BERTIN DIARRA *p*-adic Clifford algebras

Annales mathématiques Blaise Pascal, tome 1, nº 1 (1994), p. 85-103 <http://www.numdam.org/item?id=AMBP_1994_1_1_85_0>

© Annales mathématiques Blaise Pascal, 1994, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 1, N°1, 1994, pp. 85-103

P-ADIC CLIFFORD ALGEBRAS

Bertin DIARRA

In a previous paper [2], we gave the index of the standard quadratic form of rank n over the field of p-adic numbers. Here, we recover, as a consequence, the structure of the associated Clifford algebra.

The classification of all (equivalence classes of) quadratic forms over a p-adic field is well known (cf.[5]), with this classification, one is able to classify all p-adic Clifford algebras.

I - **INTRODUCTION**

Let K be a field of characteristic $\neq 2$ and E a vector space over K of finite dimension n. A mapping $q: E \to K$ is a quadratic form over E if there exists a bilinear symmetric form $f: E \times E \to K$ such that

$$q(x) = f(x, x)$$
 and $f(x, y) = \frac{1}{2}[q(x + y) - q(x) - q(y)]$

We assume that q is regular, that is f is non-degenerated.

An element $x \in E$ is *isotropic* if q(x) = 0. Let V be a subspace of E; the orthogonal subspace of V is the set $V^{\perp} = \{y \in E/f(x, y) = 0 \text{ for all } x \in V\}$. The subspace V is called *totally isotropic* if $V \subset V^{\perp}$. It is well known (cf. for example [1]) that any totally isotropic subspace is contained in a maximal totally isotropic subspace. The maximal totally isotropic subspaces have the same dimension ν , called the *index* of q and $2\nu \leq n$. If $2\nu = n$, then (E,q) is called a hyperbolic space and for the case n = 2, one says hyberbolic plane. The index $\nu = 0$ iff $q(x) \neq 0$ for $x \neq 0$ i.e. (E,q) is anisotropic.

Bertin DIARRA

Let $E = K^n$ and $B = (e_1, \ldots, e_n)$ be the canonical basis of E; the standard quadratic form q_0 is the quadratic form associated to the bilinear form

$$\langle x, y \rangle = \sum_{j=1}^{n} x_{j}y_{j}$$
; where $x = \sum_{j=1}^{n} x_{j}e_{j}$ and $y = \sum_{j=1}^{n} y_{j}e_{j}$;
hence $q_{0}(x) = \langle x, x \rangle = \sum_{j=1}^{n} x_{j}^{2}$.

Let (E,q) be a quadratic space, possibly non regular; an algebra $C \doteq C(E,q)$ over K, with unit 1, is said to be a Clifford algebra for (E,q) if

- (i) There exists a one-to-one linear mapping $\rho: E \to C$ such that $\rho(x)^2 = q(x) \cdot 1$.
- For every algebra A with unit 1 and linear mapping $\phi : E \to A$ satisfying (ii) $\phi(x)^2 = q(x) \cdot 1$, there exists an algebra homomorphism $\phi: C \to A$ such that $\phi \circ \rho = \phi$.

Clifford algebra exists and is unique up algebra isomorphism (cf. for instance [1] or [3]). For example, let $K < X_1, \dots, X_n$ be the free algebra with free system of generators X_1, \dots, X_n and I be the two-sided ideal of $K < X_1, \dots, X_n$ > generated by $X_iX_j + X_jX_i - 2f(e_i, e_j) \cdot 1, 1 \le i, j \le n$, where (e_1, \dots, e_n) is an orthogonal basis of (E,q); then $C(E,q) = K < X_1, \dots, X_n > /I$.

п-THE P-ADIC STANDARD QUADRATIC FORM qo

II-1. The index of q₀

Let p be a prime number and \mathbf{Q}_p be the p-adic field i.e. the completion of the field of rational numbers Q for the p-adic absolute value.

We denote by $[\alpha]$ the integral part of the real number α .

Proposition 1 [2]

> The standard quadratic form $q_0(x) = \sum_{i=1}^n x_j^2$ over $E = \mathbf{Q}_p^n$ has index $\nu = \left\lceil \frac{n}{2} \right\rceil$ if $p \equiv 1 \pmod{4}$ (i)

- (ii) $\nu = \left[\frac{n}{2}\right]$ if $p \equiv 3 \pmod{4}$ and $n \not\equiv 2 \pmod{4}$ (iii) $\nu = \left[\frac{n}{2}\right] 1$ if $p \equiv 3 \pmod{4}$ and $n \equiv 2 \pmod{4}$

Proof:

1°) If $p \equiv 1 \pmod{4}$, it is well known that $i = \sqrt{-1} \in \mathbf{Q}_p$. Let $\nu = \begin{bmatrix} \frac{n}{2} \end{bmatrix}$ and $\epsilon_j = i \ e_{2j-1} + e_{2j}, \ 1 \le j \le \nu$, then $V = \bigoplus_{j=1}^{\nu} \mathbf{Q}_p \epsilon_j$ is a maximal totally isotropic subspace of $E = \mathbf{Q}_p^n$.

$2^{o}) \quad p \equiv 3 \pmod{4}$

Therefore $i \notin \mathbf{Q}_p$ and if n = 2 the index of q_0 is 0.

If n = 3, applying Chevalley's theorem and Newton's method to $q_0(x) = x_1^2 + x_2^2 + x_3^2$ we find $a, b \in \mathbf{Q}_p, a \neq 0, b \neq 0$, such that $a^2 + b^2 + 1 = 0$. Therefore $\epsilon_1 = a \ e_1 + b \ e_2 + e_3$ is isotropic in \mathbf{Q}_p^3 and $\nu = \begin{bmatrix} \frac{3}{2} \end{bmatrix} = 1$.

(a) For n = 4m, put $\epsilon_{2j-1} = a \ e_{4j-3} + b \ e_{4j-2} + e_{4j-1}$ and $\epsilon_{2j} = -b \ e_{4j-3} + a \ e_{4j-2} + e_{4j}$, $1 \le j \le m$. It is clear that $q_0(\epsilon_{2j-1}) = q_0(\epsilon_{2j}) = a^2 + b^2 + 1 = 0$ and $< \epsilon_{2j-1}, \epsilon_{2j} > = -ab + ab = 0$. Therefore $V = \bigoplus_{j=1}^{m} (\mathbf{Q}_p \epsilon_{2j-1} \oplus \mathbf{Q}_p \epsilon_{2j})$ is a totally isotropic

subspace of \mathbf{Q}_p^n and $\nu = 2m = \left[\frac{n}{2}\right]$.

If n = 4m + 1, with the same notations as above the subspace V is totally isotropic in \mathbf{Q}_p^n and $\nu = 2m = \left[\frac{n}{2}\right]$.

On the other hand if n = 4m + 3 the subspaces $V = \bigoplus_{j=1}^{m} (\mathbf{Q}_{p} \epsilon_{2j-1} \oplus \mathbf{Q}_{p} \epsilon_{2j})$ and

 $\mathbf{Q}_{p}\epsilon_{2m+1}$ where $\epsilon_{2m+1} = a \ e_{4m+1} + b \ e_{4m+2} + e_{4m+3}$, are totally isotropic and orthogonal. Therefore $V_{\circ} = V \oplus \mathbf{Q}_{p} \ \epsilon_{2m+1}$ is totally isotropic and $\nu = 2m + 1 = \left[\frac{n}{2}\right]$.

(b) If n = 4m + 2, let $V = \bigoplus_{j=1}^{m} (\mathbf{Q}_{p} \epsilon_{2j-1} \oplus \mathbf{Q}_{p} \epsilon_{2j})$ be as obove. It is easy to verify

that if $x \in \mathbf{Q}_p^n$ is isotropic and x is orthogonal to V then $x \in V$. Therefore V is a maximal totally isotropic subspace of \mathbf{Q}_p^n and $\nu = 2m = \left[\frac{n}{2}\right] - 1$.

Proposition 2 : Let p = 2.

