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ABSTRACT. — It is shown that ifs is a solution of the initial value problem for the generalized
Korteweg—de Vries equation such that there exists R with suppu(-,¢;) S (b, 00) (or
(—o0, b)), for j = 1,2 (11 # 12), thenu = 0. 0 2002 Editions scientifiques et médicales Elsevier
SAS

AMS classificationPrimary 35Q53; secondary 35G25; 35D99

Keywords:Korteweg—de Vries equation; Compact support; Carleman estimates

RESUME. — On montre que si est une solution du probleme de Cauchy pour I'équation
généralise de Korteweg—de Vrieslet R tel que supp(-, t;) S (b, 00) (0u (—o0, b)), pour
j=1,2(t1 # t2), alorsu est nulle.d 2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Consider the following question: Let= u(x, t) be a real valued solution of the
generalized Korteweg—de Vriek-gKdV) equation

du+ddu+uo,u=0(x,0)eRx (t1,t2), keZ™, (1.1)
with #; < £, which is sufficiently smooth and such that

suppu(-,t;) € (a,b), —oo<a<b<oo, j=12 (1.2)
Isu=07?

The first results in this direction are due to Saut and Scheurer [9]. They establishe
the following unique continuation result.

THEOREM 1.1 ([9]). —Assume that = u(x, r) satisfies the equation

2
u+0du+> rx,0dlu=0, (x,1)€(a,b) x (11,12, (1.3)
j=0
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with
r; € L®((t1, 1) : LE(a, b)). (1.4)

If u vanishes on an open s& C (a, b) x (11, t2), thenu vanishes in the horizontal
components of2, i.e. the set

{(x,1) € (a,b) x (11, 1): y such that(y, r) € Q}. (1.5)

As a consequence they obtained the following result.

COROLLARY 1.2 ([9]). —If u is a sufficiently smooth solution of Ed..1) with
suppu(-,t) € (a, b)°, Vte(t1,1), (1.6)

thenu =0.

The key step in Saut—Scheurer’s argument is the following Carleman estimate:
Assume(0, 0) € Q then3dy, M, K > 0 such that

K//|8,u+8§u|2exp(2k<p)dxdt
Q
>,\//|a§u|2exp(2x<p)dxdt+A2//|axu|2exp(2mp)dxdz (1.7)
Q Q

+A4//|M|Zexp(2kcp)dxdt
Q

for all » with A8 > M, 0 < § < 8 ande(x, 1) = (x — )% + 8°12.
In 1992, Zhang [12] gave a positive answer to our question for the KdV equation

oiu + 8)::’14 +ud,u=0 (1.8)

and for
o;u + afu —u?d,u =0, (2.9)

using inverse scattering theory and Miura’s transformation.

In 1997, Bourgain [1] used a different approach to reprove Corollary 1.2. His argument
is based on the analyticity of the nonlinear term and the dispersion relation of the linea
part of the equation. It also applies to higher order dispersive nonlinear models, and t
higher spatial dimensions.

Recently, Tarama [11] showed that solutionéx,r) of the KdV equation (1.8)
corresponding to data, € L?(R) such that

0]

/<1+ Do) dx + /e's'*'”zluo(xnzdx < (1.10)
0

—00
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for somes > 0, becomes analytic with respect to the space varialfier 1 > 0. The
proof is based on the inverse scattering method. Clearly this also provides a positivi
answer to our question in the case of the KdV equation.

The statement of our main result is the following.

THEOREM 1.3. —Suppose that is a sufficiently smooth real valued solution of
du+3%u+ F(x,t,u,du,%u) =0, (x,1) € R x [1, 2], (1.11)

whereF € C8in (x, t), of polynomial growth in the other variables, at least quadratic
in (u, d,u, 3%u) for any (x, 1) € R x [y, t2].
If

sSu (9t)g(_oovb)9 .=19 29
PR, 7; J (1.12)

(or suppu(-,t;) € (a,00), j=1,2),
thenu = 0.

