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INTERPRETING SET THEORY IN THE ENDOMORPHISM SEMI-GROUP

OF A FREE ALGEBRA OR IN A CATEGORY

Saharon SHELAH

The Hebrew University, JERUSALEM, Israel

Universite de LOUYAIN, LOUVAIN-LA-NEUVE, Belgique

ABSTRACT. - We prove that in the endomorphism semi-group of a free algebra Fh with h -generators,
we can interprete H(X+ ), e &#x3E; and get similar results for categories. The result was announced in [ S 3] .

I would like to thank R. McKenzie, that seeing the proof, pointed out the holding of 3.3 (A) (by [ X ] ).
I thank also M. Rubin for stimulating discussions on the problem during its solution, and for reading the

previous version, and detecting errors. The readers should thank him for urging me to rewrite the paper,
and in particular to state explicitely that B is a Boolean algebra.

§ 0. INTRODUCTION.

This paper has two lines of thought as motivation : comparing category theory with
set theory, and investigating the complexity of the theories of some natural structures.

Lawvere [ L ] proved that in the category of all maps between sets, we can interpret
set theory (which is not surprising in view of Rabin [ R] I interpreting a general two-place
relation by two one-place functions).

Eklof asked whether in Ab (the category of abelian group) we can define the free group

of cardinality X . He got a positive answer and h the first stronglyA
compact cardinal. Feferman asked whether for some p Ab  Ab (Ab - the category of

03BC 03BC

abelian group of cardinality  03BC ).
It is natural to replace the class of abelian group by any variety, and to concentrate on

the free members. (In fact, our results hold for more general categories ; see § 5).
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From another direction, there was interest in the first order theories of permutations
groups. Mycielski [ My ] asked it. 

,

This problem was dealt in Ershov [ L ],
McKenzie [ M] , Pinus [ P ] , Shelah [ Sl ] , , [ S2 I where it was totally solved, in fact.
The semi-group of endomorphism of a free algebra is a natural generalization.

For simplicity we shall restrict ourselves to X &#x3E; L1, L the language of V.
Let for regular X , H( ~) be the set of sets of hereditary power  X, and for singular

H( A) = 
J.1 

U 

X 
). Our main result is that for a variety V, in CatX (the category of

p  X

members of V of cardinality  X ), we can interpret uniformly a model Mh consisting of some

copies of (H( ~ ), e). For X = 00 this generalizes Lauvere theorem, and it also solves Feferman

problem (i.e. reduce it to a problem of set theory). In categories in which the set of free
,members is definable, Eklof problem is answered too (e.g. for Ab).

There is an example showing that not always we can define the set of free members.

However, we can characterize the algebras of cardinality K p if e.g. 
I 
= ~ (L-the language

of V), and p is definable in H( x ) and we can characterize algebras which are free sums of

subalgebras of cardinality 2 LI .
REMARKS : (1) By [ Sl ] , [ S2 ], we can give a total analysis of the category of one-to-one maps ;
by which we cannot interprete set theory in it.

(2) It is natural to ask what we can interpret in the automorphism group of a free

algebra [ or the category of monomorphism ]. Clearly here the result depends on the variety.
This converges with the question of M. Rubin who asked on the classificated of first-order

theories, by biinterpretability of their saturated models automorphism groups.
In [ Ru ] he solved the problem for Boolean algebras. If we allow quantification over elements,
we can essentially solved the problem.

(3) It will be interesting, to change somewhat our main theorem 5.5 to get
biinterpretability. Of course, if the set of identities of variety is definable in l1 (À ) and there
are no non-trivial beautiful terms, this holds for /.

A

(4) Sabbagh and the author note that if in Cat, , Fl is definable then each

automorphism of the skelton of Cat x (i.e. the full subcategory of a set of representatives frnrn

each isomorphism class of objects) is induced by an automorphism of the (multi-sorted)
algebras of terms.
NOT.ATION :

Let V be a fixed variety, and Cat : the category of all algebras in V with all homomorphisms.
Let K be a fixed subcategory of Cat, usually we assume K is a full subcategory. Let F A be the
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free algebra (in V) generated by X free generators {at : t e I } . Let GX be the endo-

morphism semi-group of F~ . Elements of I will be denoted by t, s and at , I, t, s will appear
in no other context. Several times, we deal with K = G x *

Two endomorphisms (or elements, or subalgebras) of F~ are called conjugate if some

automorphism of F~ takes one to the other. We denote elements of algebras by a, b, c, d

(a-usually a generator) and also by x, y, z which serve as individual constants too.
For any f let Rnf be its range, and for a set A e V, Cl B is its closure in A,

b = Cl I b l . Let X, denote finite sequences of variables, x =  xo~ ..., xn-l 
&#x3E; usually.