Let n = 8m + s, $0 \le s \le 7$.

The standard quadratic form $q_0(x) = \sum_{j=1}^n x_j^2$ over $E = \mathbf{Q}_2^n$ has index

- (i) $\nu = 4m$ if $0 \le s \le 4$
- (ii) $\nu = 4m + t$ if s = 4 + t, $1 \le t \le 3$

Proof:

1°) If $1 \le n \le 4$, then the index of q_0 is 0.

Indeed, this is clear when n = 1.

If n = 2, let $x = x_1e_1 + x_2e_2 \in \mathbf{Q}_2^2$ be isotropic and different from 0 i.e. $q_0(x) = x_1^2 + x_2^2 = 0$ and say $x_2 \neq 0$. Therefore $1 + a^2 = 0$ with $a = x_1x_2^{-1}$ and $v_2(a) = 0$ i.e. $a = 1 + 2^{\mu}a_0$, $\mu \ge 1$, $v_2(a_0) = 0$.

Then $1 + a^2 = 2 + 2^{\mu+1}a_0 + 2^{2\mu}a_0^2 = 0$ or $1 + 2^{\mu}a_0 + 2^{2\mu-1}a_0 = 0$; in other words $1 \equiv 0 \pmod{2}$; a contradiction.

In the same way, one shows that if n = 3 or 4, the index of q_0 is 0.

$$2^{o}) \qquad \underline{n=5}$$

Let $x_0 = 2e_1 + e_2 + e_3 + e_4 + e_5 \in \mathbf{Q}_2^5$, then $q_0(x_0) = 8$ and $\frac{\partial q_0}{\partial x_j}(x_0) = 2 \neq 0 \pmod{4}$,

 $2 \le j \le 5$

By Newton's method there exists

 $x = \sum_{j=1}^{5} x_j e_j \in \mathbf{Q}_2^5$ such that $q_0(x) = 0$ with $x_1 \equiv 2 \pmod{8}, x_j \equiv 1 \pmod{8}, 2 \le j \le 5$.

Put $a = x_1 x_5^{-1}$, $b = x_2 x_5^{-1}$, $c = x_3 x_5^{-1}$, $d = x_4 x_5^{-1}$, then $a^2 + b^2 + c^2 + d^2 + 1 = 0$. The two following elements of \mathbf{Q}_2^5

$$\epsilon_1 = a \ e_1 + b \ e_2 + c \ e_3 + d \ e_4 + e_5$$

 $\epsilon'_1 = -a \ e_1 - b \ e_2 - c \ e_3 - d \ e_4 + e_5$

are isotropic with $\langle \epsilon_1, \epsilon'_1 \rangle = 2$. Hence $H = \mathbf{Q}_2 \epsilon_1 \oplus \mathbf{Q}_2 \epsilon'_1$ is a hyperbolic plane in \mathbf{Q}_2^5 . Let $U = H^{\perp}$ be the orthogonal subspace of H in \mathbf{Q}_2^5 . The following three elements of \mathbf{Q}_2^5 :

$$u_1 = b \ e_1 - a \ e_2 + d \ e_3 - c \ e_4$$
$$u_2 = e_1 - \frac{ac + bd}{c^2 + d^2} e_3 + \frac{bc - ad}{c^2 + d^2} e_4$$

$$u_3 = e_2 + \frac{ad - bc}{c^2 + d^2}e_3 - \frac{ac + bd}{c^2 + d^2}e_4$$

are elements of U, with

$$q_0(u_1) = -1, \ q_0(u_2) = -\frac{1}{c^2 + d^2} = q_0(u_3)$$

Furthermore $\langle u_i, u_j \rangle = 0$ if $1 \le i \ne j \le 3$, and (u_1, u_2, u_3) is a basis of U.

For every $u = y_1u_1 + y_2u_2 + y_3u_3 \in U$ we have $q_0(u) = y_1^2q_0(u_1) + y_2^2q_0(u_2) + y_3^2q_0(u_3) = -\frac{c^2y_1^2 + d^2y_1^2 + y_2^2 + y_3^2}{c^2 + d^2}$ and $q_0(u) = 0$ iff u = 0 because the standard quadratic form of rank 4 is anisotropic. In other words (U, q_0) is anisotropic and $\mathbf{Q}_2^5 = H \perp U$ is a Witt decomposition of (\mathbf{Q}_2^5, q_0) . Hence the index of q_0 is 1.

 $\begin{array}{ll} 3^o) & \underline{\mathbf{n}=8m+\mathbf{s}} \;, \quad 0\leq s\leq 4.\\ \mathrm{Put} \;, \; \mathrm{for} \; 0\leq j\leq m-1 \end{array}$

(1)
$$\begin{cases} \epsilon_{j,1} = a \ e_{8j+1} + b \ e_{8j+2} + c \ e_{8j+3} + d \ e_{8j+4} + e_{8j+5} \\ \epsilon_{j,2} = -b \ e_{8j+1} + a \ e_{8j+2} + d \ e_{8j+3} - c \ e_{8j+4} + e_{8j+6} \\ \epsilon_{j,3} = -d \ e_{8j+1} + c \ e_{8j+2} - b \ e_{8j+3} + a \ e_{8j+4} + e_{8j+7} \\ \epsilon_{j,4} = c \ e_{8j+1} + d \ e_{8j+2} - a \ e_{8j+3} - b \ e_{8j+4} + e_{8j+8} \end{cases}$$

and

$$(2) \qquad \begin{cases} \epsilon'_{j,1} = -a \ e_{8j+1} \ - \ b \ e_{8j+2} \ - \ c \ e_{8j+3} \ - \ d \ e_{8j+4} \ + \ e_{8j+5} \\ \epsilon'_{j,2} = b \ e_{8j+1} \ - \ a \ e_{8j+2} \ - \ d \ e_{8j+3} \ + \ c \ e_{8j+4} \ + \ e_{8j+6} \\ \epsilon'_{j,3} = d \ e_{8j+1} \ - \ c \ e_{8j+2} \ + \ b \ e_{8j+3} \ - \ a \ e_{8j+4} \ + \ e_{8j+7} \\ \epsilon'_{j,4} = -c \ e_{8j+1} \ - \ d \ e_{8j+2} \ + \ a \ e_{8j+3} \ + \ b \ e_{8j+4} \ + \ e_{8j+8} \end{cases}$$

A straightforward computation shows that $\langle \epsilon_{i,k}, \epsilon_{j,l} \rangle = 0 = \langle \epsilon'_{i,k}, \epsilon'_{j,l} \rangle, 0 \leq i, j \leq m-1; 1 \leq k, l \leq 4$ and $\langle \epsilon_{j,l}, \epsilon'_{j,l} \rangle = 2; 0 \leq j \leq m-1; 1 \leq l \leq 4$. Furthermore $\langle \epsilon_{i,k}, \epsilon'_{j,l} \rangle = 0$ if $(i,k) \neq (j,l)$.

Hence the subspaces $V = \bigoplus_{\substack{j=0\\1 \le l \le 4}}^{m-1} \mathbf{Q}_2 \epsilon_{j,l}$ and $W = \bigoplus_{\substack{j=0\\1 \le l \le 4}}^{m-1} \mathbf{Q}_2 \epsilon'_{j,l}$ are isotropic with

 $V \cap W = (0)$

Therefore $H = V \oplus W$ is a hyperbolic subspace of $E = \mathbf{Q}_2^{8m+s}$, with dimV = dimW = 4m.

But $E = E_m \perp E_s$ (orthogonal sum) where $E_m = \bigoplus_{j=1}^{8m} \mathbf{Q}_2 e_j$ and $E_s = \bigoplus_{k=1}^s \mathbf{Q}_2 e_{8m+k} \simeq$

 \mathbf{Q}_{2}^{s} .

If s = 0, we have $E = E_m = V \oplus W = H$ and (E, q_0) is a hyperbolic space with index 4m.

