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ABSTRACT. – We study the existence of minimizing solutions for an elliptic equation with crit-
ical Sobolev growth on a smooth bounded domain ofR3. We answer in particular two questions
of Haïm Brezis. Higher dimensionsn � 4 are completely understood thanks to previous works
by H. Brezis and L. Nirenberg. 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – On étudie l’existence de solutions minimisantes à une EDP elliptique à croissance
de Sobolev critique sur des domaines de l’espace euclidien de dimension 3. On résout en
particulier une conjecture de H. Brezis sur le sujet. Les questions analogues en dimensions plus
grandes étaient parfaitement comprises depuis des travaux de H. Brezis et L. Nirenberg. 2002
Éditions scientifiques et médicales Elsevier SAS

Let � be a smooth bounded domain ofRn, n � 3, and let us consider the following
problem:

(E)




�u + au = u2∗−1 in �,

u > 0 in �,

u = 0 on∂�,

wherea is a smooth function in�, 2∗ = 2n/(n − 2) is critical for the embeddings of
H 1

0 (�) into Lq(�) and� is the Euclidean Laplacian with the minus sign convention,
that is�u = −div(∇u). We look for solutions of problem(E) which are inH 1

0 (�), the
completion ofC∞

c (�) for the norm

‖u‖2
H 1

0 (�)
=

∫
�

|∇u|2 dx.

Any such solution of problem(E) is smooth in� by standard elliptic regularity theory.
As a first remark, one should note that, if problem(E) possesses a solution, then the
operator� + a must be coercive. By definition,� + a is coercive if its first eigenvalue

E-mail address: Olivier.Druet@math.u-cergy.fr (O. Druet).



126 O. DRUET / Ann. I. H. Poincaré – AN 19 (2002) 125–142

with Dirichlet boundary condition is positive. From now on, we consider functionsa

such that the operator� + a is coercive. A natural approach to find solutions of(E) is
to consider the following minimization problem:

Ja = inf
u∈C∞

c (�),u 
≡0

∫
�(|∇u|2 + au2) dx

(
∫

� |u|2∗ dx)2/2∗ .

If Ja is achieved by someua ∈ H 1
0 (�), up to changingua into |ua| and up to

normalization, one gets a smooth solution of(E). Such a solution is referred to as a
minimizing solution of(E). It is well known that, in any case,

Ja � K−1
n ,

whereKn is the best constant in theH 2
1 (Rn)-Sobolev inequality, defined by

K−1
n = inf

u∈C∞
c (Rn),u 
≡0

∫
Rn |∇u|2 dx

(
∫

Rn |u|2∗ dx)2/2∗ .

Its value, independently computed in [2] and [22], is

Kn = 4

n(n − 2)
ω−2/n

n ,

where ωn denotes the volume of the standard unitn-sphere. When looking for
minimizing solutions of(E), it was shown in Brezis and Nirenberg [4] that the situation
changes drastically when passing from dimensionsn � 4 to dimension 3. In particular,
Brezis and Nirenberg proved that, ifn � 4, the following properties are equivalent:

(i) ∃x ∈ �, a(x) < 0,
(ii) Ja < K−1

n ,
(iii) Ja is achieved by some smooth positive functionua .

In dimensionn = 3, the situation is more tricky and still open. Available results concern
the special casea ≡ λ, λ a constant. More precisely, Brezis and Nirenberg proved in [4]
that for any smooth bounded domain� of R3, there existsλ∗(�) ∈ (0, λ1(�)), λ1(�)

being the first Dirichlet eigenvalue of� in �, such that

Jλ = K−1
3 whenλ � −λ∗(�),

Jλ < K−1
3 when − λ1(�) < λ < −λ∗(�)

and such thatJλ is not achieved forλ > −λ∗(�). If � is a ballB, they also proved that
λ∗(B) = 1

4λ1(B) and thatJ− 1
4λ1(B) is not achieved.

Under the light of these results, H. Brezis asked in [3] the following question:
If n = 3, isJa achieved if and only ifJa < K−1

3 as it is the case in dimensionsn � 4?
(Question 5 of [3].)