For a term T we write T = T ..., xn-1) = T (x), if every variable appearing inT belong

..., We can assume w.l.o.g. that if T (I,+) = T is an identity (of V),

X, are pairwise disjoint, then for some term a (x), a (x) = T (x,y) is an identity. A term
..., xn-1) is called reduced if for no i and a is

an identity.

Clearly for every term ...) there is a reduced term a (xi(o), ...) such that

(i(0 ), i( 1 ), ... are distinct and

is an identity.

Clearly for every b E Cl B (B ç A e V) there is a reduced T and distinct bi E B

such that b = T (b , bl, ...). Also if T (D is reduced, ti e I are distinct,

T(at ’ ..., at ) = o (as,, ..., as ) (all in some Fh !) then {t1, ..., tn} c {s1, ..., sm} .1 n 1 m A

We say T (at , ...) is reduced if T (x0, ...) is reduced and the ti s are distinct. Notice that0 0

any function h : V, has a unique extension h E Hom(F À A).A A X

If h : I - I, h E Gx is defined by ah(t)’
We consider any K as a model : with two universes (the algebras and the morphisms,

and the relations f e Hom(A,B), g I f o h. Naturally a first-order language L is associated
with it. For convenience, we can consider this language for GÀ too.
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§ 1. ON DEEPNESS.

DEFINITION 1.1. : Let h be a function from B into B. For every x f B, we define its depth
Dp(x) = Dp(x,h) as an ordinal or - by defining when it is ~ a :

Dp(x) ~ 0 a x c B

Dp(x) ~ 6 - Dp(x) ~ a for every a  5 (where 5 denote a

limit ordinal)

Dp(x) ~ a + 1 a for some y f B, f(y) = x and Dp(y) ~ a .
LEMMA 1.1. : t f I } freely generate F~ , and h is a function from I into I. Define

(C) If in (B), T (xl, ..., xn) is reduced and the t(e) are distinct, then equality holds.

PROOF.

(A) Immediate.

(B) We prove by induction on a that

and this suffices. For a = 0 or a limit, it is trivial. For a= 0 + 1, by the assumption and
definition of depth, there are s(e) E I, h(s(e)) = t(e) and . Then

min Dp [ s(e), h] &#x3E; B, hence by the induction hypothesis Dp [ T (as(I)’ ..., as(n)), 0
e

but ,

(C) It suffices to prove by induction on a that ,

(for all e). For a = 0 or a a limit ordinal, this is trivial. For a = J3+ 1, by the definition of

depth, there is a reduced term a (xl, ..., xm) and distinct s(e) (e = l,m) such that

By (ii) and the induction hypothesis Dp [ for e = l,m.

By (i) and the definition of h,
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As T (x I, ---, xn) is reduced and the t(e) are distinct, 
.

{t(1), ..., { h(s(1)), ..., h(s(m»} . So for each e * l,n there is ke’ 1 ~ ke 4 m
such that t(e) - h(s(ke)) hence Dp[ t(e), h] ~ Dp[ s(k.), h] + I ~ {3 + 1 = a .

LEMMA 1.2. : Let hl, h2 be functions from B into B which commute i.e.

hi o h2 = h2 o hl. Then for any x e B

PROOF We prove by induction on a that

For a = 0, or a a limit ordinal, it is immediate.

For a = B + 1.

If Dp [x, hI] ~ {3 +1, then for some y e B, hi(y) = x and Dp [ y, 
So hl(h2(y)) = h, o h2(y) = h2 o hl(y) = h2(hl(y)) = h2(x), and by the induction

hypothesis {3 j3 ) hence

LEMMA 1.3. : freely generates

and let B = t e J I - Then we can find f E G~ , so that

(A) if t 6 J then a

(B) if g E G , g and f commute, and g maps B into B, then for every a  a (0),

(C) every function g from {at : t E J} into B satisfying the condition from (B), can be
extended to an endomorphism of G~ , commuting with f and mapping B into B

(D) f is the form mentioned in 1.1.

PROOF : By renaming we can assume I-J = 10 u { 0, t, 11 &#x3E; : t e Ja , a  a(0)
R, ( r~ ) &#x3E; 0, 11 a decreasing sequence ordinals, 11 (U ) ~c a} U {  1, t, n&#x3E; : 0  n  m I

and we identify ( 0, t,  &#x3E; ) and  1, t, 0 &#x3E; with t. Let us define a function h on I :
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Let f be h as defined in lemma I ,I . It is easy to prove that if t E J, t ( r~ ) = n ,

then Dp [  0, t , q &#x3E; , h ] = q (n-1). Hence (A) follows immediately by 1.1 (C), and

f e G by 1.1 (A). As for part (B), if g e commutes with f, g maps B into B,

t e J a 9 a  a (0) , let g(at) = a (as(1)’ ..., as(n)) be reduced. As g maps B into B,
e B, hence necessarily s(e) E J for e = 1, n ; so let s(e) E Ja (e). By 1.1 (C) and a

remark above

On the other hand by lemma 1.2, as g commutes with f,

Combining both we get a ~ a (e) for e = l,n. Hence g(at) E C1 { at : t E j9 1
 a (0) 1 , so we proved (B).

