Annales mathématiques Blaise Pascal

BERTIN DIARRA p-adic Clifford algebras

Annales mathématiques Blaise Pascal, tome 1, n ${ }^{\circ} 1$ (1994), p. 85-103
http://www.numdam.org/item?id=AMBP_1994_1_1_85_0
© Annales mathématiques Blaise Pascal, 1994, tous droits réservés.
L'accès aux archives de la revue «Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m b a m}^{\prime}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

P-ADIC CLIFFORD ALGEBRAS

Bertin DIARRA

In a previous paper [2], we gave the index of the standard quadratic form of rank n over the field of p-adic numbers. Here, we recover, as a consequence, the structure of the associated Clifford algebra.

The classification of all (equivalence classes of) quadratic forms over a p-adic field is well known (cf.[5]), with this classification, one is able to classify all p-adic Clifford algebras.

I - INTRODUCTION

Let K be a field of characteristic $\neq 2$ and E a vector space over K of finite dimension n. A mapping $q: E \rightarrow K$ is a quadratic form over E if there exists a bilinear symmetric form $f: E \times E \rightarrow K$ such that

$$
q(x)=f(x, x) \quad \text { and } \quad f(x, y)=\frac{1}{2}[q(x+y)-q(x)-q(y)]
$$

We assume that q is regular, that is f is non-degenerated.
An element $x \in E$ is isotropic if $q(x)=0$. Let V be a subspace of E; the orthogonal subspace of V is the set $V^{\perp}=\{y \in E / f(x, y)=0$ for all $x \in V\}$. The subspace V is called totally isotropic if $V \subset V^{\perp}$. It is well known (cf. for example [1]) that any totally isotropic subspace is contained in a maximal totally isotropic subspace. The maximal totally isotropic subspaces have the same dimension ν, called the index of q and $2 \nu \leq n$. If $2 \nu=n$, then (E, q) is called a hyperbolic space and for the case $n=2$, one says hyberbolic plane. The index $\nu=0$ iff $q(x) \neq 0$ for $x \neq 0$ i.e. (E, q) is anisotropic.

Let $E=K^{n}$ and $B=\left(e_{1}, \ldots, e_{n}\right)$ be the canonical basis of E; the standard quadratic form q_{0} is the quadratic form associated to the bilinear form

$$
<x, y>=\sum_{j=1}^{n} x_{j} y_{j} \quad ; \quad \text { where } x=\sum_{j=1}^{n} x_{j} e_{j} \text { and } y=\sum_{j=1}^{n} y_{j} e_{j}
$$

hence $q_{0}(x)=<x, x>=\sum_{j=1}^{n} x_{j}^{2}$.
Let (E, q) be a quadratic space, possibly non regular ; an algebra $C=C(E, q)$ over K, with unit 1, is said to be a Clifford algebra for (E, q) if
(i) There exists a one-to-one linear mapping $\rho: E \rightarrow C$ such that $\rho(x)^{2}=q(x) \cdot 1$.
(ii) For every algebra A with unit 1 and linear mapping $\phi: E \rightarrow A$ satisfying $\phi(x)^{2}=q(x) \cdot 1$, there exists an algebra homomorphism $\tilde{\phi}: C \rightarrow A$ such that $\tilde{\phi} \circ \rho=\phi$.

Clifford algebra exists and is unique up algebra isomorphism (cf. for instance [1] or [3]). For example, let $K<X_{1}, \cdots, X_{n}>$ be the free algebra with free system of generators X_{1}, \cdots, X_{n} and I be the two-sided ideal of $K<X_{1}, \cdots, X_{n}>$ generated by $X_{i} X_{j}+X_{j} X_{i}-2 f\left(e_{i}, e_{j}\right) \cdot 1,1 \leq i, j \leq n$, where $\left(e_{1}, \cdots, e_{n}\right)$ is an orthogonal basis of (E, q); then $C(E, q)=K<X_{1}, \cdots, X_{n}>/ I$.

II - THE P-ADIC STANDARD QUADRATIC FORM q_{0}

II - 1 . The index of q_{0}

Let p be a prime number and $\mathbf{Q}_{\boldsymbol{p}}$ be the p-adic field i.e. the completion of the field of rational numbers \mathbf{Q} for the p-adic absolute value.

We denote by $[\alpha]$ the integral part of the real number α.

Proposition 1 [2]

The standard quadratic form $q_{0}(x)=\sum_{j=1}^{n} x_{j}^{2}$ over $E=\mathbf{Q}_{p}^{n}$ has index
(i) $\quad \nu=\left[\frac{n}{2}\right] \quad$ if $p \equiv 1 \quad(\bmod .4)$
(ii) $\quad \nu=\left[\frac{n}{2}\right] \quad$ if $p \equiv 3$ (mod. 4) and $n \neq 2 \quad$ (mod.4)
(iii) $\nu=\left[\frac{n}{2}\right]-1 \quad$ if $p \equiv 3$ (mod. 4) and $n \equiv 2 \quad$ (mod.4)

Proof :

$\left.1^{\circ}\right)$ If $p \equiv 1(\bmod .4)$, it is well known that $i=\sqrt{-1} \in \mathbf{Q}_{p}$. Let $\nu=\left[\frac{n}{2}\right]$ and $\epsilon_{j}=$ $i e_{2 j-1}+e_{2 j}, 1 \leq j \leq \nu$, then $V=\bigoplus_{j=1}^{\nu} \mathbf{Q}_{p} \epsilon_{j}$ is a maximal totally isotropic subspace of $E=\mathbf{Q}_{p}^{\boldsymbol{n}}$.
$\left.2^{\circ}\right) \quad p \equiv 3$ (mod.4)
Therefore $i \notin \mathbf{Q}_{p}$ and if $n=2$ the index of q_{0} is 0 .
If $n=3$, applying Chevalley's theorem and Newton's method to $q_{0}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ we find $a, b \in \mathbf{Q}_{p}, a \neq 0, b \neq 0$, such that $a^{2}+b^{2}+1=0$. Therefore $\epsilon_{1}=a e_{1}+b e_{2}+e_{3}$ is isotropic in \mathbf{Q}_{p}^{3} and $\nu=\left[\frac{3}{2}\right]=1$.
(a) For $n=4 m$, put $\epsilon_{2 j-1}=a e_{4 j-3}+b e_{4 j-2}+e_{4 j-1}$ and $\epsilon_{2 j}=-b \dot{e}_{4 j-3}+$ $a e_{4 j-2}+e_{4 j}, \quad 1 \leq j \leq m$. It is clear that $q_{0}\left(\epsilon_{2 j-1}\right)=q_{0}\left(\epsilon_{2 j}\right)=a^{2}+b^{2}+1=0$ and $<\epsilon_{2 j-1}, \epsilon_{2 j}>=-a b+a b=0$. Therefore $V=\bigoplus_{j=1}^{m}\left(\mathbf{Q}_{p} \epsilon_{2 j-1} \oplus \mathbf{Q}_{p} \epsilon_{2 j}\right)$ is a totally isotropic subspace of Q_{p}^{n} and $\nu=2 m=\left[\frac{n}{2}\right]$.

If $n=4 m+1$, with the same notations as above the subspace V is totally isotropic in Q_{p}^{n} and $\nu=2 m=\left[\frac{n}{2}\right]$.

On the other hand if $n=4 m+3$ the subspaces $V=\bigoplus_{j=1}^{m}\left(\mathbf{Q}_{p} \epsilon_{2 j-1} \oplus \mathbf{Q}_{p} \epsilon_{2 j}\right)$ and $\mathbf{Q}_{p} \epsilon_{2 m+1}$ where $\epsilon_{2 m+1}=a e_{4 m+1}+b e_{4 m+2}+e_{4 m+3}$, are totally isotropic and orthogonal. Therefore $V_{\circ}=V \oplus \mathbf{Q}_{p} \epsilon_{2 m+1}$ is totally isotropic and $\nu=2 m+1=\left[\frac{n}{2}\right]$.
(b) If $n=4 m+2$, let $V=\bigoplus_{j=1}^{m}\left(\mathbf{Q}_{p} \epsilon_{2 j-1} \oplus \mathbf{Q}_{p} \epsilon_{2 j}\right)$ be as obove. It. is easy to verify that if $x \in \mathbf{Q}_{p}^{n}$ is isotropic and x is orthogonal to V then $x \in V$. Therefore V is a maximal totally isotropic subspace of Q_{p}^{n} and $\nu=2 m=\left[\frac{n}{2}\right]-1$.

