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ON THE PRINCIPLE SQUARE : CODING AND EXTENDING EMBEDDINGS

L. J. STANLEY

Seminar für Logik, BONN, R.F.A.

University of California, BERKELEY, U.S.A.

We have obtained a number of relative consistency results. These are most naturally
stated as results about the construction of models with certain properties. The central technique
is to adjoin, generically, a structure from which we can extract a higher-gap&#x3E;&#x3E; morass of the

appropriate sort. We then obtain various combinatorial properties, partial solutions to the
transfer problems of model theory, and the existence of various Souslin trees and Kurepa
families as consequences of the existence of the higher-gap morasses. Though the morasses
which are shown to exist do not have all of the properties of the morasses constructed in L,
there is nothing essentially new in the derivation of the various applications from the existence
of the morasses. Samples of our results are :

THEOREM 1 : Let M be countable, transitive, M p ZF + GCH. Then there is a generic

0 ( y = card Ba )M iff (Y= card and d (a is measurable)M iff
(a is measurable)M [G]. In M[G] for all 1  n  (D there is an N n-Souslin-tree,
the generalized Nn-Kurepa-hypothesis KH 4 11 bt nholds, strong versions of the principle

oN-hold (see below), all uniform ultrafilters on ~ are regular, and for all infinite
cardinals a of all

THEOREM 2 : Let M be countable, transitive, M t= ZF + GCH. Then there is an extension

M [(~] :? M, generic by a class of conditions, s. t. ~M riM[(.] ~ M, s. t. for all

ordinals a , 6, y of M, @ - as well as all the other conclusions of

THEOREM 1, except possibly ® .
In fact, for all infinite cardinals a of M [ § ] , all regular infinite cardinals K of M [ C ],
all n  w , (n), . &#x3E; -  h 16’~), x &#x3E; , there is an a~-Souslin tree, the

generalized a + -Kurepa Hypothesis KH a, + a,+ holds, as well as strong versions of the

principle 0 À , if X is also uncountable.

We conjecture that in the model M[ G] of THEOREM 2, there is a complete solution
to the transfer problem, that is, for all infinite cardinals.,

a complete solution, since CCH llolds in M and is preserved in passing to M [ 
To obtain THEOREM 1, we add a «gap w » universal morass at col ; to obtain THEOREM 2,

we add, at all X s.t. in M, a uncountable, ~ is inaccessible or the successor of a singular
cardinal, a ogap-w » universal morass.
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The proof, in fact the notion itself of higher-gap morass, is too complex to present here.

Instead, we have distilled out of several of the crucial constructions, a «gap-two » version of

the principle o , which should give the reader some feeling for the considerations involved
We shall introduce the principle, and motivate it as a generalization from the situation in L.
This will lead us naturally to discuss what we feel is the real significance of our results - by
placing them in the context of a large, but somewhat vague program. We finish by indicating the

forcing proof of the relative consistency of our principle.
a regular cardinal. To fix ideas, take X = ~ ~ , ~ = 

w 2. In all of

what follows, we shall abbreviate «closed unbounded» by «cub», «primitive-recursively closed»

by «p.r. closed», «order-type» by «o.t.». If X is a set of ordinals, X* is the set of limit points
r)

is unbounded in B}. . A structure a= A, E (1 
:1 

A, Rol ..., 

is amenable just in case for all X E A, all i  n, X rl Ri E A.

We begin by recalling the principle :

There is a sequence C =  Ca. : a E dom C &#x3E; s.t.

(a) a E dom C # a is a limit ordinal,

dom C ~ ~ v : ~  v  a limit ordinal};

ii) if s E (Ca)* then s E dom C and C, = r)a

(Coherence Property)

"I)  cf (a )  K ~ 

A sequence with these properties is a 01( -sequence.
It follows from ii) and iii)~ that for a E dom C, o.t. 

Evidently, the only interesting part of a a -sequence, as far as the statement of the

principle 0 Ie is concerned,is the co-initial segment  Ca: a 

since for a limit, a ’~ ~ we can simply take C a= a . .

The proof of 0" in L is long and complicated. However the lJ" -sequence constructed
there has many properties in addition to those required by the principle OK Fur example,
there is a cub subset and a function S with domain So U 

s.t. dom C - 
" LJ SO U  K+ ,v lim it j. ,

a 

for a , S E So, a is non-empty and closed, max’Sot a &#x3E; a is p.r. closed,

J F r a is regular, a is the largest cardinal" , S a :8 i p : a  9 v lim it I ,

is amenable, and for
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v E S , Cp ~ p - a + l. Further, the sequence C has a condensation-like

property. Finally, in non-trivial cases, the set Cv codes up much of the essential information

about a possibly larger model  Jp , A &#x3E; , p ~ v , canonically associated to v by the theory
of the fine structure.