As for (C), extend g to a function g, from { at : into F. ) by :

It is easy to check that g, is well defined (because t e Ja , t(e) e J (3 =&#x3E; a ~ (3)

and it has a unique extension to g~ e G . In order to check that g2 and f commute,
it suffices to prove that for every s e I, f o g2(as) - g2 o f(as) which is quite easy.

Now (D) holds by the definition of f.
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§ 2. SIMPLE PROPERTIES EXPRESSIBLE IN FIRST.ORDER LOGIC.

LEMMA 2.1. : Each of the following properties (in a full subcategory K) is expressible by
formulas (of L) :

(A) proj (f) - which means f is a projection
(B) f is an automorphism, aut(f) in short

(C) g is a projection, and Rn(f) C Rn(g)
(D) g is a projection, Rn(f trng) c Rn(g)
(E) g is a projection, Rn(fe) c Rn(g) for e = 1, 2, 3 and

(F) g, f are projections and Rn(g) = Rn(f).

REMARK : Clearly for any f E Hom(A, B), Rn(f) is a subalgebra of B.

PRnOF° : We give the expression or an indication of it in each case

(A)fof = f

got = lA) [1 A - the identity of A define by

( Yf,B)(f e Hom(B,A)-~ h o f = f) I

(C) proj (g) A g o f = f.

As g is a projection, x e Rn(g) 0* g(x) = x. Hence when proj (g), and f : B - A,

g:A-~ A.

(D ) proj (g) A g o f o g = f o g
(the proof similar to the previous one)

(F) Immediate by (C).

CLAIM 2.2.

(A) If B is the range of some projection f E G~ , then any homomorphism h : B ~ B
(B considered as a subalgebra) can’be extended to an h’ E G~

(B) If B = where J c I freely generates F~ , then a

homomorphism h : B ~ B is onto B iff for some homomorphism g : B-~ B h o g is
the identity.

PROOF.

(A) Clearly h o f E G~ extend h and its domain is F~ ,
(B) Clearly if h o g is the identity (on B), then for any y e B, g(y) e B and h(g(y)) = y,

hence h is into B.
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Let h be onto B, so for every t f J, at = h(T t(as 1 t , ...)) for some term T t and
J. There is a unique homomorphism g : B + B, g(at) = T w). Clearly for any

t e J, h o =’ at hence h o g is the identity.

REMARK. Sabbagh had proved that of is one-to-one» and of is onto » are (first-order)
definable in Cat~ . *
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§ 3. BEAUTIFUL TERMS.

DEFINITION 3.1.: The term T (xl’ ..., xn) is called beautiful if

(A) For any term a (xl, ..., xm)

is an identity (of F~ )

is an identity
(C) T (x, ..., x) = x is an identity.

REMARK : The beautiful terms for n &#x3E; 1 cause us much trouble. For the free abelian group,

only x is beautiful and reduced. However, if F is a free algebra of the identities

T(TI(x), T~(x)) = x, Tl(T(x,y)) = x and T2(T(x,y))= y and T3(x,y) = T(Tl(x), T2(y», -

then the identities which hold in () ; T3) define a variety for which T3(x,y) is a

beautiful term.

LEMMA 3.1.

(A) The set of beautiful terms is closed under substitution, i.e. if ,

a (xl, ..., xrJ, T i(xI’ ..., xn(i)) (i =1, ..., n) are beautiful terms, then so is

(B) x is a beautiful term, and there is no other beautiful term T (x) ;
and T (xl, ..., xn) = 

xi is beautiful. 
’

(C) The two-place beautiful terms ( T(x,y)) generate by substitution all the beautiful terms.
PROOF.

(A) The checking has no problems.
(B) By the third demand in Def. 3.1 ; the second phrase - by checking.
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So we can prove our assertion by induction on n.

DEFINITION 3.2. : The beautiful Boolean algebra of a variety is the Boolean algebra B such that

(1) Its elements are beautiful terms of the form T (x,y) (x,y here are fixed).

(2) Its zero is y, its unit is x.

(3) The intersection is defined by

(4) The complement is define T’(x,y) where T (x , y) = T ’(y,x).

DEFINITION 3.3. : For any filter T of B, let w. T be the relation (defined on elements of

members of Cat)

and it is similarly defined on each Hom(A,B), A, BE Cat (see Def. 3.4 (A)).

