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THE MODEL-COMPLETION OF STONE ALGEBRAS

Peter H. SCHMITT

Simon Fraser University, Canada

INTRODUCTION

The notion of model-completion was introduced and studied by A. Robinson in [ 5 ] ,
It leads to a general theory of «algebraically closed» structures. The model-completion of the

theory of fields is the theory of algebraically closed fields and the theory of real closed fields
is the model-completion of the theory of ordered fields. The model-completion of a theory
need not exist but if it does it is unique. It is known that the model-completion of the theory
of Boolean algebras is the theory of atomfree Boolean algebras. The model-completion of the

theory of distributive lattices without endpoints is the theory of relatively-complemented
distributive dense lattices without endpoints. These results are commonly known. In this

paper the model-completion of the theory of Stone algebras is determined. Furthermore this

theory is proved to be complete, substructure complete and R - categorical.
This paper is part of the author’s Doctoral Dissertation submitted to University of

Heidelberg, Fed. Rep. of Germany in spring 1975. This work was partially supported by
a GraFoeG-grant.

I would like to offer my sincere thanks to G.H. Mueller and U. Felgner for much

encouragement and assistance. I also wish to acknowledge helpful remarks by
V. Weisspfenning.
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§ 1. MODEL THEORETICAL PRELIMINARIES

We assume familiarity with the basic concepts of model theory. We use capital Gothic
letters 91,’, ... to range over models; the corresponding capital Latin letters A, B ...

always denote the corresponding universe. If 9y is a substructure of T and

a e Bthen 9Y (a) denotes the substructure of B generated by A u {a}. XY is the set
of all functions from X into Y and card A stands for the cardinality of A.

1.1. DEFINITION : A structure IT is called N0-homogeneous if for any two finitely generated
substructures 13 l’ B 2 of c,J any isomorphism f from ft 1 onto B 2 and any a e A
there is b f A such that f can be extended to an isomorphism f from B 1(a) onto B 2(b).

We shall employ the following two well-known theorems on N o-homogeneous
structures.

1.2. THEOREM : Any two countable N o-homogeneous structures having upto isomorphism
the same finitely generated substructures are isomorphic.
1.3. THEOREM : If 9T is a countable N o-homogeneous structure then every isomorphism
between two finitely generated substructures of U can be extended to an automorphism of 9T

For proofs of these theorems see [ 6 ] lemma 20.1 and 20.4.

1.4. DEFINITION : A theory T is called substructure complete if for any two models 9’ i, 91 2
of T and any common substructure " holds ( ( il 2,b)b E B’

1.5. DEFINITION : A theory T* is the model-completion of a theory T if

(i) T*

(ii) every model of T*can be embedded into a model of T*

(iii) for any two models it i, tJ 2 of T * and any common substructure f, which is

a model of T holds

These two definitions are related to the concept of Ro-homogeneity by the following theorems.

1.6. THEOREM : Let T be a complete theory having only N0-homogeneous models then T is
substructure complete.
PROOF : In showing that T satisfies the requirements of definition 1.4. we may w.l.o.g. assume
that tT l’ 91 2 are countable models of T with # as a finitely generated common substructure.

Since T is complete there are a countable model IS of T and elementary embeddings gi from

91 i into ’C-z Since 6 is N0-homogeneous by assumption the mapping g2gi1 restricted to2 1

g1(B) can by theorem 1.3. be extended to an automorphism of S. Thus
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Since gi is elementary this implies

We note the following converse of theorem 1.6.

1.7. THEOREM : If T is N -categorical and substructure complete then T has only

No-homogeneous models. 
0

PROOF : Let 9T be a model of T. Since T is N0-categorical 21 is locally finite. Let

IF ..., an-I} , ~ 2 = (bO’ ..., bn-l} be substructures of ’41 f an isomorphism
between 1 and " 2 such that f(ai) = bi. Substructure completeness yields

Let an be an arbitrary element of A. Since T is N o-categorical there is a formula L (vo, ..., Vn)
generating the type realized by  ao, ..., an &#x3E; in VI . Now using (1) we find bn e A

,satisfying 11 p w [ bo, ..., bn I . Thus aO’ ..., an:&#x3E; and ..., bn&#x3E; realize

the same type in 9J which implies that f can be extended to an isomorphism from

2(bn)-

§ 2. ALGEBRAIC PRELIMINARIES

We briefly review the theory of Stone algebras as far as needed in the sequel. A thorough
treatment may be found in [ 2 ] .

