ANNALES SCIENTIFIQUES DE L'UNIVERSITÉ DE CLERMONT-FERRAND 2 Série Mathématiques

Matatyahu Rubin

The theory of boolean algebras with a distinguished subalgebra is undecidable

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 60, série Mathématiques, n 13 (1976), p. 129-134
http://www.numdam.org/item?id=ASCFM_1976__60_13_129_0

L'accès aux archives de la revue «Annales scientifiques de l'Université de ClermontFerrand $2 »$ implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE THEORY OF BOOLEAN ALGEBRAS WITH A DISTINGUISHED SUBALGEBRA IS UNDECIDABLE

Matatyahu RUBIN*
The Hebrew University, JERUSALEM, Israel

§ 0. INTRODUCTION

We prove the following theorems :
Theorem $1^{* *}$ Let T_{1} and T_{2} be theories in the language $L=\{U, \cap,-, 0,1\}$ such that there are infinite Boolean algebras (hereafter denoted by BA) B_{1}, B_{2} such that $B_{i} \vDash T_{i}$ $i=1,2$, let P be a unary predicate and $S=T_{1} \cup T_{2}(P)$, where $T_{2}^{(P)}$ is the relativization of T_{2} to P , then S is undecidable.

Theorem 2: The theory of 1-dimensional cylindric algebras (denoted by CA_{1}) is undecidable. Theorems 1 and 2 answer a question of Henkin and Monk in [2] Problem 7 ; there they also point out that the decidability problems of theorems 1 and 2 are closely related, this relation is formulated in the following proposition :
Proposition : (a) Let $<B, c>$ be a CA 1 where B is a $B A$ and c a unary operation on B then $A=\{b \mid b \in B$ and $c(b)=b\}$ is a subalgebra of B, and for every $b \in B \quad c(b)$ is the minimum of the set $\{a \mid b \subseteq a \in A\}$.
(b) Let B be a BA and A be a subalgebra of B suppose that for every
$b \in B a_{b}=\min (\{a \mid b \subseteq a \in A\})$ exists; define $c(b)=a_{b}$, then $\langle B, c>$ is $a C A 1$.
Let T_{C} be the theory of CA_{1} 's and T_{B} be the theory of BA's with a distinguished subalgebra P, with the additional axiom that for every b there is a minimal a_{b} such that $\mathrm{P}\left(\mathrm{a}_{\mathrm{b}}\right)$ and $\mathrm{b} \subseteq \mathrm{a}_{\mathrm{b}}$, then certainly T_{C} and T_{B} are bi-interpretable.

* This paper is part of the author's doctoral dissertation prepared at the Hebrew University under the supervision of Professor Saharon Shelah.
** R. McKenzie proved independently at about the same time, that the theory of Boolean algebras with a distinguished subalgebra is undecidable. The method of his proof is different from ours.

The classical result about the decidability of the theory of BA's appears in Tarski's [5], and in Ershov [1]. Ershov in [1] also proved that the theory of BA's with a distinguished maximal ideal is decidable, Rabin [4] proved the decidability of the theory of countable BA's with quantification over ideals.

Henkin proved that the equational theory of CA_{2} 's is decidable and Tarski proved the undecidability of the equational theory of CA_{n} 's for $\mathrm{n} \geqslant 4$.

In our construction we interpret the theory of two equivalence relations in a model $<\mathrm{B}, \mathrm{U}, \mathrm{\cap},-, 0,1, \mathrm{~A}>$ but neither B nor A are complete BA's. We do not know the answer to the following question :

Let $K=\{<B, U, \cap,-0,1, A>\mid B$ is a $B A, A$ is a subalgebra of B, A and B are complete\} is $\operatorname{Th}(\mathrm{K})$ decidable?

We also do not know whether an analogue of theorem 1 for T_{B} holds. For instance let S be T_{B} together with the axioms that say that both the universe and P are atomic $B \Lambda$'s is S decidable ?