DEFINITION 3.4. :

(A) If fi : A -~ B (in Cat), T a beautiful term, T (f 1, "-, fn) : A y B is defined by

(B) If Ai (i = 1, ..., n) belong to Cat, T a beautiful term, the algebra T 
..., An)

is defined as follows :

its elements are  a,, ..., a,&#x3E; where ai c Ai and ..., an, =  bl, ..., bn&#x3E;
iff for each i, ai ~ T.bi where Ti is the filter generated by T (y, ..., y, x, y, ..., y) 

’

1

(the x-in the ith place) ; for a term a ,

(C) If f i : Ai -~ Bi (in Cat) T a beautiful term, then

is defined naturally.
REMARK : There is an ambiguity in the definition of T ..., f~) ; so when both definitions

n

are meaningful we prefer (A) ; and even better : in (B) if A 1 or T (x~,..., xn) = xi

is an identity, we make T (AI, ..., An) = Ai. In fact T (A1, ...) is essentially defined up to

isomorphism.

NOT ATION: If x e =  x , ..., x~ &#x3E; then
0 m-1



11

LEMM.B :3.2. :

(A) The beautiful Boolean algebra is really a Boolean algebra.

(B) For any filter T of B and A E Cat, ~ is an equivalence relation over A, and even a

congruence relation, so A/~T is defined and e Cat and T (x,y) E T implies the identity

I (x,y) = x holds in A/ -T-
(C) For any fi : A - B (in Cat) and any beautiful T , T (fi , ..., fn) is a homomorphism

from A into B. If A = B, fi a projection then T ..., fn) is a projection.
(D) If Ai E Cat, T is beautiful then T (Al, ..., Cat.

(E) If fl : Ai ~ Bi in Cat, T beautiful then

(F) If T " B is an ultrafilter, for the category A c Cat} , there are no beautiful

terms. It is the category of the variety, whose identities are those of V and
{T (x,y) = x : T e T} . This holds for filters T too. 

PROOF : Easy.
I,EMMA 3.3. :

( ~1) For every T i(x,y) = T 2(y,x), let Te be the filter generated by T e(x,y). Then any
A e Cat is the direct product of and A/ In A/ = x is an

I e e

identity.
(B) If our variety V is the modules over a ring R, then the beautiful two-place terms are

ax + (1-a)y where a is in the center of R and is idempotent (i.e. a2 = a).

PROOF : Easy.
LEMM 1B 3.~. : Let T be a beautiful term.

(A) Let K 6 Cat be a subcategory, such that for fi : A -~ B in K, T (f 1, ..., fn) is in K.

In the proper language L* (i.e. with variables for objects, and for morphisms, and a partial
operation of composition, and the relation f e Hom(A,B) plus our T ) for every first order
formula o 0 (f l, ... ; A1, ,..), there is a finite set o of formulas of L * with the same free

variables such that :
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totally determine o* =

hence in particular the truth of o o(g 1, - - - ; B1, ...)

(iii) if in (ii) the 4l j ’s are equal then = 4l j .

(B) We can expand L* by letting in variables for elements, and more terms of our variety ;
and also let in (ii) B,1 

i(l) 
-~ ; and the same conclusion holds, provided that we are

careful for the question when

REMARK : This is just a varient of Feferman Vaught [ FV ] , as refined by Weinstein [W]

and G alvin [ G J .

PROOF:

(A) We define 4l by induction on the structure of ~ 0.

(if T (fg) is not defined, h = T (f,g) is false)

It is now easy to prove (ii) by induction and (iii) follows trivially by choosing

g~ = for all i, j .
i i

(B) Left to the reader.
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§ 4. DEFINING ARBITRARY SETS WITH PARAMETERS.

THEOREM 4.1. : There is a formula q,b such that the following holds. Let K be a full
. m

subcategory of Cat, and F Jl f K. Suppose A, B e K, )B) ~ lu , and fi (i   lu + )
is an m-tuple of members of Hom (A,B). Then we can find g (from K) such that :

for some beautiful term T and i(1) ~ .., ~ i(n).

REM,4RK : (1) The f ~ are added as individual constant during the proof, in order not to mention
i

them explicitely during the proof. In the end, we include them in g.

PROOF : Let {at : t e I*} freely generate F , and let J C 1*, P .. jj I = j I 1* . . For

notational simplicity let J = t a, ~i&#x3E; : a - 
= ,andi(0)= p

(as we can allow repeations).
MAIN LEMMA 4.2. : There is a formula o (f), such that [ f iff there is a beautiful

T = T 
..., and ordinals a (1),..., a (n), so that for every B  p, f(a§ ) "

n r~

PROOF OF 4.1 FROM 4.2 :

Let f* : F - A, be such that it maps {aa : a  p I onto A, and
0 J1. 0

PROOF OF 4.2 :

We partition our proof to three cases [ it suffice to prove each one separately, and then
by comining the formulas and choosing the parameters for each case, we can easily find a

unique formula ] .
We shall use § 2 freely : and restrict ourselves to F and G .