Proposition 2: Let $p=2$.
Let $n=8 m+s, 0 \leq s \leq 7$.
The standard quadratic form $q_{0}(x)=\sum_{j=1}^{n} x_{j}^{2}$ over $E=\mathbf{Q}_{2}^{n}$ has index
(i) $\nu=4 m \quad$ if $0 \leq s \leq 4$
(ii) $\nu=4 m+t$ if $s=4+t \quad, \quad 1 \leq t \leq 3$

Proof :

1°) If $1 \leq n \leq 4$, then the index of q_{0} is 0.
Indeed, this is clear when $n=1$.
If $n=2$, let $x=x_{1} e_{1}+x_{2} e_{2} \in \mathbf{Q}_{2}^{2}$ be isotropic and different from 0 i.e. $q_{0}(x)=$ $x_{1}^{2}+x_{2}^{2}=0$ and say $x_{2} \neq 0$. Therefore $1+a^{2}=0$ with $a=x_{1} x_{2}^{-1}$ and $v_{2}(a)=0$ i.e. $a=1+2^{\mu} a_{0}, \mu \geq 1, v_{2}\left(a_{0}\right)=0$.
Then $1+a^{2}=2+2^{\mu+1} a_{0}+2^{2 \mu} a_{0}^{2}=0$ or $1+2^{\mu} a_{0}+2^{2 \mu-1} a_{0}=0$; in other words $1 \equiv 0$ (mod.2) ; a contradiction.

In the same way, one shows that if $n=3$ or 4 , the index of q_{0} is 0 .
2°)

$\underline{n}=5$

Let $x_{0}=2 e_{1}+e_{2}+e_{3}+e_{4}+e_{5} \in \mathbf{Q}_{2}^{5}$, then $q_{0}\left(x_{0}\right)=8$ and $\frac{\partial q_{0}}{\partial x_{j}}\left(x_{0}\right)=2 \not \equiv 0(\bmod .4)$, $2 \leq j \leq 5$
By Newton's method there exists
$x=\sum_{j=1}^{5} x_{j} e_{j} \in \mathbf{Q}_{2}^{5}$ such that $q_{0}(x)=0 \quad$ with $\quad x_{1} \equiv 2(\bmod .8), x_{j} \equiv 1(\bmod .8), 2 \leq$ $j \leq 5$.

Put $a=x_{1} x_{5}^{-1}, b=x_{2} x_{5}^{-1}, c=x_{3} x_{5}^{-1}, d=x_{4} x_{5}^{-1}$, then $a^{2}+b^{2}+c^{2}+d^{2}+1=0$.
The two following elements of \mathbf{Q}_{2}^{5}

$$
\begin{aligned}
& \epsilon_{1}=a e_{1}+b e_{2}+c e_{3}+d e_{4}+e_{5} \\
& \epsilon_{1}^{\prime}=-a e_{1}-b e_{2}-c e_{3}-d e_{4}+e_{5}
\end{aligned}
$$

are isotropic with $\left\langle\epsilon_{1}, \epsilon_{1}^{\prime}\right\rangle=2$. Hence $H=\mathbf{Q}_{2} \epsilon_{1} \oplus \mathbf{Q}_{2} \epsilon_{1}^{\prime}$ is a hyperbolic plane in \mathbf{Q}_{2}^{5}. Let $U=H^{\perp}$ be the orthogonal subspace of H in \mathbf{Q}_{2}^{5}. The following three elements of \mathbf{Q}_{2}^{5} :

$$
\begin{aligned}
& u_{1}=b e_{1}-a e_{2}+d e_{3}-c e_{4} \\
& u_{2}=e_{1}-\frac{a c+b d}{c^{2}+d^{2}} e_{3}+\frac{b c-a d}{c^{2}+d^{2}} e_{4}
\end{aligned}
$$

$$
u_{3}=e_{2}+\frac{a d-b c}{c^{2}+d^{2}} e_{3}-\frac{a c+b d}{c^{2}+d^{2}} e_{4}
$$

are elements of U, with

$$
q_{0}\left(u_{1}\right)=-1, q_{0}\left(u_{2}\right)=-\frac{1}{c^{2}+d^{2}}=q_{0}\left(u_{3}\right)
$$

Furthermore $<u_{i}, u_{j}>=0$ if $1 \leq i \neq j \leq 3$, and $\left(u_{1}, u_{2}, u_{3}\right)$ is a basis of U.
For every $u=y_{1} u_{1}+y_{2} u_{2}+y_{3} u_{3} \in U$ we have $q_{0}(u)=y_{1}^{2} q_{0}\left(u_{1}\right)+y_{2}^{2} q_{0}\left(u_{2}\right)+y_{3}^{2} q_{0}\left(u_{3}\right)=$ $-\frac{c^{2} y_{1}^{2}+d^{2} y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}{c^{2}+d^{2}}$ and $q_{0}(u)=0$ iff $u=0$ because the standard quadratic form of rank 4 is anisotropic. In other words $\left(U, q_{0}\right)$ is anisotropic and $\mathbf{Q}_{2}^{5}=H \perp U$ is a Witt decomposition of $\left(\mathbf{Q}_{2}^{5}, q_{0}\right)$. Hence the index of q_{0} is 1 .
3°)

$$
\underline{n}=8 \mathrm{~m}+\mathrm{s}, \quad 0 \leq s \leq 4
$$

Put , for $0 \leq j \leq m-1$

$$
\left\{\begin{array}{l}
\epsilon_{j, 1}=a e_{8 j+1}+b e_{8 j+2}+c e_{8 j+3}+d e_{8 j+4}+e_{8 j+5} \tag{1}\\
\epsilon_{j, 2}=-b e_{8 j+1}+a e_{8 j+2}+d e_{8 j+3}-c e_{8 j+4}+e_{8 j+6} \\
\epsilon_{j, 3}=-d e_{8 j+1}+c e_{8 j+2}-b e_{8 j+3}+a e_{8 j+4}+e_{8 j+7} \\
\epsilon_{j, 4}=c e_{8 j+1}+d e_{8 j+2}-a e_{8 j+3}-b e_{8 j+4}+e_{8 j+8}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\epsilon_{j, 1}^{\prime}=-a e_{8 j+1}-b e_{8 j+2}-c e_{8 j+3}-d e_{8 j+4}+e_{8 j+5} \tag{2}\\
\epsilon_{j, 2}^{\prime}=b e_{8 j+1}-a e_{8 j+2}-d e_{8 j+3}+c e_{8 j+4}+e_{8 j+6} \\
\epsilon_{j, 3}^{\prime}=d e_{8 j+1}-c e_{8 j+2}+b e_{8 j+3}-a e_{8 j+4}+e_{8 j+7} \\
\epsilon_{j, 4}^{\prime}=-c e_{8 j+1}-d e_{8 j+2}+a e_{8 j+3}+b e_{8 j+4}+e_{8 j+8}
\end{array}\right.
$$

A straightforward computation shows that $\left.\left\langle\epsilon_{i, k}, \epsilon_{j, l}\right\rangle=0=<\epsilon_{i, k}^{\prime}, \epsilon_{j, l}^{\prime}\right\rangle, 0 \leq i, j \leq$ $m-1 ; 1 \leq k, l \leq 4$ and $\left\langle\epsilon_{j, l}, \epsilon_{j, l}^{\prime}\right\rangle=2 ; 0 \leq j \leq m-1 ; 1 \leq l \leq 4$. Furthermore $\left\langle\epsilon_{i, k}, \epsilon_{j, l}^{\prime}\right\rangle=0$ if $(i, k) \neq(j, l)$.
Hence the subspaces $V=\bigoplus_{\substack{j=0 \\ 1 \leq l \leq 4}}^{m-1} \mathbf{Q}_{2} \epsilon_{j, l} \quad$ and $\quad W=\bigoplus_{\substack{j=0 \\ 1 \leq l \leq 4}}^{m-1} \mathbf{Q}_{2} \epsilon_{j, l}^{\prime}$ are isotropic with $V \cap W=(0)$

Therefore $H=V \oplus W$ is a hyperbolic subspace of $E=\mathbf{Q}_{2}^{8 m+s}$, with $\operatorname{dim} V=\operatorname{dim} W=$ $4 m$.

But $E=E_{m} \perp E_{s}($ orthogonal sum $)$ where $E_{m}=\bigoplus_{j=1}^{8 m} \mathbf{Q}_{2} e_{j}$ and $E_{s}=\bigoplus_{k=1}^{s} \mathbf{Q}_{2} e_{8 m+k} \simeq$ \mathbf{Q}_{2}^{s}.

If $s=0$, we have $E=E_{m}=V \oplus W=H$ and $\left(E, q_{0}\right)$ is a hyperbolic space with index $4 m$.

If $1 \leq s \leq 4 ; E=E_{m} \perp E_{s}$ with $E_{m}=V \oplus W=H$. Since $1 \leq \operatorname{dim} E_{s}=s \leq 4$, the standard quadratic space $\left(E_{s}, q_{0}\right)$ is anisotropic. Consequently $E=(V \oplus W) \perp E_{s}$ is a Witt decomposition of E and the index of q_{0} is 4 m .

$$
\begin{equation*}
\underline{\mathrm{n}}=8 \mathrm{~m}+4+\mathrm{t}, \quad 1 \leq t \leq 3 \tag{o}
\end{equation*}
$$

a) $n=8 m+5$

With the same notations as above, we have $E=E_{m} \perp E_{5}$ where $E_{5}=\bigoplus_{k=1}^{5} \mathbf{Q}_{2} e_{8 m+k} \simeq$ \mathbf{Q}_{2}^{5}.