From now on,� is a smooth bounded domain ofR3 anda ∈ C∞(�) is such that�+a

is coercive. We letGa : � × �\{(x, x), x ∈ �} → R+ be the Green function of� + a in
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� with Dirichlet boundary condition. We have, in the sense of distributions,

�yGa(x, y) + aGa(x, y) = δx in �,

Ga(x, y) = 0 for y ∈ ∂�, x ∈ �,

andGa is symmetric with respect to the two variables. We may write

Ga(x, y) = 1

ω2|x − y| + ga(x, y),

wherega ∈ C0(� × �) verifies for anyx ∈ �:

�yga(x, y) + aGa(x, y) = 0 in �,

ga(x, y) = − 1

ω2|x − y| on ∂�.

By test functions computations (see [19]), one gets that

∃x ∈ �, ga(x, x) > 0⇒ Ja < K−1
3 . (1)

The condition thatga(x, x) should be positive somewhere in� plays the role the
condition thata(x) should be negative somewhere in� played in the casen � 4. Another
natural question then, asked by Brezis in [3], is the following:

Is the converse of (1) true? (Question 7 of [3].)
In this paper, we answer by the affirmative both these questions. More precisely, we

prove the following:

THEOREM 0.1. – Let � be a bounded domain of R3 and let a ∈ C∞(�) ∩ L∞(�) be
such that � + a is coercive. The following properties are equivalent:

(i) ∃x ∈ �, ga(x, x) > 0,
(ii) Ja < K−1

3 ,
(iii) Ja is achieved by some smooth positive function ua .

Note that, by [19], (i) implies (ii) (see above) and that, by standard minimization
techniques, (ii) implies (iii). Note also that Theorem 0.1 has already been proved in
[3] and [4] in the casea ≡ λ and � is a ball,λ a constant. Analoguous results were
also proved by the author [8] in the Riemannian setting. The main difference between
dimension 3 and higher dimensions is that the first problem is a global one whereas the
second problem is a local one. Ifn = 3, the condition that there existsx ∈ � such that
ga(x, x) > 0 is indeed a global condition since the Green function of� + a depends on
the values ofa on all of � and also on the geometry of�. There is another difference
between the two casesn = 3 andn � 4. Following Hebey and Vaugon [15], we say that
a ∈ C∞(�) is a critical function in� if and only if

Ja = K−1
n ,

Jã < K−1
n , for any ã � a, ã 
≡ a.
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Then, if n � 4, the constant functiona ≡ 0 is the only critical function in any smooth
bounded domain ofRn. Indeed, by [4], ifa is a critical function in�, a(x) � 0 for any
x ∈ �. SinceJ0 = K−1

n , the only possibility fora to be a critical function isa ≡ 0. On
the contrary, as a consequence of our proof of Theorem 0.1 (see below), ifn = 3, then
there are critical functions of all shape. More precisely, for any smooth bounded domain
� of R3 and anya ∈ C∞(�), there existsB(a) ∈ R such thata + B(a) is a critical
function in�.

The proof of the theorem is mainly based on a fine blow-up analysis for sequences
of solutions of an elliptic PDE inR3. There are many works about this kind of blow-up
analysis: among them, [1,5,12–16,18,20] were a great source of inspiration.

Proof of the theorem

We first note that for anya, ã ∈ C∞(�), we have

ã � a, ã 
≡ a ⇒ ga(x, x) > gã(x, x), for anyx ∈ �. (2)

This follows from the Green representation formula: indeed, for anyx ∈ �,

ga(x, x) − gã(x, x) =
∫
�

(ã − a)(y)Ga(x, y)Gã(x, y) dy,

> 0,

as soon as̃a � a with ã 
≡ a. We let nowa ∈ C∞(�) and we defineB(a) ∈ R by

Ja+B < K−1
3 , for B < B(a),

Ja+B � K−1
3 , for B � B(a).

It is clear thatB(a) is well defined, since forB large (for instanceB > −mina),
Ja+B � K−1

3 and forB small enough (for instanceB less than the first eigenvalue of
� + a on �), Ja+B < K−1

3 . Proving the theorem reduces now to the proof that
(1) there existsx0 ∈ � such thatga+B(a)(x0, x0) = 0.
(2) Ja+B(a) is not achieved.