If $1 \le s \le 4$; $E = E_m \perp E_s$ with $E_m = V \oplus W = H$. Since $1 \le \dim E_s = s \le 4$, the standard quadratic space (E_s, q_0) is anisotropic. Consequently $E = (V \oplus W) \perp E_s$ is a Witt decomposition of E and the index of q_0 is 4m.

4°) $n = 8m + 4 + t, \quad 1 \le t \le 3.$

a)
$$\underline{n=8m+5}$$

With the same notations as above , we have $E = E_m \perp E_5$ where $E_5 = \bigoplus_{k=1}^{5} \mathbf{Q}_2 e_{8m+k} \simeq$

Q_{2}^{5} .

Let us write , as for n = 5,

(3)
$$\begin{cases} \epsilon_{4m+1} = a \ e_{8m+1} + b \ e_{8m+2} + c \ e_{8m+3} + d \ e_{8m+4} + e_{8m+5} \\ \epsilon'_{4m+1} = -a \ e_{8m+1} - b \ e_{8m+2} - c \ e_{8m+3} - d \ e_{8m+4} + e_{8m+5} \end{cases}$$

(4)
$$\begin{cases} u_{m+1} = b e_{8m+1} - a e_{8m+2} + d e_{8m+3} - c e_{8m+4} \\ u_{m+2} = e_{8m+1} - \frac{ac+bd}{c^2+d^2} e_{8m+3} + \frac{bc-ad}{c^2+d^2} e_{8m+4} \\ u_{m+3} = e_{8m+2} + \frac{ad-bc}{c^2+d^2} e_{8m+3} - \frac{ac+bd}{c^2+d^2} e_{8m+4} \end{cases}$$

The subspace $U_5 = \bigoplus_{h=1}^{3} \mathbf{Q}_2 u_{m+h}$ of E_5 is anisotropic. On the other hand, $q_0(\epsilon_{4m+1}) =$

 $0 = q_0(\epsilon'_{4m+1})$; $\langle \epsilon_{4m+1}, \epsilon'_{4m+1} \rangle = 2$ and $\epsilon_{4m+1}, \epsilon'_{4m+1}$ are orthogonal to U_5 . Therefore $V_0 = V \oplus \mathbf{Q}_2 \epsilon_{4m+1}$ and $W_0 = W \oplus \mathbf{Q}_2 \epsilon'_{4m+1}$ are isotropic subspaces of E and $E = (V_0 \oplus W_0) \perp U_5$ is a Witt decomposition of E. Hence the index of q_0 is $\dim V_0 = \dim W_0 = 4m+1$.

(b) n = 8 m + 6.

As before, we have $E = E_m \perp E_6$ where $E_6 = \bigoplus_{k=1}^6 \mathbf{Q}_2 e_{8m+k} \supset E_5$; hence ϵ_{4m+1} and $\epsilon'_{4m+1} \in E_6$.

÷ 90

Let us put

(5)
$$\begin{cases} \epsilon_{4m+2} = -b \ e_{8m+1} + a \ e_{8m+2} + d \ e_{8m+3} - c \ e_{8m+4} + e_{8m+6} \\ \epsilon'_{4m+2} = b \ e_{8m+1} - a \ e_{8m+2} - d \ e_{8m+3} + c \ e_{8m+4} + e_{8m+6} \end{cases}$$

(6)
$$\begin{cases} \omega_{m+1} = e_{8m+1} + \frac{bd-ac}{c^2+d^2}e_{8m+3} - \frac{ad+bc}{c^2+d^2}e_{8m+4} \\ \omega_{m+2} = e_{8m+2} - \frac{bc+ad}{c^2+d^2}e_{8m+3} + \frac{ac-bd}{c^2+d^2}e_{8m+4} \end{cases}$$

The subspace $U_6 = \mathbf{Q}_2 \omega_{m+1} \oplus \mathbf{Q}_2 \omega_{m+2}$ of E_6 is anisotropic. Moreover, $q_0(\epsilon_{4m+2}) = 0 = q_0(\epsilon'_{4m+2})$; $\langle \epsilon_{4m+2}, \epsilon'_{4m+2} \rangle = 2$ and $\epsilon_{4m+2}, \epsilon'_{4m+2}$ are orthogonal to U_6 . Therefore $V_1 = V_0 \oplus \mathbf{Q}_2 \epsilon_{4m+2}$ and $W_1 = W_0 \oplus \mathbf{Q}_2 \epsilon'_{4m+2}$ are isotropic subspaces of E and $E = (V_1 \oplus W_1) \perp U_6$ is a Witt decomposition of E. Hence the index of q_0 is $\dim V_1 = \dim W_1 = 4m + 2$.

(c)
$$n = 8m + 7$$

We have
$$E = E_m \perp E_7$$
, where $E_7 = \bigoplus_{k=1}^7 \mathbf{Q}_2 e_{8m+k} \supset E_6$.

Let us write

(7)
$$\begin{cases} \epsilon_{4m+3} = -d \ e_{8m+1} + c \ e_{8m+2} - b \ e_{8m+3} + a \ e_{8m+4} + e_{8m+7} \\ \epsilon'_{4m+3} = d \ e_{8m+1} - c \ e_{8m+2} + b \ e_{8m+3} - a \ e_{8m+4} + e_{8m+7} \end{cases}$$

and

$$(8) u_m = c e_{8m+1} + d e_{8m+2} - a e_{8m+3} - b e_{8m+4}$$

The subspace $U_7 = \mathbf{Q}_2 u_m$ of E_7 is anisotropic. Furthermore $q_0(\epsilon_{4m+3}) = 0 = q_0(\epsilon'_{4m+3})$; $< \epsilon_{4m+3}, \epsilon'_{4m+3} >= 2$ and $\epsilon_{4m+3}, \epsilon'_{4m+3}$ are orthogonal to U_7 . Therefore $V_2 = V_1 \oplus \mathbf{Q}_2 \epsilon_{4m+2}$ and $W_2 = W_1 \oplus \mathbf{Q}_2 \epsilon_{4m+2}$ are isotropic subspaces of E and $E = (V_2 \oplus W_2) \perp U_7$ is a Witt decomposition of E. Hence the index of q_0 is $dimV_2 = dimW_2 = 4m+3$.

Remark

Let K be a non formally real field. The level of K is the least integer s such that $-1 = \sum_{j=1}^{s} a_j^2$ where $a_j \in K, a_j \neq 0$. It is well known that $s = 2^r$, $r \ge 0$ (c f. [3] or [4]). The level of a p-adic field is 1 if $p \equiv 1 \pmod{4}$; 2 if $p \equiv 3 \pmod{4}$ and 4 if p = 2. If the level of a field K is 1 (resp. 2, resp.4) then the index of the standard quadratic form over K^n is given by Proposition 1 - (i) [resp. Prop.1 - (ii) - (iii) , resp. Prop.2].

More generally let K be a field of level $s = 2^r, r \ge 0$. If we write for any integer $n, n = m2^{r+1} + a$ where $0 \le a \le 2^{r+1} - 1$; then the index of the standard quadratic form over K^n is

(i) $\nu = m2^r$ if $0 \le a \le 2^r$ (ii) $\nu = m2^r + t$ if $a = 2^r + t$, $1 \le t \le 2^r - 1$.

II - 2 The Clifford algebra $C(\mathbf{Q}_{p}^{n}, q_{0})$

The following results can be deduced from a general setting (cf. [3] p. 128-129). Here we establish them by using the computation of the index of q_0 made in II-1.

Let us recall that if E is a vector space over a field K then the exterior algebra $\wedge(E)$ is the Clifford algebra associated to the null quadratic from over E.

On the other hand, let (E,q) be a regular quadratic space over K. If $E = V \oplus W$ is a hyperbolic space (V and W being maximal totally isotropic subspaces), it is well known that the Clifford algebra C(E,q) is isomorphic to $End(\wedge(V))$, the space of linear endomorphisms of the vector space $\wedge(V)$. Furthermore the subalgebra of the even elements of C(E,q), say $C_{+}(E,q)$ is isomorphic to $End(\wedge_{+}(V)) \times End(\wedge_{-}(V))$ where $\wedge_{+}(V)$ (resp. $\wedge_{-}(V)$) is the subspace of the even (resp. odd) elements of $\wedge(V)$.