Jl P
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Clearly there are first order formulas ~ such that :

( 1 ) ~ 1 (f ) says that f t B I is into B 1 and it commutes with B 1

(by 2.1, D, as f; is a projection, and Rnf* = B1) 
’

’ 

7 7

(2) o2 (f) says that o1 (f) and f t B2 is into B2 and it commutes with B24

(3) o 3 (f) says that o2 (f) and for any g, o2 (g) implies that fl B2

and (f o g o f5*) l B2 commute.5 5

(f; 0 f) t B5 0 6 0

(5) o5 (f ) says that o 4 (f) and (f* o f) ) B = f* I B
2 0 2 0

(6) ~ 6 (f) says that for some f’, f’ ~ B3 = f ~ B3 and ~ 5 (f’) where B3= cl{ am : m  w l0

Now we notice 
’

[ Clearly the «if» part holds ; for the other direction, as e B 1 ’ I0

= T (aO , ..., a09 ) for some T , k (i) ; apply f ~ n times and we get our result I ,0 Q-(1) . (k) 3

the «if» part is immediate, and for the «only if» use (1 *), and apply f ~ m times on the4

right side 
~

T (xl, ..., xk) satisfies condition (A) for being beautiful.
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for every n,m

Now for every term

So clearly

by § 3 ’s definition,3 computing we get

As this holds for any o , we prove that T satisfies condition (A) from Definition ~.1, The

other direction in (3#) should be easy now ],
, and the 1" from (3*) satisfies condition (B) from

to the equality of

This clearly is equivalent to condition (B) from Def. 3.1 on T, The other direction is easy. ]

(the P, (i) are distinct) where

[Because, assuming

f or some beautiful T , and 9, (i)  w , for every n  cj.
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[ Immediate, by (5), noticing f ~ o f ~ o f ~ is a projection onto B3] -5 7 5

So we clearly finish case I.

Case II : u 
= I J is regular &#x3E; N0. 

-
- o .

11 
0 

1 = p. , and let us denote = a 

R &#x3E; 
. where = u. But for using in case III,° a a,B,n&#x3E;’ -i " 

we from now up to the end of the proof of claim 4.3, assume only 03BC1 +l p , is

regular. For each limit choose an increasing sequence 5 (n) (n  w ) of

ordinals  5 , whose limit is 6 ; such that for 6 ~.:j3= S(n)}
is a stationary subset of (see e.g. Solovay [ So] ). Let us define some fe’s , by defining

(t e 1*) understanding that when f* (at) is not explicitely defined, it is ao. So let,
e e 0

Clearly f* are projections onto B2 , B3 resp. and let f * , f * , f*3 4 9 10 11 12

be projections onto B4 , B5, B6 resp. 
’

Now we apply lemma 1.3, with f a, ~i &#x3E; : a  J.l., ~i  for ,J, and

{ a, B &#x3E; : a  P i for J , and 1* for I, and get e G as mentioned there.0 13

, 

Let the first order formula (f,g) says that f,g are conjugate to f2,Rnf, Rng c B31 2

and there is h E G commuting with f*12, and mapping B3 into itself, such that h o f = g.p 13

We shall write (f g) also in the form f ~ g. So by 1. 3, if f,g are conjugate to f* and2
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Let the first order formula cp 2(f) says that f t B2 , f t B5 , f ~ BO’ f r B6 are into B3, B~,B~,B~ resp.

and for any g conjugate to f; , if Rng C7 B~ , then g 6 f o g ; and f t B5 commute with

f , f , f and f B commute with f .
7 8 9 3 3 

*

CLAIM 4.3 : [f ] iff for each 0  p. 1

for some T , a (e) (which do not depend on (3 !)..

PROOF: Assume [ f ] , and let

a ( (3 ,e) increase with e,w.l.o.g. By part of ~2 saying : g conjugate to fRng 5; B 2 implies

g ’ f o ; it follows that (choose g such that g(at) = apg g t 0

As 03BC1 is regular, 03BC1 &#x3E; N0 for any j8  p 
I001

sup {y (13 ,e) : e = 1, ..., k(13 ), 13  j3 }  hence

S = { ~i 0 : 00  J.l 1 ; and (3  ~i 0 ,1 ~  {3 0 }
is an unbounded subset of p ; and by its definition it is closed.

Now we shall prove that for 6 e S, cf 6 = N 0 implies y ( 8 ,e) = 6 . For suppose

’Y = ’Y (8 ,e ) :/= 8 then as said above 6  y (6 ,e ). As 8 (n) is increasing (as a function of n)
0 0 1

and its limit is 5 , (or 6(n) is not defined) for some n E w big enough, 5  7 (b ,e ) (n), and110

y (8, 7 e2) y (6 ,e ) (n) 7 ( 5 e2) (n) (when they are defined).1 2 1 2

As f l B is into B necessarily y (6 ,e) has cofinality N0, and as f lB5 commutes with f*
67 . 05 7
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As f ~ B commutes with f*
5 9

and T (a 
-t( 6 1) (n) 

...) is reduced (by the choice of T and of n).
5 a(S, 1) ) 6

But f(a0 (n) is equal also to T 

5 (n) a~ (S (n),l) ...) which is reduced too.
Hence y e 0) (n) e {y ( 6 (n),e) 1 e  k(8 (n))}

0

but on the one hand 6  7 (6 e 0) (n) by the choice of e0 and n,0 0

and on the other hand 8 (n)  d = y ( 6 (n),e)  8 as 8 c S, contradiction.