Let us write, as for $n=5$,

$$
\left\{\begin{array}{l}
\epsilon_{4 m+1}=a e_{8 m+1}+b e_{8 m+2}+c e_{8 m+3}+d e_{8 m+4}+e_{8 m+5} \tag{3}\\
\epsilon_{4 m+1}^{\prime}=-a e_{8 m+1}-b e_{8 m+2}-c e_{8 m+3}-d e_{8 m+4}+e_{8 m+5}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
u_{m+1}=b e_{8 m+1}-a e_{8 m+2}+d e_{8 m+3}-c e_{8 m+4} \tag{4}\\
u_{m+2}=e_{8 m+1}-\frac{a c+b d}{c^{2}+d^{2}} e_{8 m+3}+\frac{b c-a d}{c^{2}+d^{2}} e_{8 m+4} \\
u_{m+3}=e_{8 m+2}+\frac{a d-b c}{c^{2}+d^{2}} e_{8 m+3}-\frac{a c+b d}{c^{2}+d^{2}} e_{8 m+4}
\end{array}\right.
$$

The subspace $U_{5}=\bigoplus_{h=1}^{3} \mathbf{Q}_{2} u_{m+h}$ of E_{5} is anisotropic. On the other hand, $q_{0}\left(\epsilon_{4 m+1}\right)=$ $\left.0=q_{0}\left(\epsilon_{4 m+1}^{\prime}\right) ;<\epsilon_{4 m+1}, \epsilon_{4 m+1}^{\prime}\right\rangle=2$ and $\epsilon_{4 m+1}, \epsilon_{4 m+1}^{\prime}$ are orthogonal to U_{5}. Therefore $V_{0}=V \oplus \mathbf{Q}_{2} \epsilon_{4 m+1}$ and $W_{0}=W \oplus \mathbf{Q}_{2} \epsilon_{4 m+1}^{\prime}$ are isotropic subspaces of E and $E=\left(V_{0} \oplus\right.$ $\left.W_{0}\right) \perp U_{5}$ is a Witt decomposotion of E. Hence the index of q_{0} is $\operatorname{dim} V_{0}=\operatorname{dim} W_{0}=4 m+1$.
(b) $\quad n=8 m+6$.

As before, we have $E=E_{m} \perp E_{6}$ where $E_{6}=\bigoplus_{k=1}^{6} Q_{2} e_{8 m+k} \supset E_{5} ;$ hence $\epsilon_{4 m+1}$ and $\epsilon_{4 m+1}^{\prime} \in E_{6}$.

Let us put

$$
\left\{\begin{array}{l}
\epsilon_{4 m+2}=-b e_{8 m+1}+a e_{8 m+2}+d e_{8 m+3}-c e_{8 m+4}+e_{8 m+6} \tag{5}\\
\epsilon_{4 m+2}^{\prime}=b e_{8 m+1}-a e_{8 m+2}-d e_{8 m+3}+c e_{8 m+4}+e_{8 m+6}
\end{array}\right.
$$

(6)

$$
\left\{\begin{array}{l}
\omega_{m+1}=e_{8 m+1}+\frac{b d-a c}{c^{2}+d^{2}} e_{8 m+3}-\frac{a d+b c}{c^{2}+d^{2}} e_{8 m+4} \\
\omega_{m+2}=e_{8 m+2}-\frac{b+a d}{c^{2}+d^{2}} e_{8 m+3}+\frac{a c-b d}{c^{2}+d^{2}} e_{8 m+4}
\end{array}\right.
$$

The subspace $U_{6}=\mathbf{Q}_{2} \omega_{m+1} \oplus \mathbf{Q}_{2} \omega_{m+2}$ of E_{6} is anisotropic. Moreover, $q_{0}\left(\epsilon_{4 m+2}\right)=$ $\left.0=q_{0}\left(\epsilon_{4 m+2}^{\prime}\right) ;<\epsilon_{4 m+2}, \epsilon_{4 m+2}^{\prime}\right\rangle=2$ and $\epsilon_{4 m+2}, \epsilon_{4 m+2}^{\prime}$ are orthogonal to U_{6}. Therefore $V_{1}=V_{0} \oplus \mathbf{Q}_{2} \epsilon_{4 m+2}$ and $W_{1}=W_{0} \oplus \mathbf{Q}_{2} \epsilon_{4 m+2}^{\prime}$ are isotropic subspaces of E and $E=$ $\left(V_{1} \oplus W_{1}\right) \perp U_{6}$ is a Witt decomposition of E. Hence the index of q_{0} is $\operatorname{dim} V_{1}=\operatorname{dim} W_{1}=$ $4 m+2$.
(c) $\quad n=8 m+7$.

We have $E=E_{m} \perp E_{7}$, where $E_{7}=\bigoplus_{k=1}^{7} \mathbf{Q}_{2} e_{8 m+k} \supset E_{6}$.
Let us write
(7) $\left\{\begin{array}{l}\epsilon_{4 m+3}=-d e_{8 m+1}+c e_{8 m+2}-b e_{8 m+3}+a e_{8 m+4}+e_{8 m+7} \\ \epsilon_{4 m+3}^{\prime}=d e_{8 m+1}-c e_{8 m+2}+b e_{8 m+3}-a e_{8 m+4}+e_{8 m+7}\end{array}\right.$
and

$$
\begin{equation*}
u_{m}=c e_{8 m+1}+d e_{8 m+2}-a e_{8 m+3}-b e_{8 m+4} \tag{8}
\end{equation*}
$$

The subspace $U_{7}=\mathbf{Q}_{2} u_{m}$ of E_{7} is anisotropic. Furthermore $q_{0}\left(\epsilon_{4 m+3}\right)=0=$ $\left.q_{0}\left(\epsilon_{4 m+3}^{\prime}\right) ;<\epsilon_{4 m+3}, \epsilon_{4 m+3}^{\prime}\right\rangle=2$ and $\epsilon_{4 m+3}, \epsilon_{4 m+3}^{\prime}$ are orthogonal to U_{7}. Therefore $V_{2}=$ $V_{1} \oplus \mathbf{Q}_{2} \epsilon_{4 m+2}$ and $W_{2}=W_{1} \oplus \mathbf{Q}_{2} \epsilon_{4 m+2}$ are isotropic subspaces of E and $E=\left(V_{2} \oplus W_{2}\right) \perp U_{7}$ is a Witt decomposition of E. Hence the index of q_{0} is $\operatorname{dim} V_{2}=\operatorname{dim} W_{2}=4 m+3$.

Remark

Let K be a non formally real field. The level of K is the least integer s such that $-1=\sum_{j=1}^{s} a_{j}^{2}$ where $a_{j} \in K, a_{j} \neq 0$. It is well known that $s=2^{r}, r \geq 0$ (c f. [3] or [4]).

The level of a p-adic field is 1 if $p \equiv 1(\bmod 4)$; 2 if $p \equiv 3(\bmod 4)$ and 4 if $p=2$.
If the level of a field K is 1 (resp. 2, resp.4) then the index of the standard quadratic form over K^{n} is given by Proposition 1 - (i) [resp. Prop. 1 - (ii) - (iii), resp. Prop.2].

More generally let K be a field of level $s=2^{r}, r \geq 0$. If we write for any integer $n, n=m 2^{r+1}+a$ where $0 \leq a \leq 2^{r+1}-1$; then the index of the standard quadratic form over K^{n} is
(i) $\nu=m 2^{r}$ if $0 \leq a \leq 2^{r}$
(ii) $\nu=m 2^{r}+t$ if $a=2^{r}+t, \quad 1 \leq t \leq 2^{r}-1$.

II - 2 The Clifford algebra $\quad C\left(Q_{p}^{n}, q_{0}\right)$

The following results can be deduced from a general setting (cf. [3] p. 128-129). Here we establish them by using the computation of the index of q_{0} made in II-1.

Let us recall that if E is a vector space over a field K then the exterior algebra $\wedge(E)$ is the Clifford algebra associated to the null quadratic from over E.

On the other hand, let (E, q) be a regular quadratic space over K. If $E=V \oplus$ W is a hyperbolic space (V and W being maximal totally isotropic subspaces), it is well known that the Clifford algebra $C(E, q)$ is isomorphic to $\operatorname{End}(\wedge(V))$, the space of linear endomorphisms of the vector space $\wedge(V)$. Furthermore the subalgebra of the even elements of $C(E, q)$, say $C_{+}(E, q)$ is isomorphic to $E n d\left(\wedge_{+}(V)\right) \times E n d\left(\wedge_{-}(V)\right)$ where $\Lambda_{+}(V)\left(r e s p . \wedge_{-}(V)\right)$ is the subspace of the even (resp. odd) elementts of $\wedge_{(V)}$.

Generally, if $E=(V \oplus W) \perp U$ is a Witt decomposition of E, then $C(E, q) \simeq \operatorname{End}(\wedge(V)) \otimes_{2} C(U, q)$, the tensor product of $\mathbf{Z} / 2 Z$ - graded algebras (cf. for example [1]).