Generally, if $E = (V \oplus W) \perp U$ is a Witt decomposition of E, then $C(E,q) \simeq End(\wedge(V)) \otimes_2 C(U,q)$, the tensor product of $\mathbb{Z}/_{2\mathbb{Z}}$ - graded algebras (cf. for example [1]).

If dim E = n, then $dim C(E, q) = 2^n = dim \wedge (E)$.

If $a, b \in K^*$, we denote by $\left(\frac{a, b}{K}\right)$ the associated quaternion algebra : i.e. the algebra generated by i, j with $i^2 = a$; $j^2 = b$; ij = -ji. Also $\left(\frac{a, b}{K}\right)$ is the Clifford algebra of the rank 2 quadratic form $q(x) = ax_1^2 + bx_2^2$.

Let us write M(n, K) the algebra of the $n \times n$ matrices with coefficients in K.

Theorem 1 : $p \equiv 1 \pmod{4}$

(i) If n = 2m, then $C(\mathbf{Q}_p^n, q_0) \simeq M(2^m, \mathbf{Q}_p)$

(ii) If n = 2m + 1, then $C(\mathbf{Q}_p^n, q_0) \simeq M(2^m, \mathbf{Q}_p) \oplus M(2^m, \mathbf{Q}_p)$

Proof

Indeed, if n = 2m, then $(\mathbf{Q}_{p}^{n}, q_{0})$ is a hyperbolic space.

It follows that $C(\mathbf{Q}_p^n, q_0) \simeq End(\wedge(\mathbf{Q}_p^m)).$

And, if n = 2m + 1, we have a Witt decomposition $\mathbf{Q}_p^n = (V \oplus W) \perp U$ where $U = \mathbf{Q}_p e_n$. It follows that $C(U, q_0) \simeq \mathbf{Q}_p \oplus \mathbf{Q}_p$ which gives (ii)

Theorem 2 : $p \equiv 3 \pmod{4}$

- (i) If n = 4m, then $C(\mathbf{Q}_p^n, q_0) \simeq M(2^{2m}, \mathbf{Q}_p)$ (ii) If n = 4m + 1, then $C(\mathbf{Q}_p^n, q_0) \simeq M(2^{2m}, \mathbf{Q}_p) \oplus M(2^{2m}, \mathbf{Q}_p)$
- (iii) If n = 4m + 2, then $C(\mathbf{Q}_{p}^{n}, q_{0}) \simeq M(2^{2m+1}, \mathbf{Q}_{p})$
- (iv) If n = 4m + 3, then $C(\mathbf{Q}_p^n, q_0) \simeq M(2^{2m+1}, \mathbf{Q}_p[i])$ with $i = \sqrt{-1}$.

Proof:

The case (i) is evident, since \mathbf{Q}_p^{2m} is a hyperbolic space.

If n = 4m + 1, we have a Witt decomposition $\mathbf{Q}_p^n = (V \oplus W) \perp U$ where $U = \mathbf{Q}_p u$ with $u = a \ e_{4m-3} + b \ e_{4m-2} + e_{4m-1} - e_{4m+1}$ and $q_0(u) = a^2 + b^2 + 1 + 1 = 1$. It follows that $C(U, q_0) \simeq \mathbf{Q}_p \oplus \mathbf{Q}_p$, which gives (ii).

If n = 4m + 2, we have a Witt decomposition $\mathbf{Q}_p^n = (V \oplus W) \perp U$ where $U = \mathbf{Q}_p u_1 \oplus \mathbf{Q}_p u_2$ and $u_1 = a \ e_{4m-3} + b \ e_{4m-2} + e_{4m-1} + a \ e_{4m+1} + b \ e_{4m+2}$ $u_2 = -b \ e_{4m-3} + a \ e_{4m-2} + e_{4m} - b \ e_{4m+1} + a \ e_{4m+2}$

Furthermore $\langle u_1, u_2 \rangle = 0$, $q_0(u_1) = -1 = q_0(u_2)$ and $C(U, q_0) \simeq \left(\frac{-1, -1}{\mathbf{Q}_p}\right)$. This quaternion algebra contains an element z with $N(z) = a^2 + b^2 + 1 = 0$. Hence $\left(\frac{-1, -1}{\mathbf{Q}_p}\right) \simeq M(2, \mathbf{Q}_p)$ and finally we have $C(\mathbf{Q}_p^n, q_0) \simeq M(2^{2m}, \mathbf{Q}_p) \otimes_2 M(2, \mathbf{Q}_p) \simeq M(2^{2m+1}, \mathbf{Q}_p)$.

If n = 4m + 3, we have a Witt decomposition $\mathbf{Q}_p^n = (V \oplus W) \perp U$ where $U = \mathbf{Q}_p u$, with $u = -b \ e_{4m+1} + a \ e_{4m+2}$ and $q_0(u) = b^2 + a^2 = -1$. Hence $C(U, q_0) \simeq \mathbf{Q}_p[i]$, because $u^2 = q_0(u) = -1$.

Bertin DIARRA

We conclude that $C(\mathbf{Q}_p^n, q_0) \simeq M(2^{2m+1}, \mathbf{Q}_p[i]).$

In the proof of the forecoming theorem, one needs the following lemma

Lemma :

Let K be a field (char. $\neq 2$), $c, d \in K^*$ such that $c^2 + d^2 \neq 0$.

If
$$\sigma = \frac{1}{c^2 + d^2}$$
, then $\left(\frac{-\sigma, -\sigma}{K}\right) \simeq \left(\frac{-1, -1}{K}\right)$.

If the two-rank quadratic forms $q_1(x) = -\sigma x_1^2 - \sigma x_2^2$ and $q_2(x) = -x_1^2 - x_2^2$ are equivalent, then their Clifford algebras are isomorphic. But, putting $x_1 = cx_1' + dx_2'$ and $x_2 = dx_1' - cx_2'$, we have $q_1(u(x')) = -\sigma(cx_1' + dx_2')^2 - \sigma(dx_1' - cx_2')^2 = -\sigma(c^2 + d^2)(x_1'^2 + x_2'^2) = q_2(x')$. Hence q_1 and q_2 are equivalent and the lemma is proved.

Remark

The quaternion algebra $\left(\frac{-1,-1}{\mathbf{Q}_2}\right) = \mathbf{H}_2$ is a skew field.

Indeed, for any $z \in \mathbf{H}_2 = \left(\frac{-1, -1}{\mathbf{Q}_2}\right), z \neq 0$, the norm of z is $N(z) = x_0^2 + x_1^2 + x_2^2 + x_3^2 \neq 0$

0 (the standard quadratic form of rank 4 over \mathbf{Q}_2 is anisotropic).

Theorem 3: p=2

The Clifford algebra $C(\mathbf{Q}_2^n, q_0)$ is isomorphic to :

(0)
$$End(\wedge(\mathbf{Q}_2^{4m})) \simeq M(2^{4m}, \mathbf{Q}_2), \quad if \quad n = 8m$$

(1)
$$M(2^{4m}, \mathbf{Q}_2) \oplus M(2^{4m}, \mathbf{Q}_2), \quad if \quad n = 8m + 1$$

(2)
$$M(2^{4m+1}, \mathbf{Q}_2)$$
, if $n = 8m + 2$

(3)
$$M(2^{4m+1}, \mathbf{Q}_2[i])$$
, with $i = \sqrt{-1}$, if $n = 8m + 3$

(4)
$$M(2^{4m+1},\mathbf{H}_2)$$
, if $n=8m+4$

(5)
$$M(2^{4m+1}, \mathbf{H}_2) \oplus M(2^{4m+1}, \mathbf{H}_2)$$
, if $n = 8m + 5$