Hence y (ð ,e) = 5 for every 6 c S.

Now for every {3  p 11 n we know { 6  p : cf ð = NO’ ð n) " {3 }

is stationary, so there is 8 E S, cf 8 = ~ 0 such that 6 (n) = (3 .

As before we can show that

and the last is reduced.

Hence y (b (n),e) e f 6 (n)} for each e, hence y ( b (n),e) = 5 (n), that is y (B ,e)

for each and e. Hence, as T (a «(3 1 ) ...) is reduced, the ordinals a (o e’ ’ 0 ( 
a 1 ’ 

) ’

1 ~ e ~ k( (3 ) are distinct.

As f t B commutes with f* , for every j3 
- -

3 3

As the a «(3 ,e) are distinct, necessarily { a (j3 ,e) : 1 ~ e -’ k(e)} _

{a (o,e) 1  e 4 k(O) }, but as a (j8 ,e) is increasing with e (for each B, by the choice of

T0( , ...,)) necessarily a ({3 ,e) = a (o,e), k({3 ) = k(O) and we can assume that T ~ 
= 

T O.
Now clearly as before

So we finish one direction of claim 3.3 where as the other is immediate.
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Let 6 (f) say that f maps B 2 into B 3 and if there . is f1,f1 lB2 f lB2
It is easy to check that for every 9 ; for some T , 7 (e) :

Let o4(f) say that f maps B2 into B3, o3 (f ), and if o3 (g), then

f* o f t a-0 = f* [ a-0 . (note that 7° = Rn f* ). As in case I we can check that
2 0 2 0 0 2

and T is beautiful.
0

Case III : p a singular cardinal.

We give this case with less details.
We let p 

I 
 p and B , B , B be as in case II, J.l regular , &#x3E; NO. By case II1 1 2 3 1 1 0

we can define f*’s properly, so that, for some o0 r- f= #° (f) iff there are T and
e ~À-

distinct a , ..., a so that for each J.l , f(J3 ) ..., a13 ).
1 n 1 0 aI a n

Let /&#x3E; 1 (f) say that f(a0 !: B and for every g, o ° (g) implies that( ) Y 2 
Y g, o0 (g) P

(f 0 g) t lio = (g o f) t a-0 . It is easy to check that G. t-- /&#x3E; 1 [ f iff there are a nd
0 0 A -

distinct 13 1 , ..., 13 (m) such that for every a , = g (a13 ( 1 ) , ..., a13 (m) ,( ) ( ) Y ( 
a 

( 
a a )

a satisfying (A) of D ef . 3.1.

As JJ. 1 is regular, we can use case II. So there is # 2 such that G 2 [ f I iff there are

a beautiful term a and distinct 0 i such that for every a , f (ao a (i (I), ,.. a0 (m)) Y 
(a) a a )~

Let Y- p (i), J.l (i)  p , ~ (i) increasing. 
°

i 

We just prove that for every 7  cfp thereisi* as constructed in case II and above,
T

such that

(i) Gx F w 2 [f, f*] ] iff there are a beautiful term a and distinct 0 (i)  p (1) ,1B T -

such that for every a  f(a0a) = g (a 9 (’)1 ..., a a a

(ii) f* (0) is a projection onto C1 : a  ii, B  03BC (y)+}
~ 

~ a
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Checking the construction carefully, we see that :

if T, g are beautiful terms, j3 (i)  p (’y R, )j- (i = 1, ..., m, R, = l, ..., n)

Now checking the proof of 4.1 from 4.2, the existence of the f* mentioned above,
’Y

is sufficient to prove 4.1 when I(0)  03BC.

Hence there are p3 and g * such that

[f ,g~ ] if f f = T (f 7 (1) , ..., f* 
7(n) 

) f or some beautiful T . So let the formula

o 4 [ f,g *] ] say «there is f 1 ’ such that o3 [f 1 ’ ] and for every f2 which satisfies

~ 3 [f2 ’ [* j A Rn Rn f2 (0) satisfies also 1&#x3E;2 [f, f2 ] ».