If $\operatorname{dim} E=n$, then $\operatorname{dim} C(E, q)=2^{n}=\operatorname{dim} \wedge(E)$.
If $a, b \in K^{*}$, we denote by $\left(\frac{a, b}{K}\right)$ the associated quaternion algebra : i.e. the algebra generated by i, j with $i^{2}=a \quad ; \quad j^{2}=b \quad ; \quad i j=-j i$. Also $\left(\frac{a, b}{K}\right)$ is the Clifford algebra of the rank 2 quadratic form $q(x)=a x_{1}^{2}+b x_{2}^{2}$.

Let us write $M(n, K)$ the algebra of the $n \times n$ matrices with coefficients in K.

Theorem 1: $\quad p \equiv 1(\bmod .4)$
(i) If $n=2 m$, then $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{m}, \mathbf{Q}_{p}\right)$
(ii) If $n=2 m+1$, then $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{m}, \mathbf{Q}_{p}\right) \oplus M\left(2^{m}, \mathbf{Q}_{p}\right)$

Proof

Indeed, if $n=2 m$, then $\left(Q_{p}^{n}, q_{0}\right)$ is a hyperbolic space.
It follows that $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq \operatorname{End}\left(\wedge\left(\mathbf{Q}_{p}^{m}\right)\right)$.
And, if $n=2 m+1$, we have a Witt decomposition $\mathbf{Q}_{p}^{n}=(V \oplus W) \perp U$ where $U=\mathbf{Q}_{p} e_{n}$. It follows that $C\left(U, q_{0}\right) \simeq \mathbf{Q}_{p} \oplus \mathbf{Q}_{p}$ which gives (ii)

Theorem 2: $\quad p \equiv 3(\bmod .4)$
(i) If $n=4 m$, then $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{2 m}, \mathbf{Q}_{p}\right)$
(ii) If $n=4 m+1$, then $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{2 m}, \mathbf{Q}_{p}\right) \oplus M\left(2^{2 m}, \mathbf{Q}_{p}\right)$
(iii) If $n=4 m+2$, then $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{2 m+1}, \mathbf{Q}_{p}\right)$
(iv) If $n=4 m+3$, then $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{2 m+1}, \mathbf{Q}_{p}[i]\right)$
with $i=\sqrt{-1}$.
Proof:
The case (i) is evident, since $\mathbf{Q}_{p}^{2 m}$ is a hyperbolic space.
If $\underline{n=4 m+1}$, we have a Witt decomposition $\mathbf{Q}_{p}^{n}=(V \oplus W) \perp U$ where $U=\mathbf{Q}_{p} u$ with $u=a e_{4 m-3}+b e_{4 m-2}+e_{4 m-1}-e_{4 m+1}$ and $q_{0}(u)=a^{2}+b^{2}+1+1=1$. It follows that $C\left(U, q_{0}\right) \simeq \mathbf{Q}_{p} \oplus \mathbf{Q}_{p}$, which gives (ii).

If $n=4 m+2$, we have a Witt decomposition $\mathbf{Q}_{p}^{n}=(V \oplus W) \perp U$ where $U=\mathbf{Q}_{p} u_{1} \oplus \mathbf{Q}_{p} u_{2}$ and $u_{1}=a e_{4 m-3}+b e_{4 m-2}+e_{4 m-1}+a e_{4 m+1}+b e_{4 m+2}$

$$
u_{2}=-b e_{4 m-3}+a e_{4 m-2}+e_{4 m}-b e_{4 m+1}+a e_{4 m+2}
$$

Furthermore $<u_{1}, u_{2}>=0, q_{0}\left(u_{1}\right)=-1=q_{0}\left(u_{2}\right)$ and $C\left(U, q_{0}\right) \simeq\left(\frac{-1,-1}{\mathbf{Q}_{p}}\right)$. This quaternion algebra contains an element z with $N(z)=a^{2}+b^{2}+1=0$. Hence $\left(\frac{-1,-1}{\mathbf{Q}_{p}}\right) \simeq$ $M\left(2, \mathbf{Q}_{p}\right)$ and finally we have $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{2 m}, \mathbf{Q}_{p}\right) \otimes_{2} M\left(2, \mathbf{Q}_{p}\right) \simeq M\left(2^{2 m+1}, \mathbf{Q}_{p}\right)$.

If $n=4 m+3$, we have a Witt decomposition $\mathbf{Q}_{p}^{n}=(V \oplus W) \perp U$ where $U=\mathbf{Q}_{p} u$, with $u=-b e_{4 m+1}+a e_{4 m+2}$ and $q_{0}(u)=b^{2}+a^{2}=-1$. Hence $C\left(U, q_{0}\right) \simeq \mathbf{Q}_{p}[i]$, because $u^{2}=q_{0}(u)=-1$.

We conclude that $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right) \simeq M\left(2^{2 m+1}, \mathbf{Q}_{p}[i]\right)$.
In the proof of the forecoming theorem, one needs the following lemma

Lemma :

Let K be a field $($ char. $\neq 2), c, d \in K^{*}$ such that $c^{2}+d^{2} \neq 0$.
If $\sigma=\frac{1}{c^{2}+d^{2}}$, then $\left(\frac{-\sigma,-\sigma}{K}\right) \simeq\left(\frac{-1,-1}{K}\right)$.
If the two-rank quadratic forms $q_{1}(x)=-\sigma x_{1}^{2}-\sigma x_{2}^{2}$ and $q_{2}(x)=-x_{1}^{2}-x_{2}^{2}$ are equivalent, then their Clifford algebras are isomorphic. But, putting $x_{1}=c x_{1}^{\prime}+d x_{2}^{\prime}$ and $x_{2}=d x_{1}^{\prime}-c x_{2}^{\prime}$, we have $q_{1}\left(u\left(x^{\prime}\right)\right)=-\sigma\left(c x_{1}^{\prime}+d x_{2}^{\prime}\right)^{2}-\sigma\left(d x_{1}^{\prime}-c x_{2}^{\prime}\right)^{2}=-\sigma\left(c^{2}+d^{2}\right)\left(x_{1}^{\prime 2}+\right.$ $\left.x_{2}^{\prime 2}\right)=q_{2}\left(x^{\prime}\right)$. Hence q_{1} and q_{2} are equivalent and the lemma is proved.

Remark

The quaternion algebra $\left(\frac{-1,-1}{\mathbf{Q}_{2}}\right)=\mathbf{H}_{2}$ is a skew field.
Indeed, for any $z \in \mathbf{H}_{2}=\left(\frac{-1,-1}{\mathbf{Q}_{2}}\right), z \neq 0$, the norm of z is $N(z)=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \neq$ 0 (the standard quadratic form of rank 4 over $\mathbf{Q}_{\mathbf{2}}$ is anisotropic).

Theorem 3: $\quad p=2$
The Clifford algebra $C\left(\mathbf{Q}_{2}^{n}, q_{0}\right)$ is isomorphic to :
(0) $\quad \operatorname{End}\left(\wedge\left(\mathbf{Q}_{2}^{4 m}\right)\right) \simeq M\left(2^{4 m}, \mathbf{Q}_{2}\right)$, if $n=8 m$
(1) $\quad M\left(2^{4 m}, \mathbf{Q}_{2}\right) \oplus M\left(2^{4 m}, \mathbf{Q}_{2}\right)$, if $n=8 m+1$

$$
\begin{equation*}
M\left(2^{4 m+1}, \mathbf{Q}_{2}[i]\right), \quad \text { with } \quad i=\sqrt{-1}, \quad \text { if } \quad n=8 m+3 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
M\left(2^{4 m+1}, \mathbf{H}_{2}\right), \text { if } n=8 m+4 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
M\left(2^{4 m+1}, \mathbf{Q}_{2}\right), \quad \text { if } \quad n=8 m+2 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
M\left(2^{4 m+1}, \mathbf{H}_{2}\right) \oplus M\left(2^{4 m+1}, \mathbf{H}_{2}\right), \quad \text { if } \quad n=8 m+5 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
M\left(2^{4 m+2}, \mathbf{H}_{2}\right), \text { if } n=8 m+6 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
M\left(2^{4 m+3}, \mathbf{Q}_{2}[i]\right), \quad \text { if } \quad n=8 m+7 \tag{7}
\end{equation*}
$$