2.1. DEFINITION : A structure ;I =  A, n , u , * , 0, 1 &#x3E; is called a pseudo complemented distri-
butive lattice if  A, n , u , 0, 1 &#x3E; is a distributive lattice with least and greatest element 

’

and the one-place operation * satisfies the following axioms

A pseudo complemented distributive lattice is a Stone a ebra if in addition holds

(SL3) a * u a** = 1

We denote the theory of Stone algebras by STA.
There are two interesting substructures of a Stone algebra 91 .

The skeleto n of 9T = Sk( 1,1 ) = ( a e A ~ a~~ - a)=(a*)a e A ~ .
Sk( ~1 ) -  Sk( M ), n , u , * , 0, 1 &#x3E; is a Boolean algebra.

The set of dense I a* = 0).
D( ?I ) =  D(9! ), n , u , 1 &#x3E; is a distributive lattice with greatest element. Both

substructures are linked together by the structure map which is a homomorphism from
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Sk( 9J ) into the lattice of filters over D ( 9f) preserving 0 and 1 defined by

all (a) = [x E 

U is upto isomorphism uniquely determined by the tripel  Sk( II), D( ~t ), 

Let * be an arbitrary Boolean algebra, D a distributive lattice with 1 and a a homo-

morphism from 18 into F(!t ), the lattice of filters over X , preserving 0 and 1. For any
b E B we have o (b) u o(b*) = D. Thus there are for any x E D uniquely determined
elements xl, x2 such that x I e o (b), x2 E a (b* )

x - xl n x2

We use the notation p b(x), x2 = P b * (x).

On the set of pairs A = (~x,b&#x3E; ! I b E B, x e Q (b} ~ we define a partial order by

A,  &#x3E; induces a Stone algebra U. We furthermore have
I - --

In the following we identify any Stone algebra 91 with the algebra given by
Sk( ~), D( U ), a&#x3E; . We shall tacitly use the following rules of computation.

2.2. LEMMA :

We conclude with two lemmas characterizing isomorphisms and subalgebras in terms of the

corresponding tripels. The proofs may be found in [ 1 ].

2.3. LEMMA : Suppose are Stone algebras given by the tripels  * 1, I) 
i , 

(i) Let F be an isomorphism from U 1 onto 2 then there are isomorphisms
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(ii) If D1 -&#x3E;D2, f 2 ’ --+!2 are isomorphisms satisfying (B) then

( a ) defines an isomorphism from U 1 onto U 2.
(iii) Condition (o ) is equivalent to

2.4. LEMMA : Notation as in lemma 2.3.

(ii) If ( a) to ( y) hold then V 1 c; 91 2
(iii) Condition ( 7 ) is equivalent to

At some point in § 3 we shall make use of the following representation theorem

2.5. THEOREM : Every Stone algebra is a subdirect product of the three-element Stone algebra
(where A3 = { 0, e ,1 } such that 0  e  1 and 0 ~ - 1 , e * = 1 ~ = 0).

PROOF : see [ 3 ].

§ 3. NO-HOMOGENEOUS STONE ALGEBRAS

Before we state and prove the main theorem we dispose of some trivial exeptions. A Stone

algebra 91 is called trivial if card D ( 9’) = 1 or card 4.

The proofs of the following statements are easy or variations of arguments used in the
proof of the main theorem, so we omit them.

3.1. THEOREM : Let U be a Stone algebra.
(i) If card D( tl = 1 then Sk( 9J) ~ ’t and the problem is reduced to Boolean

algebras.
A Boolean algebra is N0-homogeneous iff it has at most 4 elements or is atomfree.