Indeed,Ja+B is clearly not achieved by any smooth positiveua+B for B > B(a), since
otherwise, we would have

Ja+B(a) �
∫

�(|∇ua+B |2 + (a + B(a))u2
a+B) dx

(
∫

� |ua+B |6 dx)1/3

� Ja+B +
∫

�(B(a) − B)u2
a+B dx

(
∫

� |ua+B |6 dx)1/3

< K−1
n

which is in contradiction with the definition ofB(a). Thus, if we prove thatJa+B(a) is
not achieved, then properties (ii) and (iii) of the theorem are equivalent. Next, if we
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prove that there existsx0 ∈ � such thatga+B(a)(x0, x0) = 0, we have then by (2) that for
anyB < B(a), ga+B(x0, x0) > 0 which proves that property (ii) of the theorem implies
property (i). Since the converse is true by (1), this clearly proves the theorem. Up to
changinga into a + B(a), we may assume thatB(a) = 0.

Step 1. We first prove thatJa+B(a) is not achieved. Let us assume by contradiction that
there existsua ∈ C∞(�), ua > 0 in �, which achievesJa. Then, up to normalization,ua

verifies

�ua + aua = K−1
3 u5

a in �,

ua = 0 on∂�,
(3)

and ∫
�

u6
a dx = 1. (4)

For anyϕ ∈ C∞(R3), sinceJa = K−1
3 , we have that for anyε > 0,

(∫
�

u6
a(1+ εϕ)6 dx

)1/3

� K3

[∫
�

∣∣∇(
ua(1+ εϕ)

)∣∣2 dx +
∫
�

au2
a(1+ εϕ)2 dx

]
. (5)

We clearly get with (4) that(∫
�

u6
a(1+ εϕ)6 dx

)1/3

= 1+ 2ε

∫
�

u6
aϕ dx + 5ε2

∫
�

u6
aϕ2 dx

− 4ε2
(∫

�

u6
aϕ dx

)2

+ o
(
ε2).

On the other hand, using (3) and (4),

K3

[∫
�

∣∣∇(
ua(1+ εϕ)

)∣∣2 dx +
∫
�

au2
a(1+ εϕ)2 dx

]

= K3

[∫
�

ua(�ua + aua)(1+ εϕ)2 dx + ε2
∫
�

u2
a|∇ϕ|2 dx

]

=
∫
�

u6
a(1+ εϕ)2 dx + K3ε2

∫
�

u2
a|∇ϕ|2 dx

= 1+ 2ε

∫
�

u6
aϕ dx + ε2

∫
�

ϕ2u6
a dx + K3ε2

∫
�

u2
a|∇ϕ|2 dx.

Coming back to (5) with these two last relations and lettingε go to 0, we get that

4
∫
�

ϕ2u6
a dx � K3

∫
�

u2
a|∇ϕ|2 dx + 4

(∫
�

u6
aϕ dx

)2

, for anyϕ ∈ C∞(R3). (6)
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We claim now that there exists(y, t) ∈ R3 × R+ such that:

F(y, t) :=
∫
�

u6
a

2t (x − y)

1+ t2|x − y|2 dx = 0, for anyi = 1, 2, 3,

G(y, t) :=
∫
�

u6
a

1− t2|x − y|2
1+ t2|x − y|2 dx = 0.

This result is the equivalent of a result on the standard sphere proved by Chang and
Yang [6]. Following [6], the proof of such a claim may go as follows: one considers
H : R3 × R → R4 defined by

H(y, s) =
(

F

(
y,

s + √
s2 + 4

2

)
+ y, G

(
y,

s + √
s2 + 4

2

)
+ s

)
.

One proves, thank to an asymptotic expansion ofF andG that |H(y, s)|2 � |y|2 + s2 as
soon as|y|2 + s2 is large enough. This proves in particular that there existsR > 0 such
thatH(B(0, R)) ⊂ B(0, R). SinceH is a continuous function, we may apply Brouwer’s
fixed point theorem:H has at least one fixed point inB(0, R). But a fixed point ofH is
just a zero of bothF andG. This proves the above claim.

We now apply (6) to eachϕi , i = 1, 2, 3, 4, where

ϕi(x) := 2t (xi − yi)

1+ t2|x − y|2 , for anyi = 1, 2, 3,

ϕ4(x) := 1− t2|x − y|2
1+ t2|x − y|2 .

SinceF = 0 andG = 0 for the good choice of(y, t), we then obtain:

4
4∑

i=1

∫
�

u6
aϕ2

i dx � K3

4∑
i=1

∫
�

|∇ϕi |2u2
a dx.