Proof

According to the proof od Proposition 2, if $n=8 m+s, 0 \leq s \leq 7$, then $\mathbf{Q}_{2}^{n}=(V \oplus$ $W) \perp E_{s}$ where V and W are totally isotropic subspaces of dimension $4 m$, and $\left(E_{s}, q_{0}\right) \simeq$
$\left(\mathbf{Q}_{2}^{s}, q_{0}\right)$. It follows that $C\left(\mathbf{Q}_{2}^{n}, q_{0}\right) \simeq \operatorname{End}\left(\wedge\left(\mathbf{Q}_{p}^{4 m}\right)\right) \otimes_{2} C\left(\mathbf{Q}_{2}^{s}, q_{0}\right)$. It is easy to see that $C\left(\mathbf{Q}_{2}, q_{0}\right) \simeq \mathbf{Q}_{2} \oplus \mathbf{Q}_{2} ; C\left(\mathbf{Q}_{2}^{2}, q_{0}\right) \simeq\left(\frac{1,1}{\mathbf{Q}_{2}}\right) \simeq M\left(2, \mathbf{Q}_{2}\right)$ and $C\left(\mathbf{Q}_{2}^{3}, q_{0}\right) \simeq M\left(2, \mathbf{Q}_{2}[i]\right)$.
If $s=4$, the subalgebra, generated by $e_{1} e_{2}, e_{2} e_{4}$ and $e_{1} e_{4}$, is isomorphic to $\left(\frac{-1,-1}{\mathbf{Q}_{2}}\right)=$ \mathbf{H}_{2}. Hence $C\left(\mathbf{Q}_{2}^{4}, q_{0}\right) \simeq M\left(2, \mathbf{H}_{2}\right)$.
If $s=5$, then $\mathbf{Q}_{2}^{5}=F \perp U$, where F is a hyperbolic plane and U a three-dimensional anisotropic subspace, with orthogonal basis (u_{1}, u_{2}, u_{3}) satisfying $q_{0}\left(u_{1}\right)=-1, q_{0}\left(u_{2}\right)=$ $-\sigma=q_{0}\left(u_{3}\right) \cdot\left(\sigma=\frac{1}{c^{2}+d^{2}}\right.$ and $a, b, c, d \in \mathbf{Q}_{2}$ such that $\left.a^{2}+b^{2}+c^{2}+d^{2}+1=0\right)$. Therefore $C_{+}\left(U, q_{0}\right) \simeq\left(\frac{-\sigma,-\sigma}{Q_{2}}\right) \simeq \mathbf{H}_{2} ; C_{+}$stands for the even subalgebra. But in $C\left(U, q_{0}\right),\left(u_{1} u_{2} u_{3}\right)^{2}=\sigma^{2}$ is a square in \mathbf{Q}_{2}; therefore $C\left(U, q_{0}\right) \simeq \mathbf{H}_{2} \oplus \mathbf{H}_{2}$. Furthermore $C\left(\mathbf{Q}_{2}^{5}, q_{0}\right) \simeq C\left(F, q_{0}\right) \otimes_{2} C\left(U, q_{0}\right) \simeq M\left(2, \mathbf{H}_{2}\right) \oplus M\left(2, \mathbf{H}_{2}\right)$, because $C\left(F, q_{0}\right) \simeq M\left(2, \mathbf{Q}_{2}\right)$. If $s=6$, then $\mathbf{Q}_{2}^{6}=F \perp U$, where F is a hyperbolic space of dimension 4 and U a two-dimensional anisotropic subspace with an orthogonal basis (u_{1}, u_{2}) satisfying $q\left(u_{1}\right)=$ $-\sigma=q\left(u_{2}\right)$. Therefore $C\left(U, q_{0}\right) \simeq\left(\frac{-\sigma,-\sigma}{Q_{2}}\right) \simeq \mathbf{H}_{2}$. And consequently $C\left(\mathbf{Q}_{2}^{6}, q_{0}\right) \simeq$ $C\left(F, q_{0}\right) \otimes_{2} C\left(U, q_{0}\right) \simeq M\left(2^{2}, \mathbf{H}_{2}\right)$.
If $s=7$, then $\mathbf{Q}_{2}^{7}=F \perp U$, where F is a hyperbolic space of dimension 6 and $U=\mathbf{Q}_{2} u$, with $q_{0}(u)=-1$. Hence $C\left(U, q_{0}\right) \simeq \mathbf{Q}_{2}[i]$ and $C\left(\mathbf{Q}_{2}^{7}, q_{0}\right) \simeq M\left(2^{3}, \mathbf{Q}_{2}[i]\right)$.
One deduces the isomorphisms of the therorem from $C\left(\mathbf{Q}_{2}^{n}, q_{0}\right) \simeq M\left(2^{4 m}, \mathbf{Q}_{2}\right) \otimes_{2} C\left(\mathbf{Q}_{2}^{s}, q_{0}\right)$.
N.B : A classical way to prove the above theorems is based on the isomorphisms

$$
C\left(K^{n+2}, q_{0}\right) \simeq C\left(K^{n},-q_{0}\right) \otimes C\left(K^{2}, q_{0}\right)
$$

and $C\left(K^{n+2},-q_{0}\right) \simeq C\left(K^{n}, q_{0}\right) \otimes C\left(K^{2},-q_{0}\right)$
which give first 8 -periodicity, etc ...
($-q_{0}$ is the opposite of the standard quadratic form q_{0})

III - THE FAMILIES OF P-ADIC CLIFFORD ALGEBRAS

III-1. Equivalent classes of the p-adic quadratic forms

Let $a, b \in \mathbf{Q}_{p}^{*}=\mathbf{Q}_{p} \backslash\{0\}$. The Hilbert symbol (a, b) is defined by $(a, b)=1$ if the quadratic form of rank $3, q^{\prime}(x)=x_{0}^{2}-a x_{1}^{2}-b x_{2}^{2}$ is isotropic $(a, b)=-1$ otherwise.
N.B. $\quad(a, b)=1 \quad$ iff $\quad\left(\frac{a, b}{\mathbf{Q}_{p}}\right) \simeq M\left(2, \mathbf{Q}_{p}\right)$.

Let E be a vector space over \mathbf{Q}_{p} of dimension n. Let us consider a regular quadratic form q over E. If $\left(e_{j}\right)_{1 \leq j \leq n}$ is an orthogonal basis of E and $a_{j}=q\left(e_{j}\right)$; then the discriminant $d(q)$ of q is equal to $a_{1} \ldots a_{n}$ in the group $M_{p}=\mathbf{Q}_{p}^{*} / \mathbf{Q}_{p}^{*}$. Let $\epsilon(q)=\prod_{1 \leq i<j \leq n}\left(a_{i}, a_{j}\right)$.

Theorem A

(i) The p-adic regular quadratic forms q and q^{\prime} of rank n are equivalent iff $d(q)=d\left(q^{\prime}\right)$ and $\epsilon(q)=\epsilon\left(q^{\prime}\right)$.
(ii) Let $d \in M_{p}$ and $\epsilon= \pm 1$. There exists a p-adic regular quadratic form q such that $d(q)=d \quad$ and $\quad \epsilon(q)=\epsilon \quad$ iff

$$
\text { (a) } n=1 \text { and } \quad \epsilon=1
$$

(b) $n=2$ and $(d, \epsilon) \neq(-1,-1)$
(c) $n \geq 3$

Proof : cf. [5]

According to that proof of Theorem A, one can give, explicitily, representatives of the equivalence classes of p-adic regular quadratic forms.

Let us recall that $M_{2}=\{ \pm 1, \pm 2, \pm 5, \pm 10\}$ and $M_{p}=\{1, p, \omega, \omega p\}$ if $p \neq 2$, where ω is a unit such that $\binom{\omega}{p}=-1 ;\binom{-}{p}=$ the Legendre symbol. Furthermore $-1=1$ in M_{p} if $p \equiv 1(\bmod .4)$ and $M_{p}=\{1, p,-1,-p\}$ if $p \equiv 3$ (mod.4).

We are content ourself here, with the primes p different from 2 . Then a complete set of representatives of the equivalent classes of regular p-adic quadratic forms is obtained as follows.
(a) $n=1$

Then $q^{a}(x)=a x^{2}, a \in M_{p}$; and the Clifford algebras $C\left(\mathbf{Q}_{p}, q^{a}\right)$ are isomorphic respectively to $\mathbf{Q}_{p} \oplus \mathbf{Q}_{p}, \mathbf{Q}_{p}[\sqrt{p}], \mathbf{Q}_{p}[\sqrt{\omega}]$ and $\mathbf{Q}_{p}[\sqrt{\omega p}]$.
(b) $n=2$

Then we have over \mathbf{Q}_{p}^{2} (with $\omega=-1$ if $p \equiv 3$ (mod.4))

$$
\begin{array}{ll}
q_{0}(x)=x_{1}^{2}+x_{2}^{2} & q_{4}(x)=p x_{1}^{2}+\omega p x_{2}^{2} \text { if } p \equiv 1 \text { (mod.4) } \\
q_{1}(x)=x_{1}^{2}+p x_{2}^{2} \\
q_{2}(x)=\omega x_{1}^{2}+\omega p x_{2}^{2} \\
q_{3}(x)=x_{1}^{2}+\omega x_{2}^{2} & \text { (resp. } \\
q_{4}(x)=p x_{1}^{2}+p x_{2}^{2} \text { if } p \equiv 3 \text { (mod.4)) } \\
q_{5}(x)=x_{1}^{2}+\omega p x_{2}^{2} \\
& q_{6}(x)=p x_{1}^{2}+\omega x_{2}^{2}
\end{array}
$$

Furthermore $\epsilon\left(q_{\ell}\right)=1$ if $\ell=0,1,3,5$ and $\epsilon\left(q_{\ell}\right)=-1$ if $\ell=2,4,6$.
N.B: If $p=2$, then for $n=2$, one has

8 regular quadratic forms q such that $\epsilon(q)=1$
and 7 regular quadratic forms q such that $\epsilon(q)=-1$.
(c) $n=3$