(6)
$$M(2^{4m+2},\mathbf{H}_2), \quad if \quad n=8m+6$$

(7)
$$M(2^{4m+3}, \mathbf{Q}_2[i]), \quad if \quad n = 8m + 7$$

Proof

According to the proof of Proposition 2, if $n = 8m + s, 0 \le s \le 7$, then $\mathbf{Q}_2^n = (V \oplus W) \perp E_s$ where V and W are totally isotropic subspaces of dimension 4m, and $(E_s, q_0) \simeq$

$$(\mathbf{Q}_2^s, q_0). \text{ It follows that } C(\mathbf{Q}_2^n, q_0) \simeq End(\wedge (\mathbf{Q}_p^{4m})) \otimes_2 C(\mathbf{Q}_2^s, q_0). \text{ It is easy to see that} \\ C(\mathbf{Q}_2, q_0) \simeq \mathbf{Q}_2 \oplus \mathbf{Q}_2 \text{ ; } C(\mathbf{Q}_2^2, q_0) \simeq \left(\frac{1, 1}{\mathbf{Q}_2}\right) \simeq M(2, \mathbf{Q}_2) \text{ and } C(\mathbf{Q}_2^3, q_0) \simeq M(2, \mathbf{Q}_2[i]).$$

If s = 4, the subalgebra, generated by e_1e_2, e_2e_4 and e_1e_4 , is isomorphic to $\left(\frac{-1, -1}{Q_2}\right) = H_2$. Hence $C(\mathbf{Q}_2^4, q_0) \simeq M(2, \mathbf{H}_2)$.

If s = 5, then $\mathbf{Q}_2^5 = F \perp U$, where F is a hyperbolic plane and U a three-dimensional anisotropic subspace, with orthogonal basis (u_1, u_2, u_3) satisfying $q_0(u_1) = -1, q_0(u_2) = -\sigma = q_0(u_3) \cdot \left(\sigma = \frac{1}{c^2 + d^2} \text{ and } a, b, c, d \in \mathbf{Q}_2 \text{ such that } a^2 + b^2 + c^2 + d^2 + 1 = 0\right)$.

Therefore $C_+(U,q_0) \simeq \left(\frac{-\sigma_1-\sigma}{\mathbf{Q}_2}\right) \simeq \mathbf{H}_2$; C_+ stands for the even subalgebra. But in $C(U,q_0), (u_1u_2u_3)^2 = \sigma^2$ is a square in \mathbf{Q}_2 ; therefore $C(U,q_0) \simeq \mathbf{H}_2 \oplus \mathbf{H}_2$. Furthermore $C(\mathbf{Q}_2^5,q_0) \simeq C(F,q_0) \otimes_2 C(U,q_0) \simeq M(2,\mathbf{H}_2) \oplus M(2,\mathbf{H}_2)$, because $C(F,q_0) \simeq M(2,\mathbf{Q}_2)$. If s = 6, then $\mathbf{Q}_2^6 = F \perp U$, where F is a hyperbolic space of dimension 4 and U a two-dimensional anisotropic subspace with an orthogonal basis (u_1,u_2) satisfying $q(u_1) = -\sigma = q(u_2)$. Therefore $C(U,q_0) \simeq \left(\frac{-\sigma_1-\sigma}{\mathbf{Q}_2}\right) \simeq \mathbf{H}_2$. And consequently $C(\mathbf{Q}_2^6,q_0) \simeq C(F,q_0) \otimes_2 C(U,q_0) \simeq M(2^2,\mathbf{H}_2)$.

If s = 7, then $\mathbf{Q}_2^7 = F \perp U$, where F is a hyperbolic space of dimension 6 and $U = \mathbf{Q}_2 u$, with $q_0(u) = -1$. Hence $C(U, q_0) \simeq \mathbf{Q}_2[i]$ and $C(\mathbf{Q}_2^7, q_0) \simeq M(2^3, \mathbf{Q}_2[i])$. One deduces the isomorphisms of the theorem from $C(\mathbf{Q}_2^n, q_0) \simeq M(2^{4m}, \mathbf{Q}_2) \otimes_2 C(\mathbf{Q}_2^s, q_0)$.

N.B: A classical way to prove the above theorems is based on the isomorphisms $C(K^{n+2}, q_0) \simeq C(K^n, -q_0) \otimes C(K^2, q_0)$ and $C(K^{n+2}, -q_0) \simeq C(K^n, q_0) \otimes C(K^2, -q_0)$ which give first 8-periodicity, etc ...

 $(-q_0$ is the opposite of the standard quadratic form q_0)

III - THE FAMILIES OF P-ADIC CLIFFORD ALGEBRAS

III-1. Equivalent classes of the p-adic quadratic forms

Let $a, b \in \mathbf{Q}_p^* = \mathbf{Q}_p \setminus \{0\}$. The Hilbert symbol (a, b) is defined by (a, b) = 1 if the quadratic form of rank 3, $q'(x) = x_0^2 - ax_1^2 - bx_2^2$ is isotropic (a, b) = -1 otherwise.

N.B.
$$(a,b) = 1$$
 iff $\left(\frac{a,b}{\mathbf{Q}_p}\right) \simeq M(2,\mathbf{Q}_p).$

Let *E* be a vector space over \mathbf{Q}_p of dimension *n*. Let us consider a regular quadratic form *q* over *E*. If $(e_j)_{1 \leq j \leq n}$ is an orthogonal basis of *E* and $a_j = q(e_j)$; then the discriminant d(q) of *q* is equal to $a_1 \ldots a_n$ in the group $M_p = \mathbf{Q}_p^*/\mathbf{Q}_p^{*2}$. Let $\epsilon(q) = \prod_{1 \leq i < j \leq n} (a_i, a_j)$.

Theorem A

(i) The p-adic regular quadratic forms q and q' of rank n are equivalent iff d(q) = d(q') and $\epsilon(q) = \epsilon(q')$.

(ii) Let $d \in M_p$ and $\epsilon = \pm 1$. There exists a p-adic regular quadratic form q such that d(q) = d and $\epsilon(q) = \epsilon$ iff

(a) n = 1 and $\epsilon = 1$ (b) n = 2 and $(d, \epsilon) \neq (-1, -1)$ (c) $n \ge 3$

Proof: cf. [5]

According to that proof of Theorem A, one can give, explicitly, representatives of the equivalence classes of p-adic regular quadratic forms.

Let us recall that $M_2 = \{\pm 1, \pm 2, \pm 5, \pm 10\}$ and $M_p = \{1, p, \omega, \omega p\}$ if $p \neq 2$, where ω is a unit such that $\binom{\omega}{p} = -1$; $\binom{-}{p}$ = the Legendre symbol. Furthermore -1 = 1 in M_p if $p \equiv 1 \pmod{4}$ and $M_p = \{1, p, -1, -p\}$ if $p \equiv 3 \pmod{4}$.

We are content ourself here, with the primes p different from 2. Then a complete set of representatives of the equivalent classes of regular p-adic quadratic forms is obtained as follows. (a) $\underline{n=1}$

Then $q^a(x) = ax^2, a \in M_p$; and the Clifford algebras $C(\mathbf{Q}_p, q^a)$ are isomorphic respectively to $\mathbf{Q}_p \oplus \mathbf{Q}_p$, $\mathbf{Q}_p[\sqrt{p}]$, $\mathbf{Q}_p[\sqrt{\omega}]$ and $\mathbf{Q}_p[\sqrt{\omega p}]$.

(b) n = 2

Then we have over \mathbf{Q}_p^2 (with $\omega = -1$ if $p \equiv 3 \pmod{4}$) $q_0(x) = x_1^2 + x_2^2$ $q_4(x) = p \ x_1^2 + \omega \ p \ x_2^2$ if $p \equiv 1 \pmod{4}$ $q_1(x) = x_1^2 + p \ x_2^2$ (resp. $q_4(x) = p \ x_1^2 + p \ x_2^2$ if $p \equiv 3 \pmod{4}$)) $q_2(x) = \omega x_1^2 + \omega \ p \ x_2^2$ $q_5(x) = x_1^2 + \omega \ p \ x_2^2$ $q_3(x) = x_1^2 + \omega \ x_2^2$ Furthermore $\epsilon(q_\ell) = 1$ if $\ell = 0, 1, 3, 5$ and $\epsilon(q_\ell) = -1$ if $\ell = 2, 4, 6$.