But

4∑
i=1

ϕ2
i = 1

and

4∑
i=1

|∇ϕi|2 = 12t2

(1+ t2|x − y|2)2
.

Thus we have

4
∫
�

u6
a dx � 12K3

∫
�

t2

(1+ t2|x − y|2)2
u2

a dx.
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By Hölder’s inequalities and (4), we obtain

1� 3K3

(∫
�

t3

(1+ t2|x − y|2)3
dx

)2/3

.

One then easily verifies that

(∫
R3

t3

(1+ t2|x − y|2)3
dx

)2/3

= (3K3)−1.

Since� is bounded, we clearly get the desired contradiction andJa can not be achieved.
The following steps deal with the proof that there existsx0 ∈ � such thatga(x0, x0) = 0.

Step 2. By the definition ofB(a), for anyε > 0, we have that

Ja−ε < K−1
3 . (7)

Remember that we have chosenB(a) = 0 for all the proof of the theorem. This
inequality ensures, this is by now standard, the existence of a minimizer forJa−ε. Up
to normalization, we thus have for anyε > 0 that there exists some smooth positive
functionuε in � verifying:

�uε + (a − ε)uε = λεu
5
ε in �,

uε = 0 on∂�,∫
�

u6
ε dx = 1,

(8)

where we have setλε = Ja−ε.
The aim now is to study this sequence(uε) asε goes to 0. First of all,(uε) is bounded

in H 1
0 (�) so that, after passing to a subsequence,uε converges weakly to someu0 in

H 1
0 (�). We may also assume that, up to a subsequence, limε→0 λε = λ0, with λ0 � K−1

3
by (7). By passing to the limit in (8), one checks thatu0 verifies

�u0 + au0 = λ0u
5
0 in �,

u0 = 0 on∂�.

Moreover, by weak convergence properties,

∫
�

u6
0 dx � 1.

SinceJa = K−1
3 , we have that
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(∫
�

u6
0 dx

)1/3

� K3

(∫
�

|∇u0|2 dx +
∫
�

au2
0 dx

)
= λ0K3

∫
�

u6
0 dx,

where we have used the equation verified byu0. If u0 
≡ 0, we obtain thatλ0 = K−1
3 and

that
∫

� u6
0 dx = 1 which exactly means thatJa is achieved byu0. Since we proved in

Step 1 thatJa was not achieved,

uε ⇀ 0 in H 1
0 (�).

By the compactness of the embedding ofH 1
0 (�) into L2(�), we have that

lim
ε→0

∫
�

u2
ε dx = 0. (9)

We letxε be a point of� whereuε achieves its maximum and we set

uε(xε) = µ−1/2
ε = sup

�

uε. (10)

Since

1=
∫
�

u6
ε dx �

∫
� u2

ε dx

µ2
ε

it is clear by (9) thatµε → 0 asε → 0. Combining standard results of elliptic theory
(namely results of [21] and [10] or [17]), one gets that

lim
ε→0

µ1/2
ε uε(µεx + xε) =

(
1+ ω

−2/3
3

4
|x|2

)−1/2

in C0
loc

(
R3) ∩ L6

loc

(
R3). (11)

In particular, we have that

lim
ε→0

d(xε, ∂�)

µε

= +∞ (12)

and that

lim
R→+∞ lim

ε→0

∫
B(xε,Rµε)

u6
ε dx = 1. (13)

By bootstrap techniques and sinceuε verifies (8), one also obtains that

lim
ε→0

uε = 0 in C0
loc

(
�̄\{x0}) (14)

wherex0 = limε→0 xε, up to the extraction of a subsequence.
Step 3 (Weak pointwise estimates). We claim that there existsC > 0 such that for any

ε > 0,

|x − xε|1/2uε(x) � C, for anyx ∈ �. (15)
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A similar estimate was obtained in [16] and [20]. We follow here the proof of [7]. Let us
note, forx ∈ �,

wε(x) = |x − xε|1/2uε(x)

and letyε be a point of� wherewε achieves its maximum. We assume by contradiction
that

wε(yε) = sup
�

wε → +∞ asε → 0. (16)

Clearly, by (11),

lim
ε→0

|xε − yε|
µε

= +∞ (17)

and, by (16),

lim
ε→0

|xε − yε|
uε(yε)