If (e_{1}, e_{2}, e_{3}) is the canonical basis of \mathbf{Q}_{p}^{3}, then

- $q_{\ell}^{\prime}(x)=q_{\ell}\left(x_{1} e_{1}+x_{2} e_{2}\right)+x_{3}^{2}, 0 \leq \ell \leq 6$ and
- $q_{7}^{\prime}(x)=p x_{1}^{2}+\omega x_{2}^{2}+\omega p x_{3}^{2}=q_{6}\left(x_{1} e_{1}+x_{2} e_{2}\right)+\omega p x_{3}^{2}$ if $p \equiv 1(\bmod .4)$ resp.
- $\quad q_{7}^{\prime}(x)=p x_{1}^{2}-x_{2}^{2}+p x_{3}^{2}=q_{6}\left(x_{1} e_{1}+x_{2} e_{2}\right)+p x_{3}^{2}$ if $p \equiv 3(\bmod .4)$

Furthermore $d\left(q_{\ell}^{\prime}\right)=d\left(q_{\ell}\right), \epsilon\left(q_{\ell}^{\prime}\right)=\epsilon\left(q_{\ell}\right), 0 \leq \ell \leq 6$ and $d\left(q_{7}^{\prime}\right)=-1, \epsilon\left(q_{7}^{\prime}\right)=-1$.
(d) $\quad n \geq 4$

Let $\left(e_{j}\right)_{1 \leq j \leq n}$ be the canonical basis of \mathbf{Q}_{p}, then

- $q_{l}^{\prime \prime}(x)=q_{\ell}\left(x_{1} e_{1}+x_{2} e_{2}\right)+\sum_{j=3}^{n} x_{j}^{2}, 0 \leq \ell \leq 6$.

In other words $q_{\ell}^{\prime \prime}(x)=q_{\ell}\left(x_{1} e_{1}+x_{2} e_{2}\right)+q_{0}\left(\sum_{j=3}^{n} x_{j} e_{j}\right)$
i.e. $\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \perp\left(\mathbf{Q}_{p}^{n-2}, q_{0}\right), 0 \leq \ell \leq 6$
and

- $q_{7}^{\prime \prime}(x)=q_{7}^{\prime}\left(\sum_{j=1}^{3} x_{j} e_{j}\right)+\sum_{j=4}^{n} x_{j}^{2}=q_{7}^{\prime}\left(\sum_{j=1}^{3} x_{j} e_{j}\right)+q_{0}\left(\sum_{j=4}^{n} x_{j} e_{j}\right)$
i.e. $\left(\mathbf{Q}_{p}^{n}, q_{7}^{\prime \prime}\right) \simeq\left(\mathbf{Q}_{p}^{3}, q_{7}^{\prime}\right) \perp\left(\mathbf{Q}_{p}^{n-3}, q_{0}\right)$
N.B: $\quad p=2$

If $n=3$, then the classes of regular quadratic forms have 15 representative forms q^{\prime} with $\epsilon\left(q^{\prime}\right)=1$,resp. $\epsilon\left(q^{\prime}\right)=-1$ and $d\left(q^{\prime}\right) \neq-1$, obtained from corresponding representative quadratic forms of ranks 2 by adding the rank 1 form x_{3}^{2}. The other representative form is $q_{15}^{\prime}(x)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$ with $\epsilon\left(q_{15}^{\prime}\right)=-1$ and $d\left(q_{15}^{\prime}\right)=-1$.

And if $n \geq 4$, one proceeds as above.

III-2 The p-adic Clifford algebras

With the above notations, we have the following concrete propositions
Proposition 3 : $\quad p \neq 2$
(i) $\quad C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq M\left(2, \mathbf{Q}_{p}\right)$ if $\quad \ell=0,1,3,5$.
(ii) $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq\left(\frac{p, \omega}{\mathbf{Q}_{p}}\right)=\mathbf{H}_{p}=$ the p-adic quaternion field, if $\ell=2,4,6$.

Proof

(i) Indeed, if $\ell=0,1,3,5$; then $\epsilon\left(q_{\ell}\right)=1$. Therefore $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq M\left(2, \mathbf{Q}_{p}\right)$.
(ii) If $\ell=2,4,6$ then the Clifford algebras $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right)$ are isomorphic to the quaternion algebras with norm respectively,
$N_{2}(z)=x_{0}^{2}-\omega x_{1}^{2}-\omega p x_{2}^{2}+\omega^{2} p x_{3}^{2} ;$
$N_{4}(z)=x_{0}^{2}-p x_{1}^{2}-\omega p x_{2}^{2}+\omega p^{2} x_{3}^{2}$ if $p \equiv 1(\bmod .4) ;$
(resp. $N_{4}(z)=x_{0}^{2}-p x_{1}^{2}-p x_{2}^{2}+p^{2} x_{3}^{2}$ if $p \equiv 3(\bmod .4)$)
and $N_{6}(z)=x_{0}^{2}-p x_{1}^{2}-\omega x_{2}^{2}+\omega p x_{3}^{2}$.
It is easily seen that these quadratic forms are anisotropic and equivalent. Therefore $C\left(\mathbf{Q}_{p}^{2}, q_{2}\right) \simeq C\left(\mathbf{Q}_{p}^{2}, q_{4}\right) \simeq C\left(\mathbf{Q}_{p}^{2}, q_{6}\right) \simeq\left(\frac{p, \omega}{\mathbf{Q}_{p}}\right)=\mathbf{H}_{p}$ is a skew fied. Hence \mathbf{H}_{p} is the unique quaternion field over \mathbf{Q}_{p} (according isomorphism). This result obtained directly here is a general result for local fields (cf. [3]).

Proposition 4 : $\quad p \equiv 1$ (mod. 4)
The Clifford algebra $C\left(\mathbf{Q}_{p}^{3}, q_{\ell}^{\prime}\right)$ is isomorphic to

$$
\begin{equation*}
M\left(2, \mathbf{Q}_{p}\right) \oplus M\left(2, \mathbf{Q}_{p}\right) \quad \text { if } \quad \ell=0 \tag{i}
\end{equation*}
$$

$M\left(2, \mathbf{Q}_{p}[\sqrt{p}]\right)$
if $\ell=1,2$
(iv) $\quad M\left(2, Q_{p}[\sqrt{\omega p}]\right) \quad$ if $\quad \ell=5,6$
(v) $\quad \mathbf{H}_{\boldsymbol{p}} \oplus \mathbf{H}_{\boldsymbol{p}} \quad \because \quad$ if $\quad \ell=\mathbf{7}$

Similarly we have
Proposition 4' : $\quad p \equiv 3$ (mod.4)
The Clifford algebra, $C\left(Q_{p}^{3}, q_{\ell}^{\prime}\right)$ is isomorphic to

$$
\begin{array}{lrc}
M\left(2, \mathbf{Q}_{p}[i]\right) & \text { if } & \ell=0,4 \\
M\left(2, \mathbf{Q}_{p}[\sqrt{-p}]\right) & \text { if } & \ell=1,2 \\
M\left(2, \mathbf{Q}_{p}\right) \oplus M\left(2, \mathbf{Q}_{p}\right) & \text { if } & \ell=3 \\
M\left(2, \mathbf{Q}_{p}[\sqrt{p}]\right) & \text { if } & \ell=5,6 \\
\mathbf{H}_{p} \oplus \mathbf{H}_{p} & \text { if } & \ell=7 \tag{v}
\end{array}
$$

Proof of Propositions 4 and 4'

Let us recall that if (E, q) is a regular quadratic space over a field K with $n=\operatorname{dim} E$ odd, then $C(E, q) \simeq Z \otimes C_{+}(E, q)$, where Z is the centre of $C(E, q)$ and $C_{+}(E, q)$ the subalgebra of even elements. Furthermore, if $\left(e_{1}, \ldots, e_{n}\right)$ is an orthogonal basis of (E, q) then $u=e_{1} \ldots e_{n}$ is such that $u^{2}=(-1)^{\left[\frac{\pi}{2}\right]} d(q)$ and $Z=K[u]$.

In particular for $n=3$ and $q(x)=\alpha x_{1}^{2}+\beta x_{2}^{2}+\gamma x_{3}^{2}$, we have $e_{1}^{2}=\alpha, e_{2}^{2}=\beta$, $e_{3}^{2}=\gamma ; u^{2}=-\alpha \beta \gamma=\delta \neq 0$ and $C_{+}(E, q)=<1, e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}>=$ subspace generated by $1, \ldots, e_{2} e_{3}$. Put $E_{1}=e_{1} e_{2}, E_{2}=e_{1} e_{3}, E_{3}=-\alpha e_{2} e_{3}$, hence $C_{+}(E, q)=<1, E_{1}, E_{2}, E_{3}>$ with $E_{1}^{2}=-\alpha \beta, E_{2}^{2}=-\alpha \gamma, E_{1} E_{2}=E_{3}=-E_{2} E_{1}$. Therefore $C_{+}(E, q) \simeq\left(\frac{-\alpha \beta,-\alpha \gamma}{K}\right)$. Consequently (1) if $\delta \in K^{* 2}$, then $Z \simeq K \oplus K$ and $C(E, q) \simeq\left(\frac{-\alpha \beta,-\alpha \gamma}{K}\right) \oplus\left(\frac{-\alpha \beta,-\alpha \gamma}{K}\right)$ (2) if $\delta \notin K^{* 2}$, then $Z=K[u]$ is a field and $C(E, q) \simeq\left(\frac{-\alpha \beta,-\alpha \gamma}{K[u]}\right)$.

