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A SPECTRAL THEOREM FOR MATRICES

OVER FIELDS OF POWER SERIES

Hans A. Keller and Herminia Ochsenius A.

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.169-179

Abstract. Let K = I~’ = R((tl, ... , tm)) be a field of formal power series in one or
several variables with real coefficients. We prove that every symmetric square matrix
A E Matn(K) can be diagonalized by means of an orthogonal matrix U E Matn(K). Our
proof is based on a recursive construction and prepares the way for effectively computing
the transition matrix U (and therefore the eigenvalues of A and their multiplicities). The
result carries over to certain Henselian fields of power series in infinitely many variables.

1991 Mathematics subject classification: I~~I25, 15A99

Introduction. The most prominent result in the theory of real or complex matrices is
the Spectral Theorem which says that every symmetric [resp. hermitian] square matrix
can be put into diagonal form by means of an orthogonal [resp. a unitary] matrix. The far-
reaching applications of this result and its generalization to bounded linear operators on
infinite-dimensional Hilbert spaces have been intensively studied. However, little is known
about analogous decompositions of matrices with entries in more general fields. Diarra [2]
showed that symmetric matrices over fields of p-adic numbers cannot be diagonalized in
general. In turn, Adkins [1] proved a theorem on diagonalization of matrices with entries
in discrete hermitian rings.

In the present paper we consider fields ~i’ = R((tl, ... , tm)) of formal power series in
one or several variables with real coefficients. Our main result states that over these fields
K every symmetric matrix can be orthogonally diagonalized. We shall show that this
result even carries over to fields of generalized power series in infinitely many variables.

In the classical case of a real symmetrix matrix A the diagonalization is obtained
by computing the characteristic polynomial of A and using the fact that the quadratic
extension C = is algebraically closed. In the present case this way of reasoning
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fails. For, our fields K = R((tl, ... , tm)) are too far from being algebraically closed; in
fact these fields admit finite extensions of any degree. Our method of proof combines two
ideas and can be outlined as follows. First, write K = R((tl, ... , tm)) _ Ko((t)) where
t = tm and Ko = R((tl, ... , t,~_~ )). The field K = Ko((t)) is complete with respect to a
non-archimedian, discrete valuation. This allows us to represent a given symmetric matrix
A with entries in K as a convergent power series A = Ao + + A2 . t2 + ... with
coefficients Ak in a smaller matrix ring. Secondly, we shall set up a recursive construction
that produces an orthogonal transition matrix U = {/o + Ui . t + U2 . t2 + ... such that
UtrAU is decomposed into two blocks of smaller size. The proof is then finished by an
easy induction.

It is a remarkable feature of this proof that it does not involve the spectrum. Indeed,
the eigenvalues of A are obtained at the end as a by-product. Thus the proof is potentially
a tool to study arithmetical properties of fields of power series.

We should like to mention that the paper has grown out of studies in the theory of
orthomodular spaces. These are, by definition, vector spaces E endowed with a hermitean
form $ such that the Projection Theorem holds for (E, ~~ : every orthogonally closed
linear subspace U C E is a direct summand of the whole space. Classical examples are
the Hilbert spaces over R or C and for a long time there were no others. Then, in 1980,
numerous non-classical, infinite-dimensional orthomodular spaces were discovered. They
are constructed over certain non-archimedian, complete fields; the valuations in question
are of infinite rank. These new spaces carry a natural non-archimedian norm, so there
is a notion of "bounded linear operator". The central question is whether a bounded,
selfadjoint linear operator T : E - E always admits an orthogonal decomposition derived
from its spectrum. By using the technique of reduction modulo residual spaces the task
of decomposing an infinite-dimensional operator T : E --> E is seen to be closely related
to the problem of decomposing finite matrices over fields of power series (or of rational
functions). For details we refer to [3] and [4].