§ 1. THE CONSTRUCTION

$U, \cap,-, 0,1$ denote the operations and constants of a $B A$ and \subseteq denotes its partial order. A, B, C denote $B A ' s ; A t(B), A \ell(B), A s(B)$ denote the set of atoms of B, the set of non-zero, non-maximal atomless elements of B and the set of non zero, non-maximal atomic elements of B respectively. Let $I(B)$ be the ideal generated by $A l(B) \cup A s(B)$, $B^{(1)}=B / I(B)$ and if $b \in B b^{(l)}=b / I(B)$. If $D \subseteq B \quad c \ell(D)$ denotes the subalgebra of B generated by $D . B \times C$ denotes the direct product of B and C. $j \underset{f}{\in}, B_{j}$ denotes the direct product of $\left\{B_{j} \mid j \in J\right\}$, and we assume that for every $j_{1} \neq j_{2} B_{j_{1}} \cap B_{j_{2}}=\{0\}$, so we can identify the element \mathbf{c} of $\mathrm{B}_{\mathrm{j}_{0}}$ with the element $\mathrm{f}_{\mathrm{c}} \in \underset{\mathrm{j}}{ }{\underset{\mathrm{G}}{\mathrm{J}}} \mathrm{B}_{\mathrm{j}}$ where $\mathrm{f}_{\mathbf{c}}(\mathrm{j})=0$ if $\mathrm{j} \neq \mathrm{j}_{0}$ and $\mathrm{f}_{\mathrm{c}}\left(\mathrm{j}_{0}\right)=\mathrm{c}$. We denote by l_{B} the maximal element of B .

Let B_{T} be the $B A$ of finite and cofinite subsets of ω and B_{L} the countable atomless BA. Let F_{1} be the non-principal ultrafilter of B_{T} and F_{2} be an ultrafilter in B_{1}; let B_{M} be the following subalgebra of $B_{T} \times B_{L}: B_{M}=\left\{(a, b) \mid a \in F_{1}\right.$ iff $\left.b \in F_{2}\right\}$; notice that $B_{M}^{(1)} \cong\{0,1\}$. For every i let $B_{i} \cong B_{M}, B^{>}=\prod_{i} B_{\omega} B_{i}$ and $B^{<}=c l(\bigcup_{i} \underbrace{}_{\omega} B_{i})$. We denote $\mathrm{l}_{\mathrm{B}_{\mathrm{i}}}$ by l_{i}.

Lemma 3 : Let E_{0} and E_{1} be equivalence relations on ω then there is a model $M=<B, U, \cap,-, 0,1, A>\vDash T_{B}$ such that $\left\langle\omega, E_{0}, E_{1}\right\rangle$ is explicitly interpretable in M.

Proof : We denote by $\mathrm{i} / \mathrm{E}_{\varepsilon}$ the E_{ε}-equivalence class of i and by $\omega / \mathrm{F}_{\varepsilon}$ the set of E_{ε}-equivalence classes. For every $\mathrm{i} \in \omega$ let

$$
\operatorname{At}\left(\mathbf{B}_{\mathbf{i}}\right) \text { such that } \operatorname{At}\left(\mathbf{B}_{\mathbf{i}}\right)=U\left\{\underset{\varepsilon, \sigma, \mathbf{j}}{-\mathbf{i}} \mid \varepsilon \in\{0,1\}, \sigma \in \omega / E{ }_{\varepsilon}, \mathbf{j} \in \omega\right\} \text { and }
$$

$$
\left|\stackrel{\overline{\mathrm{a}}}{\varepsilon, \sigma, \mathrm{j}}^{\mathrm{i}}\right|= \begin{cases}1 & \varepsilon=0 \\ \varepsilon=0 & \text { and } \mathrm{i} \in \sigma \\ 2 & \text { and } \mathrm{i} \notin \sigma \\ 3 & \varepsilon=1 \\ \varepsilon=1 & \text { and } \mathrm{i} \notin \sigma \\ & \text { and } \mathrm{i} \notin \sigma\end{cases}
$$