N.B: If p = 2, then for n = 2, one has

8 regular quadratic forms q such that $\epsilon(q) = 1$ and 7 regular quadratic forms q such that $\epsilon(q) = -1$.

(c) $\underline{n=3}$ If (e_1, e_2, e_3) is the canonical basis of \mathbf{Q}_p^3 , then

• $q'_{\ell}(x) = q_{\ell}(x_1e_1 + x_2e_2) + x_3^2, \ 0 \le \ell \le 6$

• $q'_7(x) = p \ x_1^2 + \omega x_2^2 + \omega \ p \ x_3^2 = q_6(x_1e_1 + x_2e_2) + \omega \ p \ x_3^2 \text{ if } p \equiv 1 \pmod{4}$ resp.

•
$$q'_7(x) = p \ x_1^2 - x_2^2 + p \ x_3^2 = q_6(x_1e_1 + x_2e_2) + p \ x_3^2$$
 if $p \equiv 3 \pmod{4}$
Furthermore $d(q'_\ell) = d(q_\ell), \epsilon(q'_\ell) = \epsilon(q_\ell), \ 0 \le \ell \le 6$ and $d(q'_7) = -1, \epsilon(q'_7) = -1$.

(d) $\underline{n \ge 4}$ Let $(e_j)_{1 \le j \le n}$ be the canonical basis of \mathbf{Q}_p^n , then

•
$$q_{\ell}''(x) = q_{\ell}(x_1e_1 + x_2e_2) + \sum_{j=3}^n x_j^2, \ 0 \le \ell \le 6.$$

In other words $q_{\ell}''(x) = q_{\ell}(x_1e_1 + x_2e_2) + q_0\left(\sum_{j=3}^n x_je_j\right)$ i.e. $(\mathbf{Q}_p^n, q_{\ell}'') \simeq (\mathbf{Q}_p^2, q_{\ell}) \perp (\mathbf{Q}_p^{n-2}, q_0), \ 0 \le \ell \le 6$ and Bertin DIARRA

•
$$q_7''(x) = q_7'\left(\sum_{j=1}^3 x_j e_j\right) + \sum_{j=4}^n x_j^2 = q_7'\left(\sum_{j=1}^3 x_j e_j\right) + q_0\left(\sum_{j=4}^n x_j e_j\right)$$

i.e. $(\mathbf{Q}_p^n, q_7'') \simeq (\mathbf{Q}_p^3, q_7') \perp (\mathbf{Q}_p^{n-3}, q_0)$

N.B: p = 2

If n = 3, then the classes of regular quadratic forms have 15 representative forms q'with $\epsilon(q') = 1$, resp. $\epsilon(q') = -1$ and $d(q') \neq -1$, obtained from corresponding representative quadratic forms of ranks 2 by adding the rank 1 form x_3^2 . The other representative form is $q'_{15}(x) = -x_1^2 - x_2^2 - x_3^2$ with $\epsilon(q'_{15}) = -1$ and $d(q'_{15}) = -1$.

And if $n \ge 4$, one proceeds as above.

III - 2 The p-adic Clifford algebras

With the above notations, we have the following concrete propositions

Proposition 3 : $p \neq 2$

(i) $C(\mathbf{Q}_{p}^{2}, q_{\ell}) \simeq M(2, \mathbf{Q}_{p})$ if $\ell = 0, 1, 3, 5.$

(ii)
$$C(\mathbf{Q}_p^2, q_\ell) \simeq \left(\frac{p, \omega}{\mathbf{Q}_p}\right) = \mathbf{H}_p = the \ p\text{-adic quaternion field}, \text{ if } \ell = 2, 4, 6.$$

Proof

(i) Indeed, if $\ell = 0, 1, 3, 5$; then $\epsilon(q_{\ell}) = 1$. Therefore $C(\mathbf{Q}_p^2, q_{\ell}) \simeq M(2, \mathbf{Q}_p)$.

(ii) If $\ell = 2, 4, 6$ then the Clifford algebras $C(\mathbf{Q}_p^2, q_\ell)$ are isomorphic to the quaternion algebras with norm respectively,

$$\begin{split} N_2(z) &= x_0^2 - \omega \ x_1^2 - \omega \ p \ x_2^2 + \omega^2 \ p \ x_3^2 \ ; \\ N_4(z) &= x_0^2 - p \ x_1^2 - \omega \ p \ x_2^2 + \omega \ p^2 \ x_3^2 \ \text{if} \ p \equiv 1 \ (\text{mod.4}) \ ; \\ (\text{resp. } N_4(z) &= x_0^2 - p \ x_1^2 - p \ x_2^2 + p^2 x_3^2 \ \text{if} \ p \equiv 3 \ (\text{mod. 4})) \\ \text{and} \ N_6(z) &= x_0^2 - p \ x_1^2 - \omega \ x_2^2 + \omega \ p x_3^2. \end{split}$$

It is easily seen that these quadratic forms are anisotropic and equivalent. Therefore $C(\mathbf{Q}_p^2, q_2) \simeq C(\mathbf{Q}_p^2, q_4) \simeq C(\mathbf{Q}_p^2, q_6) \simeq \left(\frac{p, \omega}{\mathbf{Q}_p}\right) = \mathbf{H}_p$ is a skew fied. Hence \mathbf{H}_p is the unique quaternion field over \mathbf{Q}_p (according isomorphism). This result obtained directly here is a general result for local fields (cf. [3]).

Proposition 4 : $p \equiv 1$		$\equiv 1 \pmod{2}$	(mod. 4)		
The Clifford algebra $C(\mathbf{Q}_p^3,q'_\ell)$ is isomorphic to					
(i)	$M(2, \mathbf{Q}_p) \oplus M(2, \mathbf{Q}_p)$	\mathbf{Q}_p) if	$\ell = 0$		
(ii)	$M(2, \mathbf{Q}_{p}[\sqrt{p}])$	if	$\ell = 1, 2$		
(iii)	$M(2, \mathbf{Q}_{p}[\sqrt{\omega}])$	if	$\ell = 3, 4$		
(iv)	$M(2, \mathbf{Q}_p[\sqrt{\omega p}])$	if	$\ell = 5, 6$		
(v)	$\mathbf{H}_{p} \oplus \mathbf{H}_{p}$	if	$\ell = 7$		

Similarly we have

Proposition 4': $p \equiv 3 \pmod{4}$

The Clifford algebra $C(Q_p^3, q_\ell)$ is isomorphic to

(i)	$M(2, \mathbf{Q}_p[i])$	if	$\ell = 0, 4$
(ii)	$M(2, \mathbf{Q}_p[\sqrt{-p} \])$	if	$\ell = 1, 2$
(iii)	$M(2, \mathbf{Q}_p) \oplus M(2, \mathbf{Q}_p)$	if	$\ell = 3$
(iv)	$M(2, \mathbf{Q}_p[\sqrt{p}])$	if	$\ell = 5, 6$
(v)	$\mathbf{H}_p \oplus \mathbf{H}_p$	if	$\ell = 7$

Proof of Propositions 4 and 4'

Let us recall that if (E,q) is a regular quadratic space over a field K with n = dimEodd, then $C(E,q) \simeq Z \otimes C_+(E,q)$, where Z is the centre of C(E,q) and $C_+(E,q)$ the subalgebra of even elements. Furthermore, if (e_1, \ldots, e_n) is an orthogonal basis of (E,q)then $u = e_1 \ldots e_n$ is such that $u^2 = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} d(q)$ and Z = K[u].