1. Fields of power series. Given any field Ko with char(K0) ~ 2 we let K = Ko((t))
be the field of formal power series in the indeterminate t with coefficients in Ko, and we

let 03C6 : K ~ Z be the usual exponential valuation. Thus for a typical a = aiti in K
we have = min~i E Z a= ~ 0} if a ~ 0, = oo if a = 0. The valued field (h’,~)
is henselian (cf. [4]). To cp there corresponds a valuation ring R :_ {a E h ( ~(a) > 0}
with maximal ideal J = (o E h ~ ~(a) > 0}. The residue field ~~ := R/J is isomorphic to

thus there is a canonical epimorphism 7r from K onto Iio.
yVe shall need the following fact.

Lemma 1. K is a purely transcendental extension of K0.

Proof : Suppose that 3 E K is algebraic over Ko. We have to show that ~9 E Ko. Let

p(X ) = a;X E be the irreducible polynomial of ~9. Then

ao + + a2~2 + ... + = 0.
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There are at least two indices 0  i  j  m such that ~(a=~9’) = for otherwise

the terms on the lefthand side couldn’t cancel. Since = = 0 it follows that

03C6(03B8i) = hence 03C6(03B8) = 0. Thus 19 E R. Applying now the epimorphism 03C0 : R - Ko
to the above equality and noticing that = ai for all i we obtain ao + a103C0(03B8) +

a2~(’~)z +... + = 0, i.e. ~t(~9) E Ko is a root of the polynomial p(X). Since p(X)
is irreducible this is possible only when m = 1. We conclude that 3 E Ko, as claimed.

2. Matrices over fields of power series. We consider the ring M atn(K) of all square
matrices of size n x n with entries in K along with the subring Matn(K0) consisting of all
matrices with entries in the subfield Ko C K. We shall denote the matrices in Matn(K)
by A, B, ... U ... and those in Matn(K0) by A, B, ... , U .... The unit matrix is always
denoted by f.

A matrix A E Matn(K) is called orthogonal if its transpose A* is equal to the inverse

,A-~, i.e. if A*A = ,A,r4* = I, We say that A is diagonal if all entries outside the main

diagonal are 0, more generally, we say that A is (r, n - r )- blockdiagonal if it has the shape

A = [B 0]

where B and C are square matrices of size r x r and (n - r) x (n - r) respectively.
Our computations later on will rely on a representation of the elements A E Matn(K)

as a formal power series with coefficients in the (non-commutative) subring Matn(K0). Put
:= n}

and assume, for sake of simplicity, that = 0. Then each entry a~a can be expressed
as

= + a(1)ij t + a(2)ijt2 +...+ a(m)ij t .1....

For m = 0,1, ... we collect the coefficients in a matrix

a(m)11 ... a(m)1n

Am := :  ; ~ Matn(K0).
(m) (m)

anl ... a(m)nn

Then we can express A in the form

A = A0 + A1 . t + A2 . t2 + ... + Am . tm + ....

This is the representation mentioned above.

3. The main result. Our purpose is to prove
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Theorem 1: : Let K = K0((t)) and n > 1. The following conditions are equivalent:
(a) Every symmetric matrix A E Matn(Ko) can be diagonalized by means of an orthogonal
matrix U E Matn(K0).
(b ) Every symmetric matrix A E Matn(K) can be diagonalized by means of an orthogonal
matrix U E Matn(K).

The proof will be divided into several steps. We begin with the easy part.
Proof of the implication (b) ~ (a): Suppose that A in Matn(K0) is symmetric. By
hypothesis (b) there exists an orthogonal matrix U E Matn(K) such that

03BB11 ... 0

D := U*AU =  : :
0 ... 03BBnn

Here the diagonal entries .Àii are the eigenvalues of the matrix A, that is, the roots of the
characteristic polynomial = det(X . 1- A). Since the coefficients of pA(X ) belong
to K0, the are algebraic over Ko. By Lemma 1 we conclude that 03BB11,..., 03BBnn E Ko.