Clearly G ~ ~4 [f, g*] ] iff for some beautiful T and (3 (i)  ~ , for every a  ,

f(aO) = T (a (3 (1), ...) (f* o f o f* , g*) is our desired formula.
(a 

( 
a 

~ ) 
55 5~g )

THEOREM 4.4: We can find (in the language of G ) such that’ A

for any ultrafilter and free set of generators {at : t E F and

ft e F 
X 

defined by ft(as) = at ; there is f e G such that f U = ft for some t andx X 0

(A) G F= 1&#x3E;b [ f, f* ] iff f = T (ft, ...) for some beautiful T . .
X 1

(B) for any f,g, (see Def. 3.3) -

(D) For any two-place relation R on the class of ~ eq -equivalence classes, there is g e G

such that for any f 1, f 2 e G ~

Gx is a projection onto some Cl h ...) : 
A A /

(for some n  w, beautiful T e , and t(e,1 ), ... c 1*.

P ROO F : The set

R = { f,g&#x3E; : f, g c ...) : L beautiful, t(e) e 1*1

and for some T (x,y) E T, f = T (g,f ) }
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is closed under beautiful terms, hence by 4.1 is definable by some ~. 
This observation suffice for (A), (B). Now (C) is a statement on = in fact, which is easyT
to verify. 

’

Now (D) follows by (C), as by (C) we can define arbitrary one-place functions from the set
of classes into itself, so by Rabin [ Ra] , we can define arbitrary
relations. Lastly, (E) follows by 4.1.

Now any such subalgebra is the range of a projection, because by Def. 3.1 and 3.1 (A)
we can assume the subalgebra is

Choose b e B and let

where cs(tJ) . = at if for some i, t(i,j) = t and c,(tj) -:-- b otherwise.
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§ 5. INTERPRATING SET THEORY IN A CATEGORY.

Here K will be a full subcategory or Cat,

In the formulas from 4.4 we now put explicitely as a parameter.

DEFINITION 5.1: L et f be of the le ngt h of f ~ ( of 4.4 ) and let 1/1 a ( , f A) be the formula

saying (in K) :
(0) fe e End A ( = Hom(A,A)) 

’

( 1 ) f0is a projection

(2) ~ b (g ; f, A) implies g is conjugate to f (so g e End A)

(3) ~ ~q (91, g2 ; f, A) is an equivalence relation E- over
{g : with &#x3E; 1 equivalence classesA

(4) o b (g ; i, A) implies ox (g ; f, A) which implies g c End A A proj g

(5) Suppose ox (gi; f, A) A § 
x 

(g2; f, A), then there is a 93 such that :

(6) 92, 93 ; f, A) represent a pairing function on the set of E; equivalence classes.f

(at least one of them holds by (5))

(8) (g*, f, A) then there is g* , such that ~ (g* , f, A) and for each g*2 2 1
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4 
b -

for every 93, g4 satisfying I o (ge , 7, A) there is h e End A such that’ 

e = 3

(9) If ob (ge, f, A) (e = 1,2) then for some he End A, h o g. = g Ie

(g,f,A) 
CLAIM 5.1 :

(A) For each X  X*, let f*he End F À be as constructed in 4.4.

Then [!*,F I
x x

(B) Suppose K F ’4/J a [f, A]. Then

(2) { g : ~ b (g, f, A)} is closed under beautiful terms

(3) There is an ultrafilter T. T (T, A) such that
2 b - e 

-

e 

=1 ob (ge, f, A) implies oeq (ge, T (91, g2)’ f, A) where e = 1 T(x,y) e T =&#x3E; e 1 2.
e =1 

(4) E- has infinitely many equivalence classesf

PROOF :

(A) Immediate.

(B) (1) Easy, by part ( 5) (and (4)) of Def. 5.1 (for n = 1, use (2)).

(B) (2), (3). By part (8) of Def. 5.1 we can define inductively g~ (i  úJ) such that
i

ob (gi*, f, A) and if i  j, ob (gl, f, A) A 4b (g2, f, A) then for some h e End A
i 

-

Let T (x,y) be a beautiful term .

Let us apply 3.4 and get 0 =  k  co }

So there are i  j ~2~ such (gi, i, A) ~ (&#x26;, f, A) hence
e k ~ ~

ob(T(gi,gj),f,A). Now for any g1,g2 satisfying ob (g1,f,A)^ob(g2,f,A),
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there is h such that h o . = gl, h = g2 and

hence (2) is proved. For (3) note that by (B) 4&#x3E; eq (T (gi, gi), g , f, A), hence by (7)J P

for any g1, g2 as above o eq (T (gf, g2), gq, f, A) where p = i-&#x3E; q = 1.

(B) (4). By Def. 5.1, (7) and (8).

LEMMA 5.2 :

(A) There is a formula 0’ such that

(2) If K l= ys[f, A ] then for any subset R of I *,
Af

there is g* e K such that g/E- E R - [ g, g*, f, A If

(3) Like (2), for a two-place relation R.

