(\mathrm{~g}^{2}, \overline{\mathrm{f}}^{2}, \mathrm{~A}^{\mathrm{l}}\right) \wedge \neg^{\mathrm{eq}}\left(\mathrm{~g}^{\mathrm{l}}, \mathrm{~g}^{2}, \overline{\mathrm{f}}^{2}, \mathrm{~A}^{\mathrm{l}}\right)
$$ then $\mathrm{g}^{\mathbf{l}} \mathrm{ohof} \mathrm{f}_{0}^{\mathrm{l}} \neq \mathrm{g}^{2} \mathrm{ohof} \mathrm{f}_{0}^{1}$.

For proving $D(1)$ choose $A^{1}=F_{\lambda}$, and \bar{f}^{2} is chosen like \bar{f}_{λ}, but the range of the projections, is freely generated by κ_{0} elements. For $D(2)$, if $E_{\bar{f}}$ has $\geq \lambda^{*}$ equivalence classes, choose \bar{f}^{1} such that $\operatorname{Rn} f_{0}^{1}$ is finitely generated.
DEFINITION 5.2: We say < $\mathrm{g}, \overline{\mathrm{f}}, \mathrm{A}>$ represent the model (N, R) if :
$g \in$ End A, and let $\left\{\mathrm{g}_{\mathrm{i}}: \mathrm{i}<a^{*}\right\}$ be representatives of the E_{f}-equivalence classes, and let

$$
J=\left\{\mathbf{i}<a^{*}:(\mathbb{G} f)\left[\phi^{r}(f, g, \bar{f}, A) \wedge\left(\mathbb{f} f_{2}\right) \quad \phi \mathrm{P}\left(\mathbf{f}, \mathrm{f}_{2}, \mathrm{~g}_{\mathrm{i}}, \overline{\mathrm{f}}, \mathrm{~A}\right)\right]\right\}
$$

and there is H, a one-to one function from J onto R, and :

LEMMA 5.4: There are formulas $\psi^{\mathrm{f}}, \psi^{\mathrm{h}}$ such that
(A) $\psi^{\mathrm{f}}(\overline{\mathrm{g}}, \overline{\mathrm{f}}, \mathrm{A})$ iff $\psi^{\mathrm{m}}(\overline{\mathrm{f}}, \mathrm{A})$ and $\langle\mathrm{g}, \overline{\mathrm{f}}, \mathrm{A}>\quad$ represent a well founded model satisfying extensionality.
(B) $\psi^{\mathrm{h}}\left(\mathrm{g}^{1}, \overline{\mathrm{f}}^{1}, \mathrm{~A}^{1} ; \mathrm{g}^{2}, \overline{\mathrm{f}}^{2}, \mathrm{~A}^{2}\right)$ iff $\psi^{\mathrm{f}}\left(\mathrm{g}^{\mathrm{e}}, \overline{\mathrm{f}}^{\mathrm{e}}, \mathrm{A}^{\mathrm{e}}\right)(\mathrm{e}=1,2)$ and $\mathrm{T}\left(\overline{\mathrm{f}}^{1}, \mathrm{~A}^{\mathbf{l}}\right)=\mathrm{T}\left(\overline{\mathrm{f}}^{2}, \mathrm{~A}^{2}\right)$ and $<\mathrm{g}^{\mathrm{e}}, \overline{\mathrm{f}}^{\mathrm{e}}, \mathrm{A}^{\mathrm{e}}>(\mathrm{e}=1,2)$ represent isomorphic models.

PROOF : Easy by 5.3.
THEOREM 5.5 : In K we can interpret a model $M_{\lambda^{*}}$ consisting of $\mu(\mathrm{V})$ disjoint copies of $\mathrm{H}\left(\lambda^{*}\right)(\mu(\mathrm{V})$ - the number of ultrafilters of B$)$.
PROOF : Let the elements of the model be triples $\langle\overline{\mathbf{g}}, \overline{\mathrm{f}}, \mathrm{A}\rangle$ satisfying ψ^{h}. Equality to define by ψ^{h}, and ϵ is defined naturally. DEFINITION 5.3 :
(A) The model $M=\left(A_{1}, \ldots, A_{m} ; R_{1}, \ldots, R_{k}\right)\left(A_{i}\right.$-universes, R_{i}-relations) is an explicitely interpratable expansion of the model $N=\left(A_{1}, \ldots, A_{n} ; R_{1}, \ldots, R_{\ell}\right)$ if there are formulas $\phi_{i}^{0}(\overline{\mathrm{x}}), \quad \phi_{\mathrm{i}}(\overline{\mathrm{x}}, \overline{\mathrm{y}}), \quad \psi_{\mathrm{j}}$ in $\mathrm{L}(\mathrm{N})(\mathrm{n}<\mathrm{i} \leqslant \mathrm{m}, \mathrm{l}<\mathrm{j} \leqslant \mathrm{k})$ and function $\mathrm{F}_{\mathrm{i}}(\mathrm{n}<\mathrm{i} \leqslant \mathrm{m})$ such that
(1) F_{i} is a function from $\left\{\bar{a}: N \vDash \phi_{\mathrm{i}} \mathbf{0}_{\mathrm{a}}[\overline{\mathrm{a}}]\right\}$ onto A_{i}
(2) $\mathrm{F}_{\mathrm{i}}\left(\overline{\mathrm{a}}_{1}\right)=\mathrm{F}_{\mathrm{i}}\left(\overline{\mathrm{a}}_{2}\right)$ iff $N \vDash{ }_{\mathrm{i}}^{1}\left[\overline{\mathrm{a}}_{1}, \mathrm{a}_{2}\right]$
(3) $M \vDash R_{j}\left[F_{i(1)},\left(\bar{a}_{1}\right), \ldots\right] \quad$ iff $N \vDash=\psi_{j}\left[\bar{a}_{1}, \ldots\right]$.
(B) The scheme of the explicite interpratable expansion is all the syntactical information involved.