Consider an eigenvalue ai= and let m ; be its algebraic multiplicity. Then a=i is repeated
m; times in D and consequently

has rank n - m~ over K. But the matrix A - Àii’ I is in Matn(Ko), so its rank over Ko
is the same as its rank over K as can be easily seen by applying the Gaussian algorithm.
Consequently 03BBii has geometric multiplicity mi. . Thus for each eigenvalue of A the algebraic
and the geometric multiplicity coincide. This entails that there exists an orthogonal matrix
U in Matn(K0) such that U*A U is diagonal, as asserted.

The substantial part is the converse implication to which we now turn.

4. Proof of the implication (a) ==~ (b). In this section we assume throughout that
Ko is a coefficient field satisfying condition (a). Let there be given a symmetric matrix
,A ~ 0 in Matn(K).

4.1. Multiplying A by a suitable power of t we may assume that = 0. Then A

can be expressed as a power series

A = Ao + . t + + ... + Am . t m + .... , 
.

Notice that all the Am’s are symmetric. We first reduce the general case to the special one
in which the initial coefficient matrix Ao of A satisfies the condition

(1) Ao is diagonal but not a multiple of the unit matrix I.
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In fact, if all the Am’s (m = 0, I, ...) are multiples of I then so is A and there is nothing to

prove. Otherwise let m := min{k ENol Ak is not a multiple of I}. Then Ak tk =
a . I for some A E K. Put

/ 
m-i 

B~:=t-m.(,A-~ll)=t-m. =Am+.4m+l.t+...B k=0 /
Since Am is symmetric there exists, by (a), an orthogonal matrix V E Matn(K0) such that
D := V*Am V is diagonal. Now look at

C := V* B V = ( V*Am V) + (V*Am+1 V) . t + v) . t2 + ...

The expansion of C starts with a coefhcient matrix Co = V *Am V that is diagonal but not
a multiple of I. Moreover, if we succeed in finding an orthogonal matrix U E Matn(K)
which diagonalizes C then V . U will provide a diagonalization of B and therefore also of

Hence we may assume from the start that the initial coefficient of A
satisfies (1).

We should like to point out that it is only in the above preliminary step where the
hypothesis (a) is actually needed. However, the condition (a) can hardly be replaced by
an assumption on the initial matrix Ao because it will be used repeatedly in the inductive
argument at the end (see section 4.6).
4.2. The idea is to construct recursively an orthogonal transition matrix

that diagonalizes A. When trying to do so it turns out that the recursive computation of
Uo, tll, U2, ... can be carried out provided the diagonal entries of Ao are pairwise different.
However, when some diagonal entries of Ao are repeated there arise serious troubles. The
underlying geometric reason for these obstacles in that in the second case the given matrix
A may have multiple eigenvalues and consequently U is not uniquely determined by A.
The way out of the difficulties is as follows: we shall not attempt to put the given matrix A
into diagonal form at once, but we will first decompose A into blocks the sizes of which are
determined by the multiplicities ocurring in Ao.The clue is given by the following result.

Lemma 2: : Let A = Ao + Ai . t + ... + Am . tm + ... E Matn(K) be symmetric. Assume
that Ao satisfies (1). Then there ezist an integer r with 1  r  n -1 along with an
orthogonal matrix U E Matn(K) such that U*AU is (r, n - r)..blockdiagonal.
The proof will be divided into several steps and will cover the next three subsections.

4.3. Write
a11 ... 0

.. :o 0 ... ann 
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Since Ao is not a multiple of I the multiplicity r of all is strictly less than n. After
conjugating by some permutation matrix we may assume that

a,, = a11 for 1  z  r, a11 for r + 1 ~ z ~ n.

The multiplicity r is the number r referred to in the statement of Lemma 2.

4.4. We shall construct recursively matrices in Matn(K) such that

satisfies both
U*U = I,

and
U* AU is (r, n - r)-blockdiagonal.