−2
= +∞. (18)

Since� is bounded, we also clearly have that limε→0 uε(yε) = +∞ and thanks to (14),
that limε→0 |xε − yε| = 0. We set now, forx ∈ �̃ε = { y−yε

uε(yε)−2 , y ∈ �},

ũε(x) = uε(yε)
−1uε

(
uε(yε)

−2x + yε

)
. (19)

It is clear that

�ũε + (
a
(
uε(yε)

−2x + yε

) − ε
)
uε(yε)

−4ũε = λεũ
5
ε in �̃ε,

ũε = 0 on∂�̃ε.

(20)

For anyx ∈ B(0, 1) ∩ �̃ε, we have that

ũε(x) = uε(yε)
−1uε

(
uε(yε)

−2x + yε

)
� wε(uε(yε)

−2x + yε)

wε(yε)

|xε − yε|1/2

|uε(yε)−2x + yε − xε|1/2
,

so that

ũε(x)2 � |xε − yε|
|uε(yε)

−2x + yε − xε|
by the definition ofyε. Then, by (18), we obtain that, forε small enough,

ũε(x)2 � 2, for anyx ∈ B(0, 1) ∩ �̃ε.

We let nowη ∈ C∞
c (B(0, 1)) andk � 1. Some integration by parts, using Eq. (20) and

the fact that̃uε is uniformly bounded inB(0, 1) ∩ �̃ε, lead to the following:

∫
B(0,1)∩�̃ε

∣∣∇(
ηũk/2

ε

)∣∣2 dx � C
(‖∇η‖2

∞ + ‖�η‖∞ + k
) ∫
B(0,1)∩�̃ε

ũk
ε dx.



134 O. DRUET / Ann. I. H. Poincaré – AN 19 (2002) 125–142

Using Sobolev’s inequality, we obtain that

( ∫
B(0,1)∩�̃ε

(
ηũk/2

ε

)6
dx

)1/3

� C
(‖∇η‖2

∞ + ‖�η‖∞ + k
) ∫
B(0,1)∩�̃ε

ũk
ε dx,

whereC is some constant independent ofε, k and η. For any i, we let ki = 6 × 3i

and we take someηi such thatηi = 1 on B(0, 1
2 + 2−i ), ηi = 0 on B(0, 1

2 + 2−i−1),
‖∇ηi‖2∞ + ‖�ηi‖∞ � C4−i−1. Applying the above inequality by induction oni, we
obtain that

sup
B(0, 1

2)∩�̃ε

ũε � C

( ∫
B(0,1)∩�̃ε

ũ6
ε dx

)1/6

,

whereC > 0 is independent ofε. Sinceũε(0) = 1, we have obtained the existence of
someC > 0 independent ofε such that∫

B(0, 1
2)∩�̃ε

ũ6
ε dx � C.

Then, we write that forε small,

1 =
∫
�

u6
ε dx �

∫
�∩B(yε,uε(yε)−2)

u6
ε dx +

∫
B(xε,Rµε)

u6
ε dx,

sinceB(yε, uε(yε)
−2) ∩ B(xε, Rµε) = ∅ for ε small enough: this is the content of (17)

and (18). By passing to limR→+∞ limε→0 in the right hand side, we obtain, with (13) and
the estimate above, a contradiction. Thus (15) is proved.

A simple adaptation of the above proof gives that

lim
R→+∞ lim

ε→0
sup

x∈�\B(xε,Rµε)

|xε − x|1/2uε(x) = 0. (21)

Step 4 (Ruling out boundary accumulation). In this step, we prove that the accumula-
tion pointx0 cannot be on the boundary of�. Let us assume by contradiction that

νε := d(xε, ∂�) → 0 asε → 0. (22)

We set forx ∈ �ε = { y−xε

νε
, y ∈ �ε},

vε(x) = ν1/2
ε uε(νεx + xε).

Thenvε verifies the following:

�vε + (aε − ε)ν2
ε vε = λεv

5
ε in �ε,

vε = 0 on∂�ε,

(23)
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where we have setaε(x) = a(νεx + xε). Moreover,

∫
�ε

v6
ε dx = 1. (24)

One also checks that (11), (13), (15) and (21) are scale invariant and thus continue to
hold withvε, µε/νε, �ε and 0 instead ofuε, µε, � andxε (note that, by (12),µε/νε → 0
asε → 0). Since� is smooth and with (22), we have that, up to a rotation,

lim
ε→0

�ε = �0 = R2×]−∞;1[.