In particular for n = 3 and $q(x) = \alpha x_1^2 + \beta x_2^2 + \gamma x_3^2$, we have $e_1^2 = \alpha, e_2^2 = \beta$, $e_3^2 = \gamma; u^2 = -\alpha\beta\gamma = \delta \neq 0$ and $C_+(E,q) = < 1, e_1e_2, e_1e_3, e_2e_3 >=$ subspace generated by $1, \ldots, e_2e_3$. Put $E_1 = e_1e_2, E_2 = e_1e_3, E_3 = -\alpha e_2e_3$, hence $C_+(E,q) = < 1, E_1, E_2, E_3 >$ with $E_1^2 = -\alpha\beta, E_2^2 = -\alpha\gamma, E_1E_2 = E_3 = -E_2E_1$. Therefore $C_+(E,q) \simeq \left(\frac{-\alpha\beta, -\alpha\gamma}{K}\right)$. Consequently (1) if $\delta \in K^{*2}$, then $Z \simeq K \oplus K$ and $C(E,q) \simeq \left(\frac{-\alpha\beta, -\alpha\gamma}{K}\right) \oplus \left(\frac{-\alpha\beta, -\alpha\gamma}{K}\right)$ (2) if $\delta \notin K^{*2}$, then Z = K[u] is a field and $C(E,q) \simeq \left(\frac{-\alpha\beta, -\alpha\gamma}{K[u]}\right)$.

Applying these remarks to Propositions 4 and 4', one finds the desired isomorphisms. For example if $p \equiv 1 \pmod{4}$ and $\ell = 2$, then $\delta = -\omega^2 p = (i\omega)^2 p$ and $Z = \mathbf{Q}_p[\sqrt{p}]$, hence
$$\begin{split} C(\mathbf{Q}_p^3, q_2') &\simeq \left(\frac{-\omega^2 p, -\omega}{\mathbf{Q}_p[\sqrt{p}]}\right) = \left(\frac{p, \omega}{\mathbf{Q}_p[\sqrt{p}]}\right) \simeq M(2, \mathbf{Q}_p[\sqrt{p}]) : \widetilde{q}(v) = p \ x^2 + \omega y^2 \text{ represents} \\ 1 \text{ over } \mathbf{Q}_p[\sqrt{p}]. \text{ Also if } \ell = 7, \text{ then } \delta = -p^2 \omega^2 = (i\omega p)^2, \text{ hence } Z \simeq \mathbf{Q}_p \oplus \mathbf{Q}_p \text{ and since} \\ \left(\frac{-p\omega, -\omega p^2}{\mathbf{Q}_p}\right) \simeq \left(\frac{p\omega, \omega}{\mathbf{Q}_p}\right) \simeq \mathbf{H}_p \text{ we have } C(\mathbf{Q}_p^3, q_1') \simeq \mathbf{H}_p \oplus \mathbf{H}_p. \end{split}$$

In the case $p \equiv 3 \pmod{4}$, for example if $\ell = 0 (resp.\ell = 3)$ we have $\delta = -1$ (resp. = 1) and $Z \simeq \mathbf{Q}_p[i], (resp.Z \simeq \mathbf{Q}_p \oplus \mathbf{Q}_p)$. Hence $C(\mathbf{Q}_p^3, q'_0) \simeq \left(\frac{-1, -1}{\mathbf{Q}_p[i]}\right) \simeq M(2, \mathbf{Q}_p[i]), \left(resp.C(\mathbf{Q}_p^3, q'_3) \simeq \left(\frac{-1, -1}{\mathbf{Q}_p}\right) \oplus \left(\frac{-1, 1}{\mathbf{Q}_p}\right) \simeq M(2, \mathbf{Q}_p) \oplus M(2, \mathbf{Q}_p)\right).$

The other verifications are left to the reader.

Lemma 2:
$$p \neq 2$$

 $C(\mathbf{Q}_p^4, q_7'') \simeq M(2, \mathbf{H}_p).$

Indeed, since $q_7'' = p \ x_1^2 + \omega \ x_2^2 + \omega' \ p \ x_3^2 + x_4^2$ where $\omega' = \omega$ if $p \equiv 1 \pmod{4}$ and $\omega = -1, \omega' = 1$ if $p \equiv 3 \pmod{4}$; we have $C(\mathbf{Q}_7^4, q_7'') \simeq \left(\frac{p, \omega}{\mathbf{Q}_p}\right) \otimes_2 \left(\frac{\omega' p, 1}{\mathbf{Q}_p}\right) \simeq \mathbf{H}_p \otimes_2 M(2, \mathbf{Q}_p) \simeq M(2, \mathbf{H}_p).$

Proof:

 1°) $\underline{n=2m}$

Notice that $C(\mathbf{Q}_p^n, q_\ell'') \simeq C(\mathbf{Q}_p^{n-2}, q_0) \otimes_2 C(\mathbf{Q}_p^2, q_\ell), 0 \leq \ell \leq 6$. But by Proposition 3, we have $C(\mathbf{Q}_p^2, q_\ell) \simeq M(2, \mathbf{Q}_p)$ if $\ell = 0, 1, 3, 5$ and $C(\mathbf{Q}_p^2, q_\ell) \simeq \mathbf{H}_p$ if $\ell =$

2,4,6. Since $C(\mathbf{Q}_p^{n-2}, q_0) \simeq M(2^{m-1}, \mathbf{Q}_p)$ by Theorem 1 - (i) - , we have $C(\mathbf{Q}_p^n, q_\ell'') \simeq M(2^{m-1}, \mathbf{Q}_p) \otimes_2 M(2, \mathbf{Q}_p) \simeq M(2^m, \mathbf{Q}_p)$ if $\ell = 0, 1, 3, 5$ and $C(\mathbf{Q}_p^n, q_\ell'') \simeq M(2^{m-1}, \mathbf{Q}_p) \otimes_2 \mathbf{H}_p \simeq M(2^{m-1}, \mathbf{H}_p)$ if $\ell = 2, 4, 6$.

For $\ell = 7$, applying Lemma 2 and Theorem 1 - (i) - we obtain $C(\mathbf{Q}_p^n, q_\ell'') \simeq C(\mathbf{Q}_p^{n-4}, q_0) \otimes_2 C(\mathbf{Q}_p^4, q_\ell'') \simeq M(2^{m-2}, \mathbf{Q}_p) \otimes_2 M(2, \mathbf{H}_p) \simeq M(2^{m-1}, \mathbf{H}_p).$

$$2^{o}) \qquad \underline{n=2m+1}$$

If $1 \leq \ell \leq 6$, then we have $C(\mathbf{Q}_p^n, q_\ell') \simeq C(\mathbf{Q}_p^{n-3}, q_0) \otimes_2 C(\mathbf{Q}_p^3, q_\ell') \simeq M(2^{m-1}, \mathbf{Q}_p) \otimes_2 C(\mathbf{Q}_p^3, q_\ell')$.

Applying Proposition 4, we obtain the isomorphism $C(\mathbf{Q}_p^n, q_\ell') \simeq M(2^m, \mathbf{Q}_p[\sqrt{\tau}])$ as claimed.

The case $\ell = 0$ is Theorem 1 - (ii) -

If $\ell = 7$, then $C(\mathbf{Q}_p^3, q_7') \simeq \mathbf{H}_p \oplus \mathbf{H}_p$ and $C(\mathbf{Q}_p^n, q_7'') \simeq M(2^{m-1}, \mathbf{Q}_p) \otimes_2 (\mathbf{H}_p \oplus \mathbf{H}_p) \simeq M(2^{m-1}, \mathbf{H}_p) \oplus M(2^{m-1}, \mathbf{H}_p).$

Theorem 5 : $p \equiv 3(mod.4)$; $n \geq 4$

The Clifford algebra $C(\mathbf{Q}_p^n, q_\ell^n)$ is isomorphic to the following matrix algebra or direct sum of two matrix algebras.

$$\begin{array}{lll} 1^{o}) & \underline{\mathbf{n}} = 4\underline{\mathbf{m}} \\ (i) & M(2^{2m}, \mathbf{Q}_{p}) & \textit{if} & \ell = 0, 1, 3, 5 \\ (ii) & M(2^{2m-1}, \mathbf{H}_{p}) & \textit{if} & \ell = 2, 4, 6, 7 \end{array}$$