(ii) If card Sk( 9T):;: 2 then

U is N0-homogeneous iff D(U) is N0-homogeneous
iff D( 91 ) is relatively complemented, without antiatoms
and without least element

(iii) If card S( 9T = 4 then
en is N o-homogeneous iff D( = 1.
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3.2. MAIN THEOREM : Let 91 be a nontrivial Stone algebra.
81 is 4 o-homogeneous iff the following conditions hold

(PI) Sk( 19 ) is atomfree

(PII) is relatively complemented distributive lattice without antiatoms and without
least element

(PIII) For all b e Sk( 91 ), b ¡. 0, a (b) has no least element

We first prove necessity of the conditions PI to PIV.

3.3. LEMMA : Suppose U is an B’ o-homogeneous Stone algebra. bl, b2 E ),

bl n b2 = 0 and b1, b2 =/ 0,1.

Then there is an automorphism g of D( 9! ) such that

PROOF : Consider the subalgebra R I c 9T generated by

«l,by’&#x3E; ,  l,b 1* &#x3E; , i,b 2 &#x3E; , 1,b*2 &#x3E; It is easily checked that there is an( - 

embedding F from tT 1 into 91 taking  l,b2 &#x3E; to 1,b1&#x3E;. By N 0-homogencity F

can be extended to an automorphism F = g,f &#x3E; of 9T . Now lemma 2.3. yields

a (bl) = a (f(b2)) _ ( g(x) I x e a (b2)} and g is an automorphism of ).

3.4. COROLLARY : If qy is a nontrivial N0-homogeneous Stone algebra then a 91 is an

embedding.
PROOF : It suffices to show that for b b/ 0 implies a (b) ¡. Assume

b ~ 0 and o (b) = {1~ . This implies o (b ~ ) = ).

By lemma 3.3. a (b) and a (b *) have the same cardinality contradicting the assumption
card D(9’ ) &#x3E; 1.

3.5. COROLLARY : If 91 is a nontrivial eo-homogeneous Stone algebra then (PIV) holds.

PROOF : Let x, y be elements of D(91) satisfying x u y = 1. Since card Sk( 91 &#x3E; 4 we find

a e 0  a  1.

By corollary 3.4. this implies : { 1 ~  a(a)  D( ~. )
This enables us to choose u f a(a), v e o(a ~ ) such that
u = 1 iff x = 1

v = 1 iff y = 1

In any case u u ve(7(a)na(a*)= (l) yields u u v = 1.

Denote by Bg the sublattice of 5l generated by [ x,y ~. Denote by 1) 1 the sublattice of ~

generated by (u,v) . Obviously there is an isomorphism f 1 from Zo onto D1 such that
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Define the subalgebras 91 j of 9’ for j - 0,1 by

The mapping F =  f2 &#x3E; , where f2 is the identity map on [ 0,1) = is an

isomorphism from U0 onto 91 1.
N0-homogeneity of 81 provides us with an automorphism F =  f l, f2 &#x3E; of V

extending F. Let c be the pre-image of a under f 2, i.e. f 2(c) = a.

implies
x E a (c) and y e a (c*)

proving PIV. 
’

Conditions PI to PIII are derived in quite the same way so we omit the details.
It is easily seen that the class of all Stone algebras satisfying PI to PIV is a finitely

axiometized elementary class, we denote its theory by STA~. We proceed to show that every
model of STA* is N o-homogeneous. We start with the following simple though very useful
lemma.

3.6. LEMMA : Let ?I be an arbitrary Stone algebra x,y e D(21), x  y  1 and a E Sk(91
Assume that the relative complement of y in [ x,l ] exists and denote it by y’. Assume further
that the relative complement of P a(y) in [ p a(x), 1 ] exists and denote it likewise by

( p a(y))’. Then holds

pa(Y’) = (p a(y»’ U Pa()°
PROOF : y’ n y = x and y’ u y = 1 implies p a(y’) n P a(y) = P a(x) and Pa(y) = 1,
i.e. P a(y’) is the relative complement of P a(y) with respect to [ p a(x),1 ] . It is easily
checked that also ( p a(y))’ u P a(x) is a relative complement of p a(y) with respect to

[ p a(x),1 ] . Uniqueness of relative complements in distributive lattices yields the claim.

We still need one preparatory lemma.