On the other hand, the principle a is quite easily proved to be relatively consistent

via forcing. In an attempt to «improve» on the principle E3K as far as capturing the

essentials of the situation in L, Jensen also formulated a principle (H)" ’ which Devlin in
ASPECTS OF CONSTRUCTIBILITY, renamed d because it is at the «hart » of proving,
in L, the existence of gap-one morasses at K. We present a generalization of the principle (H)k

-

- this may be thought of as an attempt to build into our DK -sequence C the above properties of

the, 13 -sequence constructed in L - except the ocoding» property.

(H) : There is a sequence t 2 =  C2 : v E dom C &#x3E; , a set ,B ç" and a
K p 

-

is the largest cardinal" ,

is amenable ; for

CD for p v ; if 11 E S then C2 ç v - 0, + 1
p a v

(note by 0152&#x3E; i S : a E So is a partition of dom i~ 2) ;
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iv for p.r. closed v, v E (C2 )~~ iff v is a limit of p.r. closed ordinals, whenever
v

- 2 *

v E dom C ; further (C ) C; 1 t : -t  p , u p.r. closed},tJ

C2 9 dom C2 - (Coherence Ppty for p.r. closed ordinals) ;v

(D for a E So, a E (SO U i K ) ) - a + 1, there is v E 
. S and

(9 for all B E So U i K } , all v E S , there is a E 

f or all B’, if a  S’  S and r3’ E SO then there is v ’ E S , and 11
S

Properties v0 and g are our attempts to build in as much as possible of a condensation-

like structure into our sequences C2, J? The intuitive idea is that for a E SO

. 

 A , a+ 1, C~ &#x3E; is obtained as the transitive collapse of a
IA ol a 

AE -elementary substructure of a model  LA , A n v21 v - K + l, C2 v &#x3E; for v p.r. closed1 v

v E and that these layers of approximations «fit together nicely».

We can now state our principle, which for lack of a better notation, we shall denote

by Ow 1 w 2 ’ although, according to Rebholz this notation is already in use to denote a1 2

partition principle. Recall that in all the above we imagined &#x3E;, = , I w1 and K = w 2. In

addition to the properties of (H) w2 asserts the existence of a
212

o -sequence Cl, a cub subset Y of SO on which C «coheres nicely», that êl «meshes
. nicely» with C2 1 U S , that Cl codes up much of the information about C2.

, a E SO a

wlw2 : There are sequences C1, ê2, and sets A, Y s.t.1 2

-2 A .. 
C , satisfy the requirements of (H) w , except that H w . Lw 3,and s.t.3 3

is amenable; if a E Y - Yl and a’ is the largest element of Y n a , then a’
is the largest element of (So) * n a, o.t. (C1- a’ + 1)= w and (C~ ) ~;

, a 0, ) ;



161

Properties vii and @ make precise the notion that C1 coheres nicely on Y ;
properties 9 and xi make precise the notion that Cl codes up much information
about C2, A ; more precisely, for Y* C) together with C21 a j, 1 u codes up

much information about the model

this in the next LEMMA.

we shall see

LEMMA : Suppose
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Set 0 = 0 n X we note that for P,  B’ , there is

= the direct limit of  11 (6, 6’) S’ E 4 - S + I &#x3E;

We note also that the system

; in fact there is a single
, I 

- 

E 1( a a) definition for all a E Y .
° 

’1’B _. v lp

.--

since for B E 0 1 L"’ = id 1 LA ; further 0 is oofinal ill X r, a ;
a a

for B E 0

By the same argument we used to see I X’  z 
&#x3E; 

. it is easy to see that

for x’ E XB there is ~ E X n a s.t. x’ is Z~ (.~~ )-definable in parameters

It will suffice to see the corn crse, namely that if E is an element of a 0 X and x’ E LA ex
03BC a

is E 1(La)-definable in parameter E , then x’ E X’. Since X is closed under the formation

of ordered pairs, an X is closed under G,5del’s pairing function; hence jý ex I X’ - ¿: 1 
So, suppose the above situation holds ; let cr (vo , vl) = 3 v2 ~ ~0 ~ v2)

bes.t.in .1~, x’is the unique solution to ep (vo ), X , W ¿o .

Then, there is a E 0, a &#x3E; l; s.t. x’ = n o) (-X’) for some x’ in and

( *) in x is the unique solution to ).

( *) is a condition.