Remarks— (a) For the KdV equation (1.8) Zhang [12] also had a similar result, i.e.
one-sided support (1.12). Also for the KdV equation as a consequence of Tarama’s restL
in [11] one finds that: = 0O, if there exists; < t, such that supp(-, 1) € (—o0, b) and
Supp’t(v IZ) g (a= OO)

(b) It will be clear from our proof below that the result in Theorem 1.3 extends
to complex valued solutions for the cases where energy estimates are available (st
Lemma 2.1). For example, this holds for the equation

du+%u =+ u*,u=0 keZ. (1.13)

(c) Although here we are not concerned with the minimal regularity assumptions on
the solutionu required in Theorem 1.3, we remark that it suffices to assume that

ueC([t, 2] : H'(R)) N CH[ta, t2] : HA(R)). (1.14)

(d) To simplify the exposition we will carry out the details only in the case of the
k-generalized KdV equation (1.1). In this case it suffices to assume that

ueC([t, 2] HYR)) N C*([1a, 2] : HX(R)). (1.15)

For the existence theory we refer to [5].
(e) Theorem 1.3 and its proof below extend to higher order dispersive models of the
form
du+ 0¥y + F(x,t,u,...,0%u) =0, jeZT, (1.16)
whose local theory was developed in [6].
(f) It should be remarked that we do not assume analyticity of the nonline&rity

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.2
assuming a key step in the proof, Lemma 2.3, whose proof is given in Section 3. Section
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contains some remarks concerning the proofs and extensions of some of the results us
in the proof of Theorem 1.3.
2. Proof of Theorem 1.3
Without loss of generality we assume that 0,7, = 1. Thus,
suppu(-, 0), suppu(-, 1) € (=00, b). (2.1)

We need some preliminary results.
The first one is concerned with the decay properties of solutions tb-gt&dV. The
idea goes back to Kato [3].

LEMMA 2.1. —Letu = u(x, t) be a real valued solution of thegKdV equatiorn(1.1)
such that

sup [[u(-, D)l g1 < o0 (2.2)
t€[0,1]
and such that for a givei > 0
e ug e LAR). (2.3)
Then
& u e C([0,1]: L3(R)). (2.4)

Proof. —Let ¢, € C*(R), with ¢,(x) = €* for x < n, ¢,(x) = " for x > 10n,
on(x) < €%, 0< ¢ (x) < By, (x), and|p? (x)| < B @u(x), j =2, 3.
Multiplying Eq. (1.1) byug,, and integrating by parts we get

1d 1
- dy 9 O /k+2’d —0. (25
2dz/”‘p +/( )’ z/u‘p” T k+2 X (2:5)
Thus
d 2 3 [ 2 2p k / 2
1. n < n ) n 2
dt/““’dx ﬂ/ude+k+2IIullL u?g, dr (2.6)
and
sup [ u?(x, )@, (x)dx < (/ugeﬂx dx) exp(C*), (2.7)
te[0,1]
where
2p
133+m” ||i°°(RX[O,l]) (28)

Now takingn 4 oo we obtain the desired result (2.4)0

Lemma 2.1 has the following extension to higher derivatives.
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LEMMA 2.2.-Let j € Z,j > 1. Let u = u(x,t) be a solution of thek-gKdV
equation(1.1) such that

sup [[u(:, )|l g+ < 00 (2.9)
te€[0,1]
and for a giveng > 0
& uo, ..., "3/ upg e LAR). (2.10)
Then
sup ||€u(t)|| -1 < ¢j = ¢;(uo; C), (2.11)

t€[0,1]
with C* as in(2.8).

Under the hypothesis (2.9)—(2.10) the result in [3] (Theorem 11.1) guarantees tha
ueC®Rx(0,1]).
To state the next results we need to introduce some notation,

feCI (RY) if ocf, 021, 03f, 8. f € Cp(R?), (2.12)

and
feC3H(R?) if feCP(R?) with compact support (2.13)

Next, following the ideas in Kenig et al. [7] and Kenig and Sogge [8] we have the
following Carleman estimates.

LEMMA 2.3.—If f € C3*(R?) (see(2.13)) then
1€ £l auz) < clle {8 + 87} fl o (2.14)

for all » € R, with ¢ independent of and the support of .

The proof of Lemma 2.3, which is similar to those in [7] and [8], will be given in
Section 3.