$$
\begin{aligned}
& \left\{\mathbf{b}_{\varepsilon, \sigma, j}^{\mathbf{i}} \mid \varepsilon \in\{0,1\}, \sigma \in \omega / \mathrm{E}_{\varepsilon}, \mathrm{j} \in \omega\right\} \subseteq \mathrm{A} \ell\left(\mathrm{~B}_{\mathbf{i}}\right) \text { be such that } \\
& \langle\varepsilon, \sigma, \mathbf{j}\rangle \neq\left\langle\varepsilon^{\prime}, \sigma^{\prime}, \mathbf{j}^{\prime}\right\rangle \Rightarrow \mathbf{b}_{\varepsilon, \sigma, \mathbf{j}}^{\mathbf{i}}{ }^{\cap} \mathbf{b}^{\mathbf{i}}, \sigma^{\prime}, \mathbf{j}^{\prime}=0 \text { and for every } \mathbf{b} \in \mathrm{A}_{\ell}\left(\mathrm{B}_{\mathbf{i}}\right) \\
& \mathrm{l} \leqslant\left|\left\{<\varepsilon, \sigma, \mathrm{j}>\mid \mathrm{b} \cap \mathbf{b}_{\varepsilon, \sigma, \mathrm{j}}^{\mathrm{i}} \neq 0\right\}\right|<\mathcal{N}_{\mathbf{0}} \text {. For every } \mathrm{i} \in \omega \text { let }
\end{aligned}
$$

For every ε, σ and j as above let $c_{\varepsilon, \sigma, j} \in B^{>}$be ${ }_{\varepsilon, \sigma_{, j}}=U\left\{b_{\varepsilon, \sigma, j}^{i} U \cup{\underset{\varepsilon}{\mathbf{a}}}_{\varepsilon, \sigma_{, j}}^{-i} \mid i \in \omega\right\}$ where $U D$ denotes the supremum of D in $B^{>}$. Let $A=c \ell\left(\left\{c_{\varepsilon, \sigma, j} \mid \varepsilon \in\{0,1\}, \sigma \in \omega / E_{\varepsilon}, j \in \omega\right\}, B=c \ell\left(B^{<} \cup A\right)\right.$ and $M=\langle B, U, \cap,-, 0,1, A\rangle$. We show that $M \vDash T_{B}$. It suffices to show that $a_{b}=\min (\{a \mid b \subseteq a \in A\})$ exists for elements $b \in B$ of the following forms : $b \in \operatorname{At}\left(B_{i}\right) \cup A \ell\left(B_{i}\right) ; b \in B_{i}$ and $b^{(1)}=1_{i}^{(1)} ; b \in B^{<}$and $1_{i} \subseteq b$ for almost all $i \in \omega$; this follows from the fact that every $b \in B$ can be represented in the form $\bigcup_{i=1}^{n}\left(b_{i} \cap a_{i}\right)$ where each b_{i} is of the above form and $a_{i} \in A$. In each of the above cases the existence of a_{b} is easily checked. Thus $M \models T_{B}$.