For anyR > 0, we let

ηε(R) = sup
x∈�ε∩B(0,R)\B(0,R/2)

vε. (25)

We let alsoLε be the operator

Lεu = �u + (aε − ε)ν2
ε u − λεv

4
ε u

and we computeLε(|x|ν−1) for some 0< ν < 1 onB(0, R) ∩ �ε\B(0, R̃ µε

νε
) whereR is

fixed andR̃ will be fixed later on. Easy computations lead to

Lε

(|x|ν−1) = |x|ν−3(ν(1− ν) + (aε − ε)ν2
ε |x|2 − λε|x|2v4

ε

)
.

Thanks to (21), we may choosẽR such that forε small enough,

λε|x|2v4
ε � 1

2
ν(1− ν) onB(0, R) ∩ �ε\B

(
0, R̃

µε

νε

)
.

With (11), we may findC(R, ν) such that for anyε > 0 and anyx on the boundary of
B(0, R) ∩ �ε\B(0, R̃ µε

νε
),

vε(x) � C(R, ν)

((
µε

νε

)1/2−ν

+ ηε(R)

)
|x|ν−1.

If we let Gε(x) be the right-hand side of the above equation, we have obtained that

Lε(Gε − vε) � 0 in B(0, R) ∩ �ε\B

(
0, R̃

µε

νε

)
,

Gε − vε � 0 on∂

(
B(0, R) ∩ �ε\B

(
0, R̃

µε

νε

))
,

sinceLεvε = 0. This leads to

Lε(Gε − vε)
− × (Gε − vε)

− � 0,
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where(Gε − vε)
− denotes the negative part of(Gε − vε). Integrating by parts, we get

that ∫
|∇(Gε − vε)

−|2 dx + ν2
ε

∫
(aε − ε)

[
(Gε − vε)

−]2
dx

� λε

∫
v4

ε

[
(Gε − vε)

−]2
dx

< λε

(∫ [
(Gε − vε)

−]6
dx

)1/3

,

where we used (24) and where the integrals are taken overB(0, R) ∩ �ε\B(0, R̃ µε

νε
).

This clearly violates the definition ofλε unless(Gε − vε)
− = 0. Thus we have that

vε(x) � C(R, ν)

((
µε

νε

)1/2−ν

+ ηε(R)

)
|x|ν−1 (26)

for anyx ∈ B(0, R)∩�ε. Indeed, by (11), this inequality obviously holds onB(0, R̃ µε

νε
).

Let us now prove that

ηε(R) �
(

µε

νε

)1/2−ν

. (27)

Assume that, on the contrary, there existsC > 0 such that

ηε(R) � C

(
µε

νε

)1/2−ν

, (28)

so that we may rewrite (26) as

vε(x) � C(r, ν)ηε(R)|x|ν−1. (29)

Then, for any compact subsetK of B(0, R) ∩ �ε\{0}, there existsC(K) such that

(
vε(x)

ηε(R)

)
� C(K), for anyx ∈ K.

By Harnack’s inequality, we clearly get the existence of someD(K) > 0 (for any
compact subsetK of �ε\{0}) such that

(
vε(x)

ηε(1/2)

)
� D(K), for anyx ∈ K.

By standard elliptic theory, see Theorems 8.24 and 8.29 of [11], we obtain then that
(vε/ηε(1/2)) is bounded inC0,η

loc (�ε\{0}). Thus, by Ascoli’s theorem, after passing to a
subsequence,

lim
ε→0

(
vε

ηε(1/2)

)
= G0 in C0

loc

(
�0\{0}), (30)



O. DRUET / Ann. I. H. Poincaré – AN 19 (2002) 125–142 137

where we have extendedvε by 0 outside�ε. Moreover,G0 
≡ 0 andG0 verifies:

�G0 = 0 in �0\{0},
G0 = 0 on∂�0.