LEMMA 2.4.—If g € C31(R?) (see (2.12))s such that

and
gx,00=¢g(x,1)=0, VxeR, (2.16)

then
||éxg||L8(Rx[0,l]) < CHeM{at + axs}gHLgﬁ(Rx[O,l]) (2.17)

for all A € R, with ¢ independent of.

Proof. —Let 6, € Cg°(R), with 6.(r) =1 forz € (¢,1—¢), 0< 0.(¢) < Land|0(¢)| <
c/e.
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Let

8e(x, 1) =0:(1)g(x, 1),
we will apply (2.14) tog, for all ¢ > 0. On the one hand

He(\xg‘?HLs(JRZ) = ‘}éng‘}Ls(Rx[O,l]) - ||eMg||L3(]R><[0,1]) ase | 0.

On the other hand,

{8, +33)g. =60.(1) {3, +33}g +6/(1)g,

1660 {0: + 7}l ez — 1€ {0 + 7 }ell ome o

7/8
C
16,(5)g o ra) < g< / / 9 (x, t)|8/7dxdt>

0 —

and

7/8
<//|g(x t)|8/7dxdt> 0 ase )0

from the mean value theorem
LEMMA 2.5.-Letg e Cf’l(]R x [0, 1]) (see(2.12)) Suppose that
> 10lgx, 0 <cpge™, 1e[0,1], VB>0, x>0,
j<2
and
g(x,00=g(x,1)=0, VxeR.
Then
HemgHLg(Rx[O,l]) < COHeM{at + af}gHLgﬂ(Rx[O,l])
forall A € R, with ¢q independent of, A > 0.

Proof. —Let ¢ € C3°(R) be an even, nonincreasing function for 0 with
¢(x) =1, |x| <1, and supp C [-2, 2]. Definegy (x) = ¢ (x/M).

Let gp(x, 1) = P (x)g(x, 1).
Since

{8, + 83 gm = P {0 + 83} g + 30,01 028 + 3021 dcg + 33Pug
=¢u{d + 8§}g+ E1+Ex+ E3,
applying Lemma 2.4 t@,,(x, t) we get
||emgM||L8(Rx[o,1])
< CHeM{at + af}gMHLBﬁ(Rx[O,l])

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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3
3
<cl|€pu {d + 9 Y8l oo € > lleE; [P (2.27)
j=1
We need to show that the terms involving th&’-norm of the “errors’E,, E,, and
E3 in (2.27) tend to zero adf 1 oc. It suffices to consider one of them, s&y, since
the proof forE», E3 is similar. Also it will be clear from the argument given below that
it suffices to consider only the case> 0. From (2.23) with8 > A it follows that

12M

|’éxEl||iéZ7(R+x[o,1]):38/7//|éx3x¢Mafg|8/7dde

12m 87
<c//‘—82 dx dr
oM
12M
<c / / T BT dr 0 asM oo,  (2.28)
0O M

Thus, taking the limit a3/ 1 oo in (2.27) and using (2.28) we obtain (2.25).

LEMMA 2.6. —Suppose: = u(x,t) € C([0, 1] : H*([R)) N C([0, 1] : H*(R)) satis-
fies the equation

du+ddu+uo,u=0 (x,1)eRx[0,1] (2.29)
with
suppu(x, 0) C (—o0, b]. (2.30)
Then for anyg > 0
> |ofulx, )| <cppe?, forx>0, 1€[0,1]. (2.31)
J<2

Proof. —It follows from Lemma 2.2. O

Proof of Theorem 1.3. We will show that there exists a large numiir 0 such that
suppu(-,t) C (—o0,2R], Vrel0,1]. (2.32)
Then Saut—Schaurer’s result (Theorem 1.1) completes the praof.
Let u € C*(R) be a nondecreasing function such thak) =0, x <1 andu(x) =
1,x>2 Letugr(x) = u(x/R).
Define

Vx, ) =u""x, 0)ou(x, 1) e LP(R x [0,1]), Vp e[l o0] (by(2.3), (2.33)

and
ur(x,t) = ur(x)u(x,t). (2.34)
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Combining our assumptions (see (1.15)) and Lemma 2.6 we can apply Lemma 2.5 t
ug(x,t) for R sufficiently large. Thus, using that
{00+ 93 ur(x, 1) = {8, + 87} (pu)
= urVu +38quafu+3afuR8xu +8§MRM (2.35)