 $\begin{array}{lll} 4^{o}) & \underline{\mathbf{n} = 4\mathbf{m} + 3} \\ (i) & M(2^{2m+1}, \mathbf{Q}_{p}) \oplus M(2^{2m+1}, \mathbf{Q}_{p}) & \textit{if} \quad \ell = 3 \\ (ii) & M(2^{2m+1}, \mathbf{Q}_{p}[\sqrt{\tau}]) & \textit{if} \quad \ell = 0, 1, 2, 4, 5, 6, \\ \textit{with } \tau = -1 & (resp. - p, res.p) & \textit{for} \quad \ell = 0, 4 & (resp. \ \ell = 1, 2, resp. \ \ell = 5, 6). \\ (iii) & M(2^{2m}, \mathbf{H}_{p}) \oplus M(2^{2m}, \mathbf{H}_{p}) & \textit{if} \quad \ell = 7. \end{array}$

Proof:

1°) $\underline{n = 4m}$

As in Lemma 2, it is readily seen that $C(\mathbf{Q}_p^4, q_\ell'') \simeq M(2^2, \mathbf{Q}_p)$ if $\ell = 0, 1, 3, 5$ and $C(\mathbf{Q}_p^4, q_\ell'') \simeq M(2, \mathbf{H}_p)$ if $\ell = 2, 4, 6, 7$.

If n = 4m, $m \ge 2$, we have $C(\mathbf{Q}_p^n, q_\ell'') \simeq C(\mathbf{Q}_p^{n-4}, q_0) \otimes_2 C(\mathbf{Q}_p^4, q_\ell'')$. But Theorem 3 - (i) - gives $C(\mathbf{Q}_p^{n-4}, q_0) \simeq M(2^{2m-2}, \mathbf{Q}_p)$. Therefore $C(\mathbf{Q}_p^n, q_\ell'') \simeq M(2^{2m-2}, \mathbf{Q}_p) \otimes_2 M(2^2, \mathbf{Q}_p) \simeq M(2^{2m}, \mathbf{Q}_p)$ if $\ell = 0, 1, 3, 5$ and $C(\mathbf{Q}_p^n, q_\ell'') \simeq M(2^{2m-2}, \mathbf{Q}_p) \otimes_2 M(2^2, \mathbf{H}_p) \simeq M(2^{2m-1}, \mathbf{H}_p)$ if $\ell = 2, 4, 6, 7$.

$2^{o}) \qquad \underline{n = 4m+1}$

With notations used in the proof of Propositions 4 and 4' we have $C(\mathbf{Q}_p^n, q_\ell'') \simeq Z \otimes C_+(\mathbf{Q}_p^n, q_\ell'')$ and $Z = \mathbf{Q}_p[u]$ where $u^2 = d(q_\ell'')$. Hence Z is isomorphic to $\mathbf{Q}_p \oplus \mathbf{Q}_p$ if $\ell = 0, 4$; resp. $\mathbf{Q}_p[\sqrt{p}]$ if $\ell = 1, 2$; resp. $\mathbf{Q}_p[\sqrt{-1}]$ if $\ell = 3, 7$; resp. $\mathbf{Q}_p[\sqrt{-p}]$ if $\ell = 5, 6$. On the other hand $C_+(\mathbf{Q}_p^n, q_\ell'') \simeq C_+(\mathbf{Q}_p \cdot x_n, x_n^2) \otimes C(\mathbf{Q}_p^{n-1}, -q_\ell'') \simeq C(\mathbf{Q}_p^{n-1}, -q_\ell'') \simeq M(2^{2m}, \mathbf{Q}_p)$. Hence $C(\mathbf{Q}_p^n, q_\ell'') \simeq Z \otimes M(2^{2m}, \mathbf{Q}_p)$ which proves the isomorphisms.

$3^{o}) \qquad \underline{n = 4m+2}$

Since n - 2 = 4m, we obtain $C(\mathbf{Q}_p^n, q_\ell'') \simeq C(\mathbf{Q}_p^{4m}, q_0) \otimes_2 C(\mathbf{Q}_p^2, q_\ell)$.

By Theorem 2 - (i) - one has $C(\mathbf{Q}_p^{4m}, q_0) \simeq M(2^{2m}, \mathbf{Q}_p)$ and by Proposition 3, $C(\mathbf{Q}_p^2, q_\ell) \simeq M(2, \mathbf{Q}_p)$ if $\ell = 0, 1, 3, 5$ and $C(\mathbf{Q}_p^2, q_\ell) \simeq \mathbf{H}_p$ if $\ell = 2, 4, 6$. It follows that $C(\mathbf{Q}_p^n, q_\ell') \simeq M(2^{2m+1}, \mathbf{Q}_p)$ if $\ell = 0, 1, 3, 5$ and $C(\mathbf{Q}_p^n, q_\ell') \simeq M(2^{2m}, \mathbf{H}_p)$ if $\ell = 2, 4, 6$.

For the case $\ell = 7$, since n - 4 = 4(m - 1) + 2 we have $C(\mathbf{Q}_p^n, q_7'') \simeq C(\mathbf{Q}_p^{n-4}, q_0) \otimes_2 C(\mathbf{Q}_p^4, q_\ell'')$. By theorem 2 - (iii) -, $C(\mathbf{Q}_p^{n-4}, q_0) \simeq M(2^{2m+1}, \mathbf{Q}_p)$ and by Lemma 2, $C(\mathbf{Q}_p^4, q_7'') \simeq M(2, \mathbf{H}_p)$. Hence $C(\mathbf{Q}_p^n, q_7'') \simeq M(2^{2m}, \mathbf{H}_p)$.

Notice that in 1°) and 3°) the exponent of 2 is $\frac{n}{2}$.

 $4^o) \qquad \underline{n=4m+3}$

Here, n-3 = 4m and $C(\mathbf{Q}_p^n, q_\ell') \simeq C(\mathbf{Q}_p^{4m}, q_0) \otimes_2 C(\mathbf{Q}_p^3, q_\ell')$. But $C(\mathbf{Q}_p^{4m}, q_0) \simeq M(2^{2m}, \mathbf{Q}_p)$ and by Proposition 4', $C(\mathbf{Q}_p^3, q_\ell')$ is isomorphic to $M(2, \mathbf{Q}_p) \oplus M(2, \mathbf{Q}_p)$ if $\ell = 3$, resp. $\mathbf{H}_p \oplus \mathbf{H}_p$ if $\ell = 7$, resp. $M(2, \mathbf{Q}_p[\sqrt{\tau}])$ if $\ell = 0, 1, 2, 4, 5, 6$ with $\tau = -1$ for $\ell = 0, 4$; $\tau = -p$ for 1, 2 and $\tau = p$ for $\ell = 5, 6$.

Taking tensor product we obtain the desired isomorphisms.

Remark :

As for $C(\mathbf{Q}_p^n, q_0)$, for the other Clifford algebras $C(\mathbf{Q}_p^n, q_\ell'')$ we have 2-periodicity when $p \equiv 1 \pmod{4}$ and 4-periodicity when $p \equiv 3 \pmod{4}$.

N.B. When p = 2, in the same way one can give as obove the table of the 2-adic Clifford algebras.

REFERENCES

- [1] R. DEHEUVELS, Formes quadratiques et groupes classiques, P.U.F. Paris 1981.
- [2] B. DIARRA, Remarques sur les matrices orthogonales (resp. symétriques) à coefficients p-adiques, Ann. Sci. "Blaise Pascal", Clermont II, sér. Math., Fasc. 26è -1990 - p. 31-50.
- [3] T.Y. LAM, The algebraic theory of quadratic forms, W.C. Benjamin, Inc. Reading, Massachusetts - 1973.
- [4] P. RIBENBOIM, L'arithmétique des corps, Hermann Paris 1972.
- [5] J.P. SERRE, Cours d'arithmétique, P.U.F. Paris 1970.

manuscrit reçu en juin 1993

Université Blaise Pascal, Complexe Scientifique des Cézeaux, Laboratoire de Mathématiques Pures, 63177 AUBIERE Cedex.