3.7. LEMMA : Let 9T be a model of STA*. Then holds

(PV) 0 If is an embedding
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then there is c E Sk( ~~ ) such that 0  c  b

PROOF : (PV) follows easily from (PIII).
Iri proving (PVI) we distinguish the following three cases
case I : x = y = 1

Use (PI) to find c e such that 0  c  b

case 2 : x X 1, y X 1 .

Using (PIV) we obtain CQ e such that x E a (co), y e o (c* ). Defining0

c = c 
0 

n b we obviously get x e o(c) and y E a (c 0 c-7 0 (c*). c = 0 would implyo 0

x e o(0)=i.l) ; c = b would imply b* &#x3E; c 0 * thus y E o (b n b*) = { 1 } . Both are

contradictory to our assumptions. So 0  c  b holds.

case 3 : x X 1, y = 1

By (PIII) there is z E o(b), z  x. By (PII) there is 7 E D(91 ) satisfying z = x n y
and 1 = x u y. Note that y X 1 and y e a(b). Using case 2 we obtain c e 

0cb,xe a (c), y e a (c*).
Since y = lea (c*) trivially holds we have proved (PVI). ,

To prove (PVII) let ..., zn-I e a (b) be given satisfying the assumptions. By PII it is

possible to choose ui e D(’"y ) such that for all i  n : zi  ui  1.

By wi we denote the relative complement of ui with respect to [ zi ,1 ] which exists

by PII :

Using distributivity we obtain the following equation

Observing that

we conclude

Since a (b) is a filter we still have x n xo , y n yo E a (b).
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By (PVI) we obtain c e Sk(91) satisfying

and

This implies

again exploiting the filter property of a (c), resp. a (c*).
This yields : zi 0 Q(c), zi e Q (c~) for all i  n.

Since from zi e a (c) would follow wi e a (c) and a(c) n Q (c’~) _ ~ 1 ~

i.e. wi = 1 contradicting the choice of ui. Also zi e a (x*) would entail in the same way

zi = 1 again contrary to assumption.
This completes the proof of lemma 3.7.

For the rest of this paragraph 9T = 18, :t, a &#x3E; will denote a model of ST A *. It is our

goal to show that 91 is No-homogeneous. To this end we consider two finite subalgebras

ig 
D 

i, Q i &#x3E;, i = 1,2 and an isomorphism F :  fl’ f2 &#x3E; from U1 onto

9J ~. Let  x,a &#x3E; be an arbitrary element of A. ii 1;:  ë 1 ’ % 1 , o ~ &#x3E; denotes the

subalgebra of 91 generated byAu (x,a&#x3E;).
Problem : Extend F to an embedding F = ~’ f 1, f 2 &#x3E; from i 1 into 91 .
We shall proceed in the following steps ,

Step 1 Form the closure of Z under complements

Step 4 x,a &#x3E; arbitrary
If steps 2 and 3 will be accomplished, step 4 is trivial because x,~ x,l&#x3E;n I,a &#x3E; ,

STEP 1

Let doi denote the least element of Z i. For x e Dig doi -’ x ~ 1, x’ denotes the
relative complement of x with respect to 

defines a sublattice, of % closed under ’ I

and containing D i . Set i7 1(a)= a (a) n D1 for a e B~. We claim that

~ 1 ~ ° 1 ~ is a subalgebra of V - According to lemma 2.4. we have to 

for all y E Djandaffbe B, To begin with take z e DI.Bylemma3.6.we
have Pa(z’) = ( pa(z))’ u Since by assumption p a(z), p ~1 and D i is
closed under ’ we obtain p a(z’) c D i .

For arbitrary y= U ( xi n z’i) I i n) e D 1 we have
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Now we want to extend F=  fi , f 2 &#x3E; to an embedding F from 91 1 into 91 .

It is routine to check that there is an embedding f 1 from D 1 extending f 1 and satisfying

In order to show that F = fi , f &#x3E; is an embedding from I into 4!1 we need by lemma 2.3.

only to know that for all a e Y e p = holds. This is easily
checked using lemma 2.2. and 3.6.