= upVu+ F1+ Fo+ F3=ugrVu+ Fg,

it follows that
||e(\xMR“||L8(Rx 01) = COHeM{at 83}(MR”)HL8/7(Rx[o 1

< COHé MR VM||L8/7(]R><[0,1]) +CO||e(\ FRHL8/7(]R><[0,1])’ (2.36)
wherecg is the constant coming from Lemma 2.5, (2.25). Then

COHeM/LR VuHL8/7(Rx[O,1]) < CO|’éx“R“|’L8(Rx[o,1])|| Vil a3 x> ryx10,10)- (2.37)

Now we fix R so large such that

coll VIiLanx=rixio1 < 1/2. (2.38)

From (2.36)—(2.38) one finds that

||62LX(MRM)HL8(]R><[0,1]) < ZCOHeMFRHL8/7(Rx[0,1])' (2.39)

As in the proof of Lemma 2.5 to estimate the left hand side of (2.39) it suffices to
consider one of the terms iFi, sayF», since the proofs foFy, F3 are similar. We recall
that the supports of thg;’s are contained in the interv@R, 2R]. Thus,

1 2R

7/8
2C0
ZCOHeMFZHLsﬂ(RXM])\ R? (// 719, u(x, t)|8/7dxdt>

2CO esz < /1
0

2R 7/8

10,0 (x, )| dx dt) . (2.40)
R
On the other hand,

1

18
wammmmy<//éwMﬁme. (2.41)

0 x>2R
Combining (2.39)—(2.41) we conclude that

1 1 2R

(/ / eBA(x_ZR)lu(x’t)|8dth>1/8<%(0/7

0 x>2R R

7/8
|8, u(x, 1)|¥7 dx dt> . (242
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Now letting 1 1 oo it follows that
u(x,t)=0 forx >2R,r<]0,1], (2.43)

which yields the proof.

To complete this section we will sketch the proof of Lemmas 2.1 and 2.2 (and
consequently that of Lemma 2.6) for the general equation in (1.10).

Taking thex-derivative of orderj, with j =1, 2, of Eq. (1.11) and using the notation

vi(x,t) =dlu(x,t), j=0,1,2, (2.44)
we obtain the system (written in a convenient form)

dvo + d2vg + F(x,1, vg, v1, v2) =0,
drv1 4 931 + G (6, 1w, By, BZU) 9, v2 + Ga(x, 1, o, v1, v2) =0,
0;v2 + vaz + g—g(x, t,u, U, Bfu)afvz

+ Ga(x, t,u, dyu, 32u)d,v2 + G3(x, t, vo, v1, V2) =0,

(2.45)

where F € C8 and G, € CP,k = 1,2, 3, in the (x,t) variables, having polynomial
growth in the other variables.

Multiplying the equation fow; in (2.45) by 2,€"*, b > 0, integrating the result with
respect to the-variable, adding iry, and (formally) using integration by parts one finds
that

d 2 2 px 2 2 px
E]Z:%/vjeb dx+3j§=:o/(8xvj)e”dx

a , (2.46)
F
</ 8—(x, t,u,0.u, E)fu) (8, v2)%€* dx + |a(t)] Z/vjz-ebx dx,
X5 ;
j=0

where

1

[latid <e= e(Splu(o) s : FO). (2.47)

/ )
Hence, by taking

OF ,
b>bo= sup |—(x,t,u(x,1),du(x, 1), du(x,1))|, (2.48)
(x.0)eRx[0,1] | 0Xs5

we have proven that iB){u(x,O)e”x e L?(R) for any b € R, with j =0,1,2 and
u e C([0,1] : H3(R)), then

d/ue’ € C([0,1]: L3(R)), j=0,12 (2.49)

It is clear that the above argument extendsg te 3, 4 if u € C([0, 1] : H'(R)).
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3. Proof of Lemma 2.3

We shall prove that iff € C3*(R?), see (2.13), then
||erHL8(R2) < c||eM{8, + 8)?}f||L8/7(R2)’ (3.1)
for all » € R, with ¢ independent of and the support of .
We divide the proof into five steps.
Stepl. It suffices to consider the cases= +1 in (3.1).