DEFINITION 5.4 :
If M^{e} is an explicite interpratable expansion of $N^{e}(e=1,2)$ by the same scheme, and by the function F_{j}^{e}, and N^{1} is a submodel of N^{2}, then the function $G, G \upharpoonright A_{i}^{l}=$ the identity $(1 \leq i \leq n), G\left(F_{j}^{l}(\bar{a})\right)=F_{j}^{2}(\bar{a})$ when $N^{1} \vDash \phi_{j}^{0}$ [$\left.\bar{a}\right]$, is called the natural embedding of M^{1} into $\mathrm{M}^{\mathbf{2}}$.
C LAIM 5.6 : If in Def. 5.4, $\mathrm{N}^{\mathbf{l}}$ is an elementary submodel of N_{2} then the natural embedding of M_{1} into M_{2} is an elementary embedding.

PROOF : Trivial.
DEFINITION 5.5. : Let $M(K)$ be the model with the universes and relations listed below :
(functions and partial functions will be encode by relations).
(A) Those of K.
(B) $A_{1}=\left\{\langle a, T\rangle: a \in H\left(\lambda^{*}\right), T \in S(\underline{B})\right\} \quad$ where $S(\underline{B})$ is the set of ultrafilters of \underline{B}. E will be an equivalence relation on A_{1} defined by : < $a_{1}, T_{1}>E \quad<a_{2}, T_{2}>\quad$ iff $T_{1}=T_{2}$. R_{1} is defined by : $<\mathrm{a}_{1}, \mathrm{~T}_{1}>\mathrm{R}_{1}<\mathrm{a}_{2}, \mathrm{~T}_{2}>$ iff $\mathrm{a}_{1} \epsilon \mathrm{a}_{2}$ and $\mathrm{T}_{1}=\mathrm{T}_{2}$.
(C) $\mathrm{A}_{2}=\left\{\left\langle\left\langle\mathrm{a}_{\mathrm{T}}, \mathrm{T}\right\rangle: \mathrm{T} \in \mathrm{S}(\underline{\mathrm{B}})\right\rangle: \mathrm{a}_{\mathrm{T}} \in \mathrm{H}\left(\lambda^{*}\right)\right\}$ and $\left\langle a, T_{0}\right\rangle R_{2}\left\langle\left\langle a_{T}, T\right\rangle: T \in S(B)\right\rangle \quad$ iff $a=a_{T}$
(D) $\mathrm{A}_{3}=\mathrm{S}(\mathrm{B})$

$$
\begin{aligned}
& \mathrm{F}_{1}(\langle\mathrm{a}, \mathrm{~T}\rangle)=\mathrm{T} \\
& \mathrm{~F}_{2}(\mathrm{~B}, \mathrm{~T})=\mathrm{B} \approx_{T} \text { for an algebra } \mathrm{B} \in \mathrm{~K} .
\end{aligned}
$$

THEOREM 5.7 : $M(K)$ is an explicitely interpratable expansion of K, assuming $2|L(V)|<\lambda^{*}$. REMARK : All the information we know on Eklof and Feferman problems mentioned in the introduction can be easily extracted from this theorem. We assume $2|L(V)|_{<\lambda}$ * in order to simplify the definition of $\mathrm{M}(\mathrm{K})$.
PROOF: We go through Def. 5.5.
(A) No problem.
(B) Essentially, this was proved in 5.5 .
(C) (D) Left to the reader.

REFERENCES

[E] J.L. ERSHOV, Undecidability of theories of symmetric and simple finite groups, Dokl. Akad. Nauk SSSR. N 4, 158, 777-779.
[FV] FEFERMAN and VAUGHT, The first order properties of algebraic systems, Fund. Math. 47 (1959) 57-103.
[G] G. GALVIN, Horn sentences, Annals of Math. Logic 1 (1970) 389-422.
[L] LAWVERE F.W., The category of categories as a foundation of math., conference on categorical algebra, La-Jolla 65, ed. Eilenberg, Harrison, Maclane, Rohre, Springer-Verlag, Berlin 65.
[MK] R. McKENZIE, On elementary types of symmetric groups, Algebra Universalis 1 (1971) N 1, 13-20.
[My] J. MYCIELSKI, Problem 324, colloq. Math. 8 (1961) 279.
[P] A.G. PINUS, Elementary definability of symmetric groups. Algebra Universalis. 3 (1973), 59-66.
[Ra] M.O. RABIN, A simple method for undecidability proofs, Proc. of the 1964 international Congress for Logic, ed. Bar-Hillel, North Holland 1965, 58-68.
[Ru] M. RUBIN, The automorphism group of homogeneous and saturated Boolean algebras, Algebra Universalis, submitted.
[S 1] S. SHELAH, First-order theory of permutation groups, Israel J. of Math. 14 (1973) 149-162.
[S 2] _ Errata to : first order theory of permutation groups, Israel J. of Math. 15 (1973) 437-441.
[S 3] _... Various results in mathematical logic. Notices of A.M.S. 21 (1974, Aug.) A-502.
[So] R.M. SOLOVAY, Real-valued mesurable cardinals, Proceedings of Symposia in Pure Math. XIII part I, ed. D. Scott, A.M.S. Providence R.I. 1971.
[W] J.M. WEINSTEIN, First order formulas preserved by direct product, Ph. D. thesis, Univ. of Wisconsin, Madison, Wisc. 1965.