STEP 2

I 

We adopt the following notation

D i = ( do, ..., and agree that

B1 = {b0,...,bk-l}
For « e k2 we use the abbreviation b

where Ob = b and 1 b = b*

Similarly for 1" ê r2

where Od = d and Id = d’ and d’ is the relative complement of d in .

Furthermore p stands for pbII. "1r 1r

It is checked by straightforward computation that the following holds

x is an arbitrary element of D. We may restrict to the case x E a (b ) for some 7r E k2’ *

If we have solved this restricted problem we might take up the general case by extending D1

successively to 5l 1 such that ( p 7r (x) ) I ~r E k2 ~ ~ D l, since p~ (x) e ).

Noticing that x 11t e k2 )holds we will have finished.
So we assume that x e a (b 1T o ) holds for some e k2. Let D 1 be the sublattice of D0 "

generated by D1 u (x) . Since for all b e Bl either P b (x) = x or p b(x) = 1 holds

l, substructure of 2l (of course Q 1(a) = a (a) n D 1).
We shall distinguish the following three cases
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Case 2.I. -

Case 2.2. 

Case 2.3. neither of the above

After case 2.1. and 2.2 have been accomplished case 2.3. will follow trivially : we first extend
to contain x n do using case 2.2. Now x n d 0  x and case 2.1,, applies.

CASE 2.1. : Using step 1 we may suppose without loss pf generality that 2) 1 is closed under

complements. The embedding f 1 preserves complements in the sense that X’ is mapped on the
relative complement of with respect to I which we also denote by 
We shall make use of the following
3.9. CRITERION : There exists an embedding F : 91 extending F iff for every T e T2

there is yT E D such that the following four conditions are satisfied :

PROOF OF 3.9. : Necessity is clear by taking yT = d ).
To prove suffiency set y * n{ YT I T e r2}. Now 3.9.0 to 3.9.2 imply (using 3.Q)

By a well-known theorem on extending isomorphisms between Boolean algebras (see e,g. ~ [ 7 1

p. 37) applied to Z I and the interval [ do, 11 ] there is an embedding f 1 from D1 intq %’
extending f i such that 71 (X) = y. It remains to show f2 &#x3E; is an embedding from

2t 1 into 91 .

First we note that for all b e B~ and x c D i holds

For either holds. In the first case
&#x3E;

In the second case
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Using 3.9.3. this yields (YT I T c ~2)
This completes the proof of 3.10.

Every y e D 1 can be represented in the form
I I . -

This completes the proof of 3.9.

Now let T e r2 be given. We shall find yz satisfying 3.9.0 to 3.9.3.
In the trivial cases d~ u x = 1 and d-r u x’ = 1 we choose y = = 

respectively.
So we arrive at the non-trivial case : d   d  u x  1.

We claim that this implies

This can be seen as follows. x e a(b7T ) yields for all 7T e k2,
o

If contrary to 3.11 (d 
1 

u x) = 1 would also be true, we obtained

From 3.11 and p 7r (d ) pII (d1: u x) now follows :
o

Using the assumption on 9 f 2 &#x3E; we infer :

By (PII) and the fact that a a filter on ~ we may choose y T E Q (f 2(b’IT o)) such that :

This implies :

and satisfies 3.9.0 to 3.9.3.

This completes case 2.1.
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CASE 2.2. : 

In this case we have D 1 = D I u { x ~. Since a (f 2(b ~. 0 )) contains by (PIII) no least element,
we may choose y e 0 )) such that y  
The mapping f 1 defined by

is certainly an embedding from i) 1 into X -
Furthermore holds 

I

This shows that  f l, f 2 &#x3E; : if 1 20132013~ ~f is an embedding.
This completes step 2.

STEP 3 : Let ië 1 be the subalgebra of T generated by Bl u ( a). be the 

of Z generated by D 1 u { Pa(x) I x E D  ) u p a*(x) I x e D~).
Finally = a (a) n D i . It is not hard to see that R11 = ~ ~ ~, Z 1 , 6 ~ &#x3E;
is a subalgebra of !1.