Proof. —To prove the claim we observe that the case 0 follows from the case
A # 0 by taking the limit as. — 0. So we can restrict ourselves to the case0.
Consider the case > 0 (the proof fori < 0 is similar). Assume that

||exf||L8(R2) < CHex{al + 8)?}f||L8/7(]R2) (3.2)
for all f € C3*(R?) with ¢ independent of..
Defining
fx, ) = f(x/ht/23), (3.3)
one has that
1
{00+ 02} 0o 0y = 5 (0 F (/2. 1/2%) + 02 f (x/2, 1/37)). (3.4)

From the change of variables
(y,8) = (x/A,t/23%), drxdr=A*dyds, (3.5)
it follows that
e full o = 221 € £l o = 221 €7 £ . (3:6)
and
3 M8 3 1/2 3
&40, + 02} ill = S € {8 + 83} /| o = 222 {3 + 8%} £ BT)
Inserting (3.6)—(3.7) into (3.2) we obtain (3.1), which proves the claim.
Step2. To prove (3.2) it suffices to establish the following inequality
Igllze < c||{d; + 82 — 302 + 33, — 1}g|| e, (3.8)

forany g € C3*(R?), see (2.13).
Proof. —Let
glx,t)=¢€"f(x,1). (3.9
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Since
e {0, + 33} f=1{9 +07—302+ 30, — 1}g, (3.10)
we obtain (3.2).

Step3. It suffices to prove the inequality (3.8) without the term in the left hand side
involving the derivatives of order 1 in thevariable. In other words, to prove (3.8) it
suffices to show

||h||L8<CH{31+83—385—1}hHL8/7, (3.11)
for anyh € C3*(R?), see (2.13).
Proof. —Using the change of variables

y=x/3+t, s=t (x=36—-y), t=s), (dyds=dxdr/3), (3.12)

and the notation

h(y,s)=g(x,1) (3.13)
it follows that
oh a oh ad ad
ozl g8 8 (3.14)
ay ox as dx Ot

Thus, (3.8) can be written in the equivalent form

1 1
Al e < 85——83’——82,—1}h : 3.15
lhlis < el {0 - 5208 = 502~ 1fn] (3.15)

Finally, making another change of variables

1 3 1 3 2 1 2
Z:—éy, r=s (8Z :_2_78y’ 82 :§8y, 8;23;), (316)
it follows that (3.15) is equivalent to

121l s < c|{8; + 82 — 302 — 1} A o7, (3.17)

which proves the claim.

Step4. We will need the following results (Lemmas 3.1-3.2). The first one is an
estimate of Strichartz type.

LEMMA 3.1. -

o <l fller e, (3.18)
L3(R?)

H / ¢ E g %) dg
R

where” denotes the Fourier transform.
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Proof of Lemma 3.1. Ysing the notation
U (t)vo(x) = / U D 0(8) dt = (€0) " (x. 1), (3.19)
the inequality (3.18) can be written as

<cll fllLsrwe (3.20)
L8(R2)

/ Ut —1t)f(,t")d’

whose proof can be found in [2], (Lemma 2.1) or in [4], (Theorem 2.1).

LEMMA 3.2.—
I7ll e < cl[{d, + 83 +alh| o (3.21)
for anyh € C3*(R?), see(2.13) with ¢ independent of € R.

Proof of Lemma 3.2. Using the notation introduced in (3.19) we recall the decay
estimate

c
U (#)voll 18wy < W lvoll &/7(w)> (3.22)

which follows by interpolating the estimates
C
U #)voll 2 = llvoll 2, U (D) voll L I MEE llvoll 1. (3.23)

An homogeneity argument, similar to that given in step 1, shows that it suffices to
consider only the cage| = 1. We thus need to prove the multiplier estimate

1 R \Y,
H(mﬁ(é,f)) H( S3:I:Ih(é’r)> <cllhlle. (3.24)

L8
Let S denotes the operator
Sih(x, 1) = 7 7@“’”'(5’”;};(5 1) dr dé. (3.25)
' T—E340 7