But then there is a S E &#x3E; l; s.t. ( * ) holds. But such an 5Z’ E I’A must be an

Ms

element of X ; let IT ( (i’) ; then x" = x’ and we are finished.
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Since a E Y* xi insures that if X 0 a is cofinal in a then is cofinal

o.t. (c n X is transitive ; that is o.t. (C~ ) fi X’’ o.t. (c2 ).
a 

sitive; that is o -t - 
(C Aot A ot

QED LEMMA

Let us now discuss the analogy between the situation of the LEMMA and the situation

in L. In a certain sense, between a and jn , for a E So, C2 1 S a can be thought of

representing a «fine structures ; similarly for -2 C, 1 S , between w 2 and w  - this

«representation» is far from exact, but we will have a better idea of the sense of this

representation, once we discuss the role of C~ , for a E Y. For such a we imagine ~
as playing the role of  A &#x3E; , where  A &#x3E; is given to us, for a , by the fine

structure theory. We do not necessarily have that there is a E (I ) map of a
subset of wi onto a , nor do we have any way of extending X’ to elementary
substructure of some possibly larger model ; whereas , in the situation in L~ we do have the
certitude of making such an extension. Further, in the situation in L’I it is possible that p = ot
while here we always have Jl a &#x3E; a.

This said, the way in which Cl together with C2 1 a, ’( i a allows us to code the

essential information about o&#x26; is in direct analogy to the way in which, in L, C ~ is the

result of a series of «foldings» of E0-elementary substructures of  Jp, ,A &#x3E; onto elements

of J . Similarly, given a E I embedding from some C, c &#x3E; into :11 a , ("a&#x3E;
we can «unfold» this embedding - extend it to embedding between  I , A &#x3E; ,I P I

as given by the fine structure for ’d , and  J p , A&#x3E; , in exactly the way we obtain B’

from X - as the direct limit of a system of other embeddings - which we know in advance

will be well-founded. As a consequence, we obtain that, in L under the above circumstances

This is too much to hope for, in the general setting ; all we can do is formulate a strengthening
of 0 w to to include considerations along the lines of (H)w . The work involved in121

establishing all of the above in L is central to the proof that in L there exist gap-one morasses

at all regular cardinals. ,

In the absence of some sort of structure resembling a 0 w 3 -sequence we do 
not have
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any precise sense in which we intend the 0 w 2 -sequence to be «analogous to the fine

structure theory» - we are guided however, by the knowledge of the intimate connection in L
between the ofine structure» and the 0-sequences constructed there.

In fact, this last is our very motivation for formulating principles like "3 w 1 ~ 2 
, and

constructing oouter models» in which morasses exist. What does it mean, in general, for a
model of set theory to have a ofine-structure», or, as we have come to say, an o L-like s structure ?
Can we make such a notion precise ? Aside from the Condensation Lemma, which is, .
essentially a consequence of the minimality of L, the main feature of L is its uniformity - as many
have remarked.

Is there a useful notion of uniformity of a model of set theory, in general ? A reasonable
first approximation to such a notion is that to a very strong extent, the structure of sets of relatively
high rank should be tied to the structure of sets of relatively low rank. A way of making this idea

precise, in turn, is to require that for a wide class of embeddings, we can extend these

embeddings to embeddings between larger models - perhaps even of embeddings of other
universe» into itself. It is striking that in Jensen’s recent work, the crucial lemmas are
assertions of this form ; it is exactly in the proofs of these lemmas that the ideas and techniques
related to the theory of the fine structure of L play a central role ! I

We propose a program to investigate further these ideas. As a first step, in our thesis,
we were guided by the intuition that the existence of higher gap morasses is a candidate for a
least a partial notion of an L-like structure of a model of set-theory. For us, the true significance
of our thesis is that, to the extent that the existence of higher-gap morasses is valuable as a

candidate for such a notion, we have partially suceeded in imposing, from
the outside , an L-like structure on a model of set theory. The results of THEOREMS I and 2
indicate that we can do so without drastically altering the ground model, and that, for skeptics,
the resulting model, even from a pragmatic point of view has many points in common with I,.

We close by presenting the set of conditions for proving the relative consistency 2

by forcing. We indicate the essential properties of the set of conditions. We assume
N 

.

Y is a closed subset of 

dom a is a closed subset of w 2 , card(dom ~ 
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We then require that properties

hold, everywhere writing c 1 for C 1,

is amenable,

v is p.r. closed, and that for all

a’ E dom u - a , there is v’

u is device for designed to guarantee that we can

continually make ppties @ and vi true.

y an end-extension of y’, dom u an end-extension of dom u’.

THEOREM : P =  P, ~ &#x3E; is ( wI’ (0) distributive and has 