The first task is to express the above two conditions in terms of the Uk’s. Multiplying out
the series U = U0 + U1 . t + U2 . t2 + ... and U* = U*0 + U*1 . t + U*2 . t2 + ... we find

U= U? .tk+...
i+j=k

Hence the condition that U*U = I is satisfied if and only if

(2) Uo Uo = I 

and for all k > 1 we have

(3) L U*i Uj = 0.
i+j=k

Next, multiplication of the series for U*, A and U yields

where

(4) vo := Uo Ao Uo, Yk = U*iAjUh.
i+j+h=k

It follows that U* AU is (r, n-r) -blockdiagonal if and only all the matrices Yk (k = 0, ~, ...)
given by (4) are (r, n - r) -blockdiagonal.
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4.5. We start the recursive construction by putting

Uo := I.

Then (2) is satisfied, and the matrix Vo given by (4) is trivially blockdiagonal since Ao is
diagonal.

Assume that we have already constructed Uo, ... , Um-1 such that (3) holds for 1 
k  m - 1 and Vk is block-diagonal for 0  k  rn -1. Consider then (3) with k = m.
Since Uo = I we can rewrite this condition as

+ Um + ~ Ut U, = o.
i+j=m

j ~m

Now Sm := T is symmetric. Hence (3) holds if and only if Um has the shape
ym, j ~m

(5) 

where Qm is any antisymmetric matrix. Since Sm is determined by the matrices Uo,..., Um-
already constructed, the task is to choose Qm in such a way that the resulting matrix Vm
given by (4) is block-diagonal.

Separating in (4) the two summands corresponding to (i, j, h) = (m, 0 , 0) and (i, j, h) =

(0,0, m) we obtain

Vm = U*m A0 + A0Um + 03A3 U*iAjUh.
i ~m,A #m

Substituting (5) into the above expression we obtain

(6) Vm = -QmA0 + A0Qm + Tm

where

Tm = -1 2(Sm A0 + A0 Sm)+  U*i AjUh.

Since Sm and all the Ak’s are symmetric it follows that Tm is symmetric. Notice that Tm
is expressed in terms of matrices already determined.

Write

v11 v1n q11 ... q1n t11 ... t1n

Vm = , Qm = , Tm =  .
vn1 ... vnn qn1 ... tn1 ... tnn
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Computing the matrix products in (6) and taking into account that

a11 ... 0

A0 =  :
0 ... ann

is diagonal we find

vij = -qijajj + aiiqij + tij = ’-q=? - at=) + tiJ

for all 1  i, j  n. Consider now a pair (i, j ) outside the blocks, i.e. either i E { 1, ... , r~
and j E {r + 1, ... , n} and j E {!,...,r}. Then a ii ~ a j j by definition
of r (cf. section 4.3.) Thus if we put

qij=tij ajj-aii

then v;; = 0, as required. Notice also that qij = for these pairs (i, j ). If i, j are
both in {I, ... , r} or both in {r + 1,..., n} then we choose qij arbitrarily but such that
qij = -q j; .

The matrix Qm thus obtained is antisymmetric. Moreover, if we put Um :== 2014? Sm +
Qm then the matrix Vm given by (4) is (r, n-r)-blockdiagonal. This completes the recursive
construction.

By construction the matrix U = Uo + U1 . t + !72 ’ t2 + ... is orthogonal and U* AU is
block-diagonal. The proof of Lemma 2 is complete.
4.6. We can now finish the proof of Theorem 1 by an easy induction on the size n.
The case n = 1 is trivial, so assume n > 1. Let there be given a symmetric matrix A
in Matn(K) with initial coefficient Ao satisfying (1). By Lemma 2 there exists a natural
number r  n and an orthogonal matrix U in Matn( K) such that

U*AU= A1 0
0 A2

where A1 E M atr(K), ,A2 E Matn-r(K). Clearly At and ,A2 are symmetric. By induction,
there exist orthogonal matrices Vl E Mat,.(h’) and V2 E Matn-r(K) such that V*1A1 vl
and V; A2 V2 are diagonal. Put

01 °W := 
0 V2.