Let

b()—/ooé” L d (3.26)

== e '
so that

oo oo

Sih(x,t) = / ( /(h(-,t—s))A(E)éSSBeixSdé)bi(s)ds. (3.27)

—0oQ —0oQ
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Thus,
Sih(x,t)= / U(s)h(-,t —s)by(s) ds. (3.28)
Note that
b+~ < c, (3.29)

which combined with (3.22) leads to

7 ds
ISk C. Dz < [ It =)l o (3.30)

Now 1/8 = 7/8 — 3/4, and so fractional integration completes the proafi

Step5. To complete the proof of Lemma 2.3 we just need to prove (3.11), i.e.
7]l s < c||{8, + 82 — 302 — 1} 4|, (3.31)
for anyh e C3(R?), see (2.13).

Taking Fourier transform, in space and time variables, in the left hand side of (3.31)
we get

lir —ig3 4382 — (&, 7). (3.32)
We consider the pair of points
1 /1)\°
e+ (%)) -
+=(&,79) 73 \/3 (3.33)

where the symbol in (3.32) vanishes. We recall thhhs compact support so its Fourier
transform has an analytic continuation@3. Hence, it suffices to prove (3.31) for any
h € S(R?) with / vanishing atP,..

So we are then reduced to showing the multiplier inequality

1 R \
h = h <c|lh , 3.34
Ml 82, H (i(t €3+ 321 ) LR, cllirllLer we) ( )
for suchh’s.
It suffices to prove (3.34) assuming that
supph C {(¢.,1): £ >0}, (3.35)

since the proof for the case

supph C {(¢,7): £ <O}, (3.36)
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is similar.
We now recall a variant of Littlewood—Paley theory. Let

Lif(&,7) = o (1€ — &F1/275) f (€, ), (3.37)

where k € Z and x4(-) is the characteristic function of the sdt Then for each
p € (1, o0) we have

(3.38)

(Z|ka|2)l/2

keZ

I fllLrw2) = ‘ .
LP(R2)

Thus it suffices to establish (3.34) for eatj with a constant independent bf since
using Minkowski’s integral inequality (& < 2 < 8) one has that

1/2
||Mh||Ls:‘ (Z |Lk(Mh>|2>
keZ+ L8
1/2 1/2
=‘ (Z |M<Lkh>|2> < (Z ||M<Lkh)||i8)
keZ+ L& N\peg+
1/2 1/2
<o( T Lhlan)  <e| (S mak) | | <clibllen. (339
keZ+ keZ+ L8/

Therefore, we shall prove the multiplier estimate (3.34) when
supph € {(&,7): £ 20,2751 < |5 — g5 | <278}, (3.40)

We split the proof of (3.40) in two cases.

Casel. k < 0. In this case, if € supph then
|36 — 1 |6 — &5 11E + &0 1 ~27. (3.41)

Using Lemma 3.1 we just need to bound the multiplier

1 1
i(T—£3)+32—1 i(t—£3)+2%
2—2k _ (352 _ 1)

T3 D _£) 127 (3.42)

Using the change of variables= x + &3 write

7T (€0 (-2 _ (32 _ A
//(i(f : = ) h(,7)dsdr

— £+ 32— Dt -+ 2%

_ [ [eunEnO A 321, 3
__/_/ (A +362—1)(ir+27%) h(g, 1+ &%) dédr
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T i 7 ei(xst)-(é,és)(z—Zk _ (3%_2 — 1.
f— At ,
__éé ( (ix 4362 — 1)(ir + 2-%) h(g A+& )dg) dx

= ®(x,1). (3.43)

Defining
R -2 _ (3g2 _ 1
h)\(é,‘[): . > (35 )—Zk
(A 4352 —=1D(Ir +27%)
and using Lemma 3.1 and Minkowski's integral inequality we get

h(E, T+ 1), (3.44)

o0
1] o2, < / 1l o7z, A (3.45)
—00

Now for A andk fixed we consider the multiplier in (3.44) in the varialglewith & > 0,
& — & | ~27%,1362 — 1] =~ 272, From Mihlin—Hérmander multiplier theorem (see [10,
p. 263]) it follows that its norm is bounded by

2—2k
(for more detalils, see [7], [8]).
Hence,
o0 o0 2—2/( _
/ 1750l 87 may dA < ¢ / W”hA”Lgﬁ(Rz) di < |2l o7 w2y, (3.47)

sincenh;, (x, t) = € "*h(x, t), which combined with (3.45) yields the proof of case 1, i.e.
k<O.