(B) There is a formula y t such that

(C) There are formulas ~’, 0 such that

implies : for every

pairwise non E-fl-equivalent, (i  X  À *) and

there is h such that

(D) There is a formula ~ m such that

(2) K t= VJm [ f ,A ] implies E- has  h* equivalence classes.f
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PROOF OF 5.2 :

(A) Immediate by 4.1 and claim 5.1 (B) (2), (3) (for (3), use (2) and )) P)
(B) Suppose K le, A~ I (e == 1,2) and T = T(il, A’) = T(f~,A2).

For e =1,2 let ge e Wfe (n cj ) be pairwise non-Efe -equivalent.n Ae ¡-

Let I All l +| |A2| X  h*, let X cj } freely generate Fh, and fn e End F
be a projection onto (ai : i  X (n +1) }.

Let f be such that

and for some T(x,y) e T

gl = T (g2’ gl)
Let he maps (ai : x n  i  X onto Rn ge

n

pb (ge, i~0, Ae) (e = 1,2) and for some ge (e = 1,2)
1

such that

Rn ge and for every ge (e = 1,2)
1 0

Then 0 2 (gl, g2) iff there are beautiful T , and

n( 1 ~, ... such that

-1 -2
define a one-to-one map from a subset of Wf f into We 2 ; and this set is infinite (i.e. is

A 1 A2 2’
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ordered in an order of type W, see (A)).
We have just proved that

Suppose the conclusion holds, then clearly VIs [fe, A e] ; ; if T (X,Y) c T(fl , Al),
T (x,y) e T(f2, A2) we get contradiction by 3.4.

(C) The same proof as (B), essentially.

(D) Let 4, m(f, A) says that y e (f, A) and there is Al such that for every fl, if

] (and there is at least one such 11) then for some 72 and

automorphism h of Al :

(0) ~(f~Al) .

(1) for some h, 0 (gl, g2, h) define a map from the E ?2 -equivalence classes onto the

E ,-equivalence classes

then gl o h o f l =/ g2 o h o fl.0 0

For proving D(l) choose Al = F X ’ and f2 is chosen like f , but the range of the
projections, is freely generated by NO elements. For D(2), if E- has &#x3E; X equivalence

classes, choose f 1 such that Rn f 1 is finitely generated.
0

DEFINITION 5.2 : We say  g, f, A &#x3E; represent the model (N,R) if : ,

g E End A, and let { gi : i  be representatives of the Erequivalence classes, and letf

and there is H, a one-to one function from J onto R, and :

LEMMA 5.4 : There are formulas ~, ~ such that

(A) ~f (g, f, A) iff ~ m (f,A) and  g, f, A &#x3E; represent a well founded model

satisfying extensionality.

(e = 1, 2) and

~ represent isomorphic models.
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PROOF : Easy by 5.3.

THEOREM 5.5 : In K we can interpret a model Mh* consisting of p (V) disjoint copies of
X

H( h*) (03BC(V) - the number of ultrafilters of B).
PROOF : Let the elements of the model be triples  g, f, A &#x3E; satisfying § h. Equality
to define by V/ h, and 6 is defined naturally.
DEFINITION 5.3 :

(A) The model M = (A1, "’, Am ; "’, Rk) (A¡-universes, Ri-relations) is an explicitely
interpratable expansion of the model N = (AIg ..., An ; RI, ..., R1 ) if there are formulas

oli(x,y), yj in L(N) (n  i  m,l  j  k) and function Fi (n  i  m)1 1 ,y), y J ( ) ( J ) 1 ( )

such that °

(1) Fi is a function from { a : N &#x3E; W 1 f [a]} onto Al. 
.1 Ai 
.

(B) The scheme of the explicite interpratable expansion is aU the syntactical information
involved.

DEFINITION 5.4 :

If Me is an explicite interpratable expansion of N’ (e = l, 2 ) by the same scheme, and by the

function F~, and N I is a submodel of N2, then the function G, G t A ~ = the identity
J 1

is called the natural embedding of

Ml into M2.
C LAIM 5.6 : If in Def. 5.4, NI is an elementary submodel of N2 then the natural embedding
of Mi into M2 is an elementary embedding.

PROOF : Trivial.

DEFINITION 5.5. : Let M(K) be the model with the universes and relations listed below :

(functions and partial functions will be encode by relations).
(A) Those of K.

(B) A, = {  a,, T &#x3E; : a e H( A~), T e where S(B) is the set of ultrafilters of B.

E will be an equivalence relation on Al defined by :  aI, Ti &#x3E; E a2, T2&#x3E; iff Tl = T2.

R 1 is def ined by :
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THEOREM 5.7 : M(K) is an explicitely interpratable expansion of K, assuming 2 ~ ~’(~) ~  X *.

REMARK : All the information we know on Eklof and Feferman problems mentioned in

the introduction can be easily extracted from this theorem. We assume 2 I  ~ *
in order to simplify the definition of M(K).
PROOF : We go through Def. 5.5.

(A) No problem.
(B) Essentially, this was proved in 5.5.

(C) (D) Left to the reader.
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