We now define formulas $\varphi_{\mathrm{U}}(\mathrm{x}), \quad \varphi_{\mathrm{Eq}}(\mathrm{x}, \mathrm{y}), \quad \varphi_{\varepsilon}(\mathrm{x}, \mathrm{y}) \varepsilon \in\{0, \mathrm{l}\} \quad$ such that $M \vDash \varphi_{U}[a]$ iff for some $i \in \omega a^{(1)}=1_{i}^{(1)}, M \vDash \varphi_{E q}[a, b] \quad$ iff $a^{(1)}=b^{(1)}$ and $M \models \varphi_{\varepsilon}\left[a_{1}, a_{2}\right]$ iff for some $i_{j} \in \omega \quad a_{j}^{(1)}=1_{i_{j}}^{(1)}$ and $\left\langle i_{1}, i_{2}>\in E_{\varepsilon}\right.$. $\varphi_{U}(x)$ says that $x^{(1)} \in \operatorname{At}\left(B^{(1)}\right)$ and for no $y \in \operatorname{At}(A) \quad x^{(1)}=y^{(1)}$. ${ }^{\varphi_{E q}}(x, y)$ says that $x^{(1)}=y^{(1)} \cdot \varphi_{0}(x, y)$ says : $\varphi_{U}(x) \wedge \varphi_{U}(y)$ and there are x_{1}, y_{1} such that $\mathrm{x}^{(1)}=\mathrm{x}_{1}^{(1)}, \mathrm{y}^{(1)}=\mathrm{y}_{1}^{(1)}$ and for every $\mathrm{z} \in \operatorname{At}(\mathrm{A})$

$$
\left|\left\{u \mid z \cap x_{1} \supseteq u \in \operatorname{At}(B)\right\}\right|=1 \text { iff }\left|\left\{u \mid z \cap y_{1} \supset u \in \operatorname{At}(B)\right\}\right|=1 . \infty_{1} \text { is }
$$ defined similarly. The desired properties of $\varphi_{\mathrm{U}}, \quad \varphi_{\mathrm{Eq}}$ and φ_{ε} are easily checked, and the lemma is proved.

Since the theory of two equivalence relations is undecidable T_{B} and T_{C} are undecidable and theorem 2 is proved.

Theorem 1 easily follows from the following lemma.
Lemma 4 : Let E_{1}, E_{2} be equivalence relations on ω then there are models
$M_{i}=\left\langle B_{i}, U, \cap,-, 0,1, A_{i}\right\rangle \quad i=1, \ldots, 4$ such that $\left\langle\omega, E_{1}, E_{2}\right\rangle \quad$ is explicitly interpretable in M_{i} and B_{1}, A_{1} are atomic, B_{2}, A_{2} are atomless, B_{3} is atomic A_{3} is atomless, and B_{4} is atomless A_{4} is atomic.

Proof : Let B_{0}, A_{0}, M_{0} denote B, A and M of lemma 3 respectively. For $i=1,2 \quad M_{i}$ can easily be constructed so that $\left.<B_{i} / H_{i}, U, \cap,-, 0,1, A_{i} / H_{i}\right\rangle \cong M_{0}$ where $H_{i}=\left\{b \mid b \in B_{i}\right.$ and for every $\left.a \leq b a \in A_{i}\right\}$. Since such an H_{i} is definable in $M_{i} M_{0}$ can be interpreted in $M_{i} \quad i=1,2$.