Case2. k > 0. In this case, if € supph then

|36 — 1 ~ |& —EF|IE + &5 | ~ 16 — & |~ 27", (3.48)
In this case we use Lemma 3.2 to substract
1
P ————— A4
ic—£9)+2+ (3.49)

and argue exactly as before. The corresponding multiplier to (3.44) in this case is

2—k + 1— 352
3.50
(x4 362 —1D)(ir +27F) ( )
which by Mihlin—-Hérmander multiplier theorem has norm bounded by
2—k
(3.51)

C|M2+2—2k'
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4. Further results

In this section we extend Lemma 2.3 to higher order operators of the form considerec
in (1.16).

LEMMA 4.1.-If f € C°(R?), then forj e Z+

1€ fll o < clle™ {0+ 071 1l o (4.)
forall A € R, with ¢ independent of € R,
! 2 2 p=2, 4.2)

. = + A AN
2j+1 g @2j+Dp
and where(p, p'), (g, q") are dual exponents, i.&/p +1/p' = 1.

Proof. —From the steps 1 and 2 in the proof of Lemma 2.3 one has that to establish
(4.2) it suffices to show that

I fllarr < cllifd, + P(3x)}f||qu'L§u (4.3)
where
P(x)=(z =D (4.4)
Defineg = g(x,t) as
{0, + P(3)}v(x,t) = g(x,1). (4.5)
Taking Fourier transform in the-variable in (4.5) we get
30, 1)+ P&V, 1) =g(§,1). (4.6)

Sincev has compact support we conclude tt&t, 7) = 0 for any T with |T| large
enough. Thus, from (4.6) it follows that

3 (€P9) (&, 1) =P @5, 1), (4.7)
and
t
(£, 1) = Xi&: Rep(ie) =0} (§) / e ("IPBg (g, 5)ds
— Xig: Re(P(ié))<0}(%—)/e_(l_S)P(ié)g(gv s)ds. (4.8)
t
Hence,

v(x,t):/ /K+(x—y,t—s)g(y,s)dyds—//K_(x—y,t—s)g(y,s)dyds

—00 —00 t —o0

=Lig—L_g, (4.9)
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with

Ko (x, 1) = X 1>0)(2) / & PID) ¥ rep(i) >0 (€) dE (4.10)
and h

K_(x,1) = Xt 1<0) (1) / & PI0) ¥ Rep(is)) <0y () TE. (4.11)

We need the following results.
LEMMA 4.2. —There exists a constant= ¢(j) such that

|Ki(x, )] < /|t @HD, (4.12)

Proof. ~We consider the case &, . In this case the oscillatory part of the integral in
(4.10) is given by the phase functign(¢) = Im(P(i§)). We observe that

d@ (&) = (=17 (2j + D), (4.13)
and

|9 (7P | dg < ¢, (4.14)
{&: Re(P(i&)) >0}

wherec; depends on the numbers of changes of sign @fRi)). Hence, the proof of
(4.12) follows from Van der Corput’s lemma (see [10], Corollary in p. 334).

LEMMA 4.3. —For eachp > 2 there exists a constaatsuch that

(0.9]
C
[ Kete=y0s0| < ey @19)
S LY
Proof. —For p = 2 we use Plancherel theorem to get
00 2 00
_ i£) A 2
[ Ki=30800 | = [ e rarionsa©)le ™ 0@ d < gl
—0o0 L)Zc —0o0
(4.16)

The casep = oo follows from Lemma 4.2. Using the Riesz—Thorin theorem one
extends the resulttp € (2, 00). O

Finally the proof of Lemma 4.1 follows by combining (4.15), Minkowski’s integral
inequality, and Hardy—Littlewood—Sobolev inequality:
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