SinceG0 
≡ 0, by the maximum principle,G0 must clearly be singular. Moreover, by
(29), the only possible singularity is at 0. Thus

G0(x) = λ

|x| + b(x)

for some positive constantλ and some smooth harmonic functionb in �0 with b =
−λ/|x| on ∂�0. Integrating (23) onB(0, δ) for δ > 0 small enough, we obtain that

−
∫

∂B(0,δ)

∂νvε dσ + ν2
ε

∫
B(0,δ)

(aε − ε)vε dx = λε

∫
B(0,δ)

v5
ε dx,

where ν denotes the outer normal toB(0, δ). By (29) and (30), using Lebesgue’s
dominated convergence theorem, we have that

ηε

(
1

2

)−1

λε

∫
B(0,δ)

v5
ε dx → −

∫
∂B(0,δ)

∂νG0 dσ.

For δ small enough,− ∫
∂B(0,δ) ∂νG0 dσ is positive. Thus

ηε

(
1

2

)
� C

∫
B(0,δ)

v5
ε dx � C

(
µε

νε

)1/2

+ C

∫
B(0,δ)\B(0,R

µε
νε

)

v5
ε dx,

for anyR > 0 providedε is small enough: we have here used (11). Next, by (29),∫
B(0,δ)\B(0,R

µε
νε

)

v5
ε dx � Cηε

(
1

2

) ∫
B(0,δ)\B(0,R

µε
νε

)

|x|ν−1v4
ε dx

� Cηε

(
1

2

)( ∫
�ε\B(0,R

µε
νε

)

v6
ε dx

)2/3( ∫
B(0,δ)

|x|3ν−3 dx

)1/3

� Cηε

(
1

2

)( ∫
�ε\B(0,R

µε
νε

)

v6
ε dx

)2/3

.

Coming back to the next to last estimate onηε(1/2) and choosingR large enough so that∫
�ε\B(0,R

µε
νε

) v6
ε dx is small (this is possible by (13)), we obtain the existence ofC > 0

such that

ηε(R) � C

(
µε

νε

)1/2

,
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which is clearly in contradiction with (28) sinceµε/νε goes to 0 asε goes to 0. Thus we
have proved (27).

We want now to prove that (26) still holds forν = 0. Of course, with the same
argument than above, we will then clearly have that

C−1ηε

(
1

2

)
�

(
µε

νε

)1/2

� Cηε

(
1

2

)

for someC > 1 independent ofε. We let(zε) be a sequence of points ofB(0, R) ∩ �ε.
The aim now is to prove that there existsC(R) > 0 such that

|zε|vε(zε)

((
µε

νε

)1/2

+ ηε(R)

)−1

� C(R). (31)

We distinguish three cases.
Case 1: |zε|νε/µε → δ asε → 0. By (11), we clearly have (31) in this case.
Case 2: |zε| → R′ asε → 0 with R/2 < R′ � R. By the definition ofηε(R), we clearly

have

|zε|vε(zε)ηε(R)−1 � R

so that (31) is valid in this case.
Case 3: |zε| → R′ asε → 0 with R′ � R/2 and|zε|νε/µε → +∞ asε → 0. We let

Hε be the Green function of� − ε0 with Dirichlet boundary condition on�ε ∩ B(0, R)

for someε0 > 0 small enough. By Green’s representation formula, we may write that

vε(zε) =
∫

�ε∩B(0,R)

Hε(zε, y)
(
�vε(y) − ε0vε(y)

)
dy −

∫
�ε∩∂B(0,R)

∂νHε(zε, y)vε(y) dσy,

where ν denotes the outer normal of∂B(0, R). By standard elliptic theory, since
�ε → �0 asε → 0 and since|zε| � 2R/3, we get that

−
∫

�ε∩∂B(0,R)

∂νHε(zε, y)vε(y) dσy � C(R)ηε(R).

On the other hand, using (23), we may write that∫
�ε∩B(0,R)

Hε(zε, y)
(
�vε(y) − ε0vε(y)

)
dy

=
∫

�ε∩B(0,R)

Hε(zε, y)
[
λεv

5
ε − (

aεν
2
ε − εν2

ε + ε0
)
vε

]
dy.

Since, by the maximum principle,Hε(zε, y) � 1/(ω2|zε − y|), we get that, forε small
enough,

vε(zε) � C

∫
�ε∩B(0,R)

|zε − y|−1v5
ε dy + C(R)ηε(R).
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But, by (26) and (27),∫
�ε∩B(