For $i=3$ a similar construction works. Let B be an atomic saturated countable BA and I a maximal non-principal ideal of B. Let A be an atomless subalgebra of B such that :
(a) for every $b \in B$ which contains infinitely many atoms there is a non-zero $a \in A$ such that $\mathrm{a} \subseteq \mathrm{b}$;
(b) for every $b \in A_{s}(B)$ there is an $a \in A$ such that $(a-b) \cup(b-a)$ contains only finitely many atoms of B. Let $J=I \cap A$. For every non-zero $a \in B_{0}$ let F_{a} be an ultrafilter in B which contains a, and $\left\langle B_{a}, A_{a}, I_{a}, J_{a}>a \operatorname{copy}\right.$ of $\left\langle B, A, I, J>\right.$. Let $B^{1}=\Pi\left\{B_{a} \mid 0 \neq a \in B_{0}\right\}$ and let B_{3} be the following subalgebra of B^{1} :
$B_{3}=c \ell\left(\cup\left\{I_{a} \mid 0 \neq a \in B_{0}\right\} \cup\left\{g_{a} \mid 0 \neq a \in B_{0}\right\}\right)$ where $g_{a}(b)=1_{B_{b}}$ iff $a \in F_{b}$ and $\mathrm{g}_{\mathbf{a}}(\mathrm{b})=0$ otherwise. Let $A_{3}=\mathrm{c} \ell\left(U\left\{\mathrm{~J}_{\mathrm{a}} \mid 0 \neq \mathrm{a} \in \mathrm{B}_{0}\right\} \cup\left\{\mathrm{g}_{\mathrm{a}} \mid \mathrm{a} \in \mathrm{A}_{0}\right\}\right)$.
Certainly B_{3} is atomic and A_{3} is atomless. Let $I=\left\{a| |\left\{b \mid a>b \in \operatorname{At}\left(B_{3}\right)\right\} \mid<\kappa_{0}\right\}$. I is an ideal in B_{3}, and I is definable in M_{3} by the formula $\omega(x) \equiv \forall y(0 \neq y \subseteq x \rightarrow \sim P(y))$. Let $B_{3}^{l}=B_{3} / I$ and $A_{3}^{1}=\left\{a / I \mid a \in A_{3}\right\}$, then $<B_{3}^{1}, U, \cap,-, 0,1, A_{3}^{l}>\cong M_{2}$, so M_{2} is interpretable in M_{3} and thus $<\omega, E_{1}, E_{2}>$ is interpretable in M_{3} as desired.

In order to construct M_{4} we assume that B_{1} is a subalgebra of $P(w)$ and $\operatorname{At}\left(B_{1}\right)=\{\{n\} \mid n \in \omega\}$. Let $B_{L}^{i} \simeq B_{L}$ for every $i \in \omega B_{4}$ is the following subalgebra of $i{\underset{E}{\omega}}^{B_{L}} \quad: B_{4}=c \ell\left(\cup_{i \in \omega}^{\cup} B_{L}^{i} L\left\{f_{a} \mid a \in B_{1}\right\}\right)$ where $f_{a}(n)=1_{B_{L}^{n}} \quad$ if $n \in a$ and $f_{a}(n)=0$ otherwise. Let $A_{4}=c \ell\left(\left\{f_{a} \mid a \in A_{1}\right\}\right)$ and $M_{4}=\left\langle B_{4}, U, \cap,-, 0,1, A_{4}\right\rangle$.

Certainly B_{4} is atomless and A_{4} is atomic. Let $B_{4}^{1}=\left\{b \mid \quad b \in B_{4}\right.$ and for every $\mathrm{a} \in \operatorname{At}\left(\mathrm{A}_{4}\right)$ either $\mathrm{b} \Rightarrow \mathrm{a}$ or $\left.\mathrm{b}=\mathrm{a}\right\}$, then $\left\langle\mathrm{B}_{4}^{1}, \cup, \cap,-, 0,1, \mathrm{~A}_{4}\right\rangle \cong \mathrm{M}_{1}$ and B_{4}^{1} is certainly definable in M_{4}, thus $<\omega, E_{1}, E_{2}>$ is definable in M_{4} and the lemma is proved.

We omit the proof of theorem 1 which follows easily from lemma 4 , the fact that every countable BA can be embedded in e.g. B_{L}, and from [6] pp. 293-302.

REFERENCES

[1] Yu. L. ERSHOV, Decidability of relatively complemented distributive lattices and the theory of filters, Algebra i. Logika Sem. 3 (1964), p. 5-12.
[2] L. HENKIN and J.D. MONK, Cylindric algebras and related structures, Proceedings of the Tarski Symposium, 1974, p. 105-121.
[3] L. HENKIN, J.D. MONK and A. TARSKI, Cylindric Algebras, North-Holland, 1971.
[4] M.O. RABIN, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969) 1-35.
[5] A. TARSKI, Arithmetical classes and types of Boolean algebras, Bull. Amer.
Math. Soc. 55 (1949), p. 64.
[6] C.C. CHANG and H.J. KEISLER, Model theory, North-Holland, 1973.