Applying these remarks to Propositions 4 and 4^{\prime}, one finds the desired isomorphisms. For example if $p \equiv 1(\bmod .4)$ and $\ell=2$, then $\delta=-\omega^{2} p=(i \omega)^{2} p$ and $Z=\mathbf{Q}_{p}[\sqrt{p}]$, hence
$C\left(\mathbf{Q}_{p}^{3}, q_{2}^{\prime}\right) \simeq\left(\frac{-\omega^{2} p,-\omega}{\mathbf{Q}_{p}[\sqrt{p}]}\right)=\left(\frac{p, \omega}{\mathbf{Q}_{p}[\sqrt{p}]}\right) \simeq M\left(2, \mathbf{Q}_{p}[\sqrt{p}]\right): \tilde{q}(v)=p x^{2}+\omega y^{2}$ represents 1 over $\mathbf{Q}_{p}[\sqrt{p}]$. Also if $\ell=7$, then $\delta=-p^{2} \omega^{2}=(i \omega p)^{2}$, hence $Z \simeq \mathbf{Q}_{p} \oplus \mathbf{Q}_{p}$ and since $\left(\frac{-p \omega,-\omega p^{2}}{\mathbf{Q}_{p}}\right) \simeq\left(\frac{p \omega, \omega}{\mathbf{Q}_{p}}\right) \simeq \mathbf{H}_{p}$ we have $C\left(\mathbf{Q}_{p}^{3}, q_{7}^{\prime}\right) \simeq \mathbf{H}_{p} \oplus \mathbf{H}_{p}$.

In the case $p \equiv 3(\bmod .4)$, for example if $\ell=0(r e s p . \ell=3)$ we have $\delta=$ $-1($ resp. $=1)$ and $Z \simeq \mathbf{Q}_{p}[i],\left(r e s p . Z \simeq \mathbf{Q}_{p} \oplus \mathbf{Q}_{p}\right)$. Hence $C\left(\mathbf{Q}_{p}^{3}, q_{0}^{\prime}\right) \simeq\left(\frac{-1,-1}{\left.Q_{p}[]\right]}\right) \simeq$ $M\left(2, \mathbf{Q}_{p}[i]\right),\left(r e s p . C\left(\mathbf{Q}_{p}^{3}, q_{3}^{\prime}\right) \simeq\left(\frac{-1,-1}{\mathbf{Q}_{p}}\right) \oplus\left(\frac{-1,1}{\mathbf{Q}_{p}}\right) \simeq M\left(2, \mathbf{Q}_{p}\right) \oplus M\left(2, \mathbf{Q}_{p}\right)\right)$.

The other verifications are left to the reader.
Lemma 2: $\quad p \neq 2$
$C\left(\mathbf{Q}_{p}^{4}, q_{7}^{\prime \prime}\right) \simeq M\left(2, \mathbf{H}_{p}\right)$.
Indeed, since $q_{7}^{\prime \prime}=p x_{1}^{2}+\omega x_{2}^{2}+\omega^{\prime} p x_{3}^{2}+x_{4}^{2}$ where $\omega^{\prime}=\omega$ if $p \equiv 1$ (mod.4) and $\omega=-1, \omega^{\prime}=1$ if $p \equiv 3(\bmod .4) ;$ we have $C\left(\mathbf{Q}_{7}^{4}, q_{7}^{\prime \prime}\right) \simeq\left(\frac{p, \omega}{\mathbf{Q}_{p}}\right) \otimes_{2}\left(\frac{\omega^{\prime} p, 1}{\mathbf{Q}_{p}}\right) \simeq$ $\mathbf{H}_{p} \otimes_{2} M\left(2, \mathbf{Q}_{p}\right) \simeq M\left(2, \mathbf{H}_{p}\right)$.

Theorem 4: $\quad p \equiv 1(\bmod .4) ; n \geq 4$

1°) If $n=2 m$, then the Clifford algebra $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right)$ is isomorphic to

$$
\text { (i) } \quad M\left(2^{m}, \mathbf{Q}_{p}\right) \quad \text { if } \quad \ell=0,1,3,5
$$

(ii) $M\left(2^{m-1}, H_{p}\right) \quad$ if $\quad \ell=2,4,6,7$
$\left.2^{\circ}\right)$ If $n=2 m+1$, then the Clifford algebra $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right)$ is isomorphic to
(i) $\quad M\left(2^{m}, \mathbf{Q}_{p}\right) \oplus M\left(2^{m}, \mathbf{Q}_{p}\right) \quad$ if $\quad \ell=0$
(ii) $M\left(2^{m}, \mathbf{Q}_{p}[\sqrt{\tau}]\right) \quad$ if $\quad \ell=1,2,3,4,5,6$
with $\tau=p($ resp. ω, resp. ω p) for $\ell=1,2$ (resp. $\ell=3,4 ;$ resp.5,6).
(iii) $\quad M\left(2^{m-1}, \mathrm{H}_{p}\right) \oplus M\left(2^{m-1}, \mathrm{H}_{p}\right)$ if $\ell=7$

Proof:

$\left.1^{\circ}\right) \quad n=2 m$
Notice that $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{n-2}, q_{0}\right) \otimes_{2} C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right), 0 \leq \ell \leq 6$. But by Proposition 3, we have $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq M\left(2, \mathbf{Q}_{p}\right)$ if $\ell=0,1,3,5$ and $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq \mathbf{H}_{p}$ if $\ell=$

2,4,6. Since $C\left(\mathbf{Q}_{p}^{n-2}, q_{0}\right) \simeq M\left(2^{m-1}, \mathbf{Q}_{p}\right)$ by Theorem 1-(i)-, we have $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq$ $M\left(2^{m-1}, \mathbf{Q}_{p}\right) \otimes_{2} M\left(2, \mathbf{Q}_{p}\right) \simeq M\left(2^{m}, \mathbf{Q}_{p}\right)$ if $\ell=0,1,3,5$ and $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2^{m-1}, \mathbf{Q}_{p}\right) \otimes_{2}$ $\mathbf{H}_{p} \simeq M\left(2^{m-1}, \mathbf{H}_{p}\right)$ if $\ell=2,4,6$.

For $\ell=7$, applying Lemma 2 and Theorem 1 - (i) - we obtain $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq$ $C\left(\mathbf{Q}_{p}^{n-4}, q_{0}\right) \otimes_{2} C\left(\mathbf{Q}_{p}^{4}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2^{m-2}, \mathbf{Q}_{p}\right) \otimes_{2} M\left(2, \mathbf{H}_{p}\right) \simeq M\left(2^{m-1}, \mathbf{H}_{p}\right)$.
2°)

$\mathrm{n}=2 \mathrm{~m}+1$

If $1 \leq \ell \leq 6$, then we have $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{n-3}, q_{0}\right) \otimes_{2} C\left(\mathbf{Q}_{p}^{3}, q_{\ell}^{\prime}\right) \simeq M\left(2^{m-1}, \mathbf{Q}_{p}\right) \otimes_{2}$ $C\left(Q_{p}^{3}, q_{\ell}^{\prime}\right)$.
Applying Proposition 4, we obtain the isomorphism $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2^{m}, \mathbf{Q}_{p}[\sqrt{\tau}]\right)$ as claimed.

The case $\ell=0$ is Theorem 1-(ii) -
If $\ell=7$, then $C\left(\mathbf{Q}_{p}^{3}, q_{7}^{\prime}\right) \simeq \mathbf{H}_{p} \oplus \mathbf{H}_{p}$ and $C\left(\mathbf{Q}_{p}^{n}, q_{7}^{\prime \prime}\right) \simeq M\left(2^{m-1}, \mathbf{Q}_{p}\right) \otimes_{2}\left(\mathbf{H}_{p} \oplus \mathbf{H}_{p}\right) \simeq$ $M\left(2^{m-1}, \mathrm{H}_{p}\right) \oplus M\left(2^{m-1}, \mathrm{H}_{p}\right)$.