Then U W is orthogonal, and

* o0 V*2A2V2
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is diagonal. The proof is complete.

5. Applications. The classical Spectral Theorem (for finite dimensions) states that ev-
ery symmetric matrix can be orthogonally diagonalized over the field R of reals. Applying
Theorem 1 repeatedly we deduce the following result.

Theorem 2: Let m > 0 and let

K := R.((t1 ... ,tm)) = R((t1))((t2)) ... ((tm))

be the field of formal power series in m indeterminates with real coefficients. Then every
symmetric matrix can be orthogonally diagonalized over K .

Proof:. By induction on m. The case m = 0 is the classical one, and the induction step
is just the assertion "(a) =~ (b)" of Thm. 1.

Corollary: Let := R((t1, ..., tm)). . If the matrix A E Matn(K) is symmetric then its
characteristic polynomial

= det(X ~ I - A) E K ~XJ

decomposes into linear factors over K.

The above Spectral Theorem can even be generalized to fields of power series in
infinitely many variables as we shall now show. We start with a direct sum

of infinitely many copies of the group of integers. r is an abelian, additive group under
componentwise operations. We order r antilexicographically.

Next we form the field

K := R((r))

of generalized power series with exponents in r and real coefficients. K can be described
as the field of all functions ~ : r --~ R for which the support

:= min{03B3 E 0393|03BE(03B3) ~ 0}

is well-ordered. The operations in K are the obvious ones: (ç + ~)(03B3) = 03BE(03B3) + ~(03B3) and

(~ ’ . r~)(~) :_ I~~+~’= ~(~) ’ ~ r~(d~). There is a natural valuation

03C6 : h’ -+ r U {~}, given by 03C6(03BE) := min supp(g).

The valued field (K, 03C6) is complete and henselian; for details we refer to [5] or [6].

Now we can state
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Theorem 3: Over the field K := R((F)) every (finite) symmetric matrix can be orthog-
onally diagonalized.

Outline of the proof For m = 0,1,2,... we define the subgroup A~ C r by

m times

The 0394m’s are isolated (or convex) subgroups of r. To each 0394m there corresponds a
valuation ring Rm := {~ 6 ~!~) ~ ~ for some ! A~} with maximal ideal Jm :=
{03BE E > 03B4 for all 03B4 ~ 0394m) and residue field m := Rm/ Jm. It is readily verified
that R((~i)...~m)). In particular, each residue field ~ can be considered as a
subfield of 7~ moreover there is a canonical epimorphism Rm -~ R((~i~.. ~m)) .

Now let there be given a symmetric matrix

a11 ... 03B11n

A = ~ Matn(K).03B1n1 ... 03B1nn

We may suppose that 0 for all tj, thus Rm for m = 0,1,2,.... For each
m ~ N0 we form the reduced matrix

03C0m(03B111) ... 03C0m(03B11a)

Âm := 03C0m(A) = 03C0m(03B1n1) ... 03C0m(03B1nn).

Applying Theorem 2 we obtain, for each m No, an orthogonal matrix Ûm C Matn(m) G
Matn(K) such that Û*mÂmÛm is diagonal.

The point is to show that the orthogonal matrices ~~ can be chosen in such a way
that

(7) 03C0m(ûm+1) = Ûm.

If all the eigenvalues of the given matrix A are simple then (7) is automatically satisfied
as is shown by a routine verification. In the case where A has multiple eigenvalues then
the orthogonal matrices ~/~ are not unique and one has to choose a suitable basis in each
eigenspace.

Since K is complete we easily deduce from (7) that the sequence 
m~N0 

converges

in the valuation topology to some matrix U by continuity we conclude that
U is orthogonal and U* AU is diagonal. This completes the proof.
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