Denote by d 0 the least element of Z 1. Obviously d 0 is also the least element of 3? i, ,
For x ~ 1, x’ denotes the relative complement of x with respect tq 1 ] ,

Step 1 allows us to assume w.l.o.g. that 2 1 is closed under ’.

We begin with three easy observations.

The right hand side of 3.12 contains

D 1 U i P a(x) (x)! I x e and is closed under n and u .

This is clear for n . For u we obtain
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3.13. : For all x e Dl: [pa(x)]’ _ x’ n 

This is checked by direct computation.
3.14. : D 1 is closed under complements.

Using 3.12 and 3.13 we obtain :

By assumption the last term is an element of D I*
3.15. CRITERION : The embedding can be extended to an embedding
F : ëiT 1 iff there is c e B satisfying

PROOF OF 3.15 : To prove necessity take c = f2(a). On the other hand conditions 3.15.1/ 2

ensure the existence of an embedding f 2 from B1 into ? extending f 2 such that f 2(a) = c

(see [7 ] p. 37).

We assert that f 1 is.an embedding from i 1 into Z . To this end we have to verifv that

p.(x) n p a .(z) = pa(u) n p a~(v) is equivalent to the conjunction of the following two

equations :

We continue with a list of equivalent rearrangements of the first of these two equations.
Using 3.13. yields

Employing the fact that

we obtain

Bringing the right hand side into disjunctive normal form shows that this equation is
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equivalent to the conjunction of the following eight equations :

Let (Fn) stand for the equation obtained from (En) by replacing x, u, u’ ... by
f1(x), f 1 (u), (f 1 (u))’ ... and P a, by p c’ p. respectively.a c .

We claim that for all 1 8 (Fn) is equivalent to (En).
Except for n = 2,7 this is trivial.

The case n = 7 is proved similarly now using (3.15.3).
Performing the same rearrangements as we did above in the reverse direction we see that the

system of equations (Fl) - (F8) is equivalent to

is equivalent to

This proves 3.16.

It remains to show that  f l, f 2 &#x3E; is an embedding from 21 1 into U .



150

This completes the proof of 3.15.

Enumerate BI = (bog ..., For T E k2 b T is defined as in step 2.

3.17. CRITERION : F can be extended to an embedding F from U1 into ti iff for every

T E k2 there is c i e B such that

PROOF OF 3.17. : To prove necessity take c . 
= 72(b L n a).

Now assume c~ exists for every T e k2 satisfying (3.17.0) - (3.17.4).

Set c = U (c T z e k2 ) . We shall show that c satisfies (3.15.1) - (a.15.4).

(3.15.2) is proved analogously.

(3.15.3) Since E k2 } - D I there are for each y E D1 uniquely determined

which in turn yields

This proves one part of 3.15.3

This proves the other part of (3.15.3).
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(3.15.4) Take an arbitrary y E DIe Let y T be as above.

Notice that for. 1 1.2 y i E o (b ~ ) ~ Q (b i ) holds. Thus

So we obtain

Now assume fl(y) E a (c*). This implies

This completes the proof of 3.17.
We now show that the axioms (PI) - (PIV) suffice to find the elements cz E B required in (3.17).

Take an arbitrary i E k2. We first dispose of the trivial cases.
If bT = 0 or a n b T = 0, we choose c T = 0 and (3.17.0) - (3.17.4) are trivially satisfied.

If b z n a* = 0 we choose cT = f2(br ) and are through again.
So we are left with the only non-trivial case : 0  a n bz  b’t .

We enumerate a i(br ) = {y0, "’, we agree that YO is the least element of °1 (b 1" ).

For II e r2 define y = U ( 7r O)yj I j  r ) as we have done in step 2." J

Furthermore Xi = for i = 1,2,3.

By property P VI there is c-r e that
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This implies immediately conditions (3.17.0) - (3.17.2) and for all 71 E r2

Since every Yj E can be represented as

and for any b e B holds

we infer that also (3.17.3) - (3.17.4) hold.

This completes step 3 and we proved the main theorem.

3.8. EXAMPLE : We shall explicitely construct a countable model of srr /B *.
We consider subsystems of the power set algebra Q (the (artesian product of the

set of rational numbers with itself).