Theorem 5: $\quad p \equiv 3(\bmod .4) ; n \geq 4$
The Clifford algebra $C\left(\mathbf{Q}_{p}^{n}, q_{l}^{\prime \prime}\right)$ is isomorphic to the following matrix algebra or direct sum of two matrix algebras.
1°)
$n=4 m$
(i) $\quad M\left(2^{2 m}, \mathbf{Q}_{p}\right) \quad$ if $\quad \ell=0,1,3,5$
(ii) $\quad M\left(2^{2 m-1}, H_{p}\right) \quad$ if $\quad \ell=2,4,6,7$
$\left.2^{\circ}\right) \quad \underline{n}=4 \mathrm{~m}+1$
(i) $\quad M\left(2^{2 m}, \mathbf{Q}_{p}\right) \oplus M\left(2^{2 m}, \mathbf{Q}_{p}\right) \quad$ if $\quad \ell=0,4$
(ii) $\quad M\left(2^{2 m}, \mathbf{Q}_{p}[\sqrt{\tau}]\right) \quad$ if $\quad \ell=1,2,3,5,6,7$
with $\tau=p($ resp. -1, res. $-p)$ for $\ell=1,2($ resp $. \ell=3,7$, resp. $\ell=5,6)$.
$\left.3^{\circ}\right) \quad n=4 m+2$
(i) $M\left(2^{2 m+1}, \mathbf{Q}_{p}\right) \quad$ if $\quad \ell=0,1,3,5$
(ii) $M\left(2^{2 m}, H_{p}\right) \quad$ if $\quad \ell=2,4,6,7$
4°)

$\mathrm{n}=4 \mathrm{~m}+3$

(i) $M\left(2^{2 m+1}, \mathbf{Q}_{p}\right) \oplus M\left(2^{2 m+1}, \mathbf{Q}_{p}\right) \quad$ if $\quad \ell=3$
(ii) $M\left(2^{2 m+1}, \mathbf{Q}_{p}[\sqrt{\tau}]\right) \quad$ if $\quad \ell=0,1,2,4,5,6$,
with $\tau=-1 \quad$ (resp. $-p$, res.p) for $\quad \ell=0,4$ (resp. $\ell=1,2$, resp. $\ell=5,6$).
(iii) $\quad M\left(2^{2 m}, \mathbf{H}_{p}\right) \oplus M\left(2^{2 m}, \mathbf{H}_{p}\right) \quad$ if $\quad \ell=7$.

Proof :

1°)
$\underline{n}=4 \mathrm{~m}$
As in Lemma 2, it is readily seen that $C\left(\mathbf{Q}_{p}^{4}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2^{2}, \mathbf{Q}_{p}\right)$ if $\ell=0,1,3,5$ and $C\left(\mathbf{Q}_{p}^{4}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2, \mathbf{H}_{p}\right)$ if $\ell=2,4,6,7$.

If $n=4 m, m \geq 2$, we have $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{n-4}, q_{0}\right) \otimes_{2} C\left(\mathbf{Q}_{p}^{4}, q_{\ell}^{\prime \prime}\right)$. But Theorem 3-(i)-gives $C\left(\mathbf{Q}_{p}^{n-4}, q_{0}\right) \simeq M\left(2^{2 m-2}, \mathbf{Q}_{p}\right)$. Therefore $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2^{2 m-2}, \mathbf{Q}_{p}\right) \otimes_{2}$ $M\left(2^{2}, \mathbf{Q}_{p}\right) \simeq M\left(2^{2 m}, \mathbf{Q}_{p}\right)$ if $\ell=0,1,3,5$ and $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq M\left(2^{2 m-2}, \mathbf{Q}_{p}\right) \otimes_{2} M\left(2^{2}, \mathbf{H}_{p}\right) \simeq$ $M\left(2^{2 m-1}, H_{p}\right)$ if $\ell=2,4,6,7$.

$\left.2^{\circ}\right) \quad \underline{n}=4 m+1$

With notations used in the proof of Propositions 4 and 4' we have $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq$ $Z \otimes C_{+}\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right)$ and $Z=\mathbf{Q}_{p}[u]$ where $u^{2}=d\left(q_{\ell}^{\prime \prime}\right)$. Hence Z is isomorphic to $\mathbf{Q}_{p} \oplus \mathbf{Q}_{p}$ if $\ell=0,4$; resp. $\mathbf{Q}_{p}[\sqrt{p}]$ if $\ell=1,2$; resp. $\mathbf{Q}_{p}[\sqrt{-1}]$ if $\ell=3,7$; resp. $\mathbf{Q}_{p}[\sqrt{-p}]$ if $\ell=$ 5,6. On the other hand $C_{+}\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq C_{+}\left(\mathbf{Q}_{p} \cdot x_{n}, x_{n}^{2}\right) \otimes C\left(\mathbf{Q}_{p}^{n-1},-q_{\ell}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{n-1},-q_{\ell}^{\prime \prime}\right) \simeq$ $M\left(2^{2 m}, \mathbf{Q}_{p}\right)$. Hence $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq Z \otimes M\left(2^{2 m}, \mathbf{Q}_{p}\right)$ which proves the isomorphisms.
3°)

$\underline{n}=4 m+2$

Since $\mathrm{n}-2=4 \mathrm{~m}$, we obtain $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{4 m}, q_{0}\right) \otimes_{2} C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right)$.
By Theorem 2 - (i) - one has $C\left(\mathbf{Q}_{p}^{4 m}, q_{0}\right) \simeq M\left(2^{2 m}, \mathbf{Q}_{p}\right)$ and by Proposition 3, $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq$ $M\left(2, \mathbf{Q}_{p}\right)$ if $\ell=0,1,3,5$ and $C\left(\mathbf{Q}_{p}^{2}, q_{\ell}\right) \simeq \mathbf{H}_{p}$ if $\ell=2,4,6$. It follows that $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq$ $M\left(2^{2 m+1}, Q_{p}\right)$ if $\ell=0,1,3,5$ and $C\left(\mathbf{Q}_{p}^{n}, \dot{q}_{\ell}^{\prime \prime}\right) \simeq M\left(2^{2 m}, \mathbf{H}_{p}\right)$ if $\ell=2,4,6$.

For the case $\ell=7$, since $n-4=4(m-1)+2$ we have $C\left(\mathbf{Q}_{p}^{n}, q_{7}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{n-4}, q_{0}\right) \otimes_{2}$ $C\left(\mathbf{Q}_{p}^{4}, q_{\ell}^{\prime \prime}\right)$. By theorem 2-(iii) -, $C\left(\mathbf{Q}_{p}^{n-4}, q_{0}\right) \simeq M\left(2^{2 m+1}, \mathbf{Q}_{p}\right)$ and by Lemma 2, $C\left(\mathbf{Q}_{p}^{4}, q_{7}^{\prime \prime}\right) \simeq M\left(2, \mathbf{H}_{p}\right)$. Hence $C\left(\mathbf{Q}_{p}^{n}, q_{7}^{\prime \prime}\right) \simeq M\left(2^{2 m}, \mathbf{H}_{p}\right)$.

Notice that in 1°) and 3°) the exponent of 2 is $\frac{n}{2}$.
$\left.4^{\circ}\right) \quad \underline{n}=4 m+3$
Here, $\mathrm{n}-3=4 \mathrm{~m}$ and $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right) \simeq C\left(\mathbf{Q}_{p}^{4 m}, q_{0}\right) \otimes_{2} C\left(\mathbf{Q}_{p}^{3}, q_{\ell}^{\prime}\right)$. But $C\left(\mathbf{Q}_{p}^{4 m}, q_{0}\right) \simeq$ $M\left(2^{2 m}, \mathbf{Q}_{p}\right)$ and by Proposition $4^{\prime}, C\left(\mathbf{Q}_{p}^{3}, q_{\ell}^{\prime}\right)$ is isomorphic to $M\left(2, \mathbf{Q}_{p}\right) \oplus M\left(2, \mathbf{Q}_{p}\right)$ if $\ell=3$, resp. $\mathbf{H}_{p} \oplus \mathbf{H}_{p}$ if $\ell=7$, resp. $M\left(2, \mathbf{Q}_{p}[\sqrt{\tau}]\right)$ if $\ell=0,1,2,4,5,6$ with $\tau=-1$ for $\ell=0,4 ; \tau=-p$ for 1,2 and $r=p$ for $\ell=5,6$.

Taking tensor product we obtain the desired isomorphisms.

Remark :

As for $C\left(\mathbf{Q}_{p}^{n}, q_{0}\right)$, for the other Clifford algebras $C\left(\mathbf{Q}_{p}^{n}, q_{\ell}^{\prime \prime}\right)$ we have 2-periodicity when $p \equiv 1$ (mod. 4) and 4-periodicity when $p \equiv 3$ (mod. 4).
N.B. When $p=2$, in the same way one can give as obove the table of the 2 -adic Clifford algebras.

REFERENCES

[1] R. DEHEUVELS, Formes quadratiques et groupes classiques, P.U.F. - Paris - 1981.
[2] B. DIARRA, Remarques sur les matrices orthogonales (resp. symétriques) à coeffcients p-adiques, Ann. Sci. "Blaise Pascal", Clermont II, sér. Math., Fasc. 26 -1990-p. 31-50.
[3] T.Y. LAM, The algebraic theory of quadratic forms, W.C. Benjamin, Inc. - Reading, Massachusetts - 1973.
[4] P. RIBENBOIM, L'arithmétique des corps, Hermann - Paris - 1972.
[5] J.P. SERRE, Cours d'arithmétique, P.U.F. - Paris - 1970.

Université Blaise Pascal, Complexe Scientifique des Cézeaux, Laboratoire de Mathématiques Pures, 63177 AUBIERE Cedex.