Let 18 0 be the Boolean subalgebra generated by all suhsets of the form (a.h 1 Y, [

where (a,b ] _ ~ x c and a,b,c,d E ° is an atomfree
countable Boolean algebra.
A subset X 9 Q x Q is called thick if there are n E pi, qi E Q such that the complement

The thick subsets form a distributive lattice denoted is relatively complex
mented without antiatoms and without least element.

Forb E Bodefine e D~ ~ x ~ b~ ~ then (7 ) is a Stone

algebra satisfying (PI), (PII). To prove (PIII) let b e Bo and x E 1)« be surh that x -~ h~.

Let the set theoretical complement of x bcu (( c i I i ~ n ~ a n d , 

i i 
such that i X k implies boi n blk There is such that llpo ly (,,o bo. .1 ",, 
Since b Oi is infinite there is pn E bOj’ Pn 0 [PO, ..., Define to be the

complement of i -nl then y E D0 and x y b’*.

To prove (PIV) let x, y be set theoretical complements of elements in 1)~ such n y 
-. fi .

We have to find an element b e Bo satisfying x r b and b*. Taking complements we then
arrive at (PIV).
We may represent x . y in the following way

_ , , ..
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where i =/ j implies Pi I p.. For every i k there is an interval hi r Q satisfyingJ -

3.19. THEOREM : (i) STA* is N0-categorical
(ii) STA* is complete
(iii) STA* is substructure complete 

’

(iv) STA* is the model completion of STA.

PROOF :

(i) Let 9T 1, en 2 be two countable models of STA*. We shall show that I Ct, 2 have

upto isomorphism the same finite substructures. Theorem 8.2. and 1.2 will then

yield 191 aff qj 2-
Let G =  B , J, or &#x3E; be a finite substructure of 9111 We may w.l.o.g. suppose that
is in fact a Boolean lattice. Since D( ~1 2) is relatively complemented without antiatoms

we find an embedding f 1 from into D(" 2). Now id &#x3E; is an embedding

from  ~0,1 ~ , ~ , Q ~ into ~12 which using the methods employed in step ;3 of the

proof of theorem 3.2. can be extended to an embedding F from " into ~"2’
(ii) Follows from (i) by Vaught’s test.

(iii) Follows immediately from theorem 1.6. (ii), and theorem :-1.2.

(iv) Since STA T STA* holds and STA* is substructure complete it remains to show that

every model of STA can be embedded into a model of ST,I*. If 9T is a model of ST ~

we shall construct an increasing sequence ( w of models of STA such that

U c B0 and
if n * 0 (mod 3) then is atomfree and has no antiatoms and no

least element ’

if n E 1 (mod 3) then Tn satisfies axiom (PIII)
if n E 2 (mod 3) then * n satisfies axiom (PIV) and D( 1IB n) is relatively complemented.

Let * be the union of ( w - Since the axioms (PI) to (PIV) arc ’*’ ’4 sentences and STA

is even an equational theory B will be a model of STA* extending STA.
If n = 0 (mod 3) take 11, n to be the free product of 1 n-1 w -times with itself.

(see [ 2 ], section 17, [ 4 ] ).
For the next two constructions we shall use theorem 2.5. Assume n 5 1 (mod B) and

"n-i " " I 3 Take J = I x 4) x Q and let ~ 0, ~ 0 be as in example 3.18.
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The mapping F from into UJ3 defined by F(f) (i,p,q) = f(i) is an embedding.

Consider the set C= {g c A 3 I Vi e I( {p,q&#x3E; c 1 e Do &#x26;

tP~&#x3E;) I 0 ) e It is easily seen that C is the universe of a subalgebra

G c 3 and F( n-1) C; (r. Using the same argument as in example 3.18. one shows
satisfies axiom (Plll).

If n ae 2 (mod 3) U I 3 take t n = I 3 . Then IF n is obviously
relatively complemented and if f, g e D(tB n) are given satisfying f u g 

= 1 define h by

Then h E Sk( san) and h  f , h* c;; g. Thus f8 n satisfies axiom (PIV).
This completes the proof of theorem 3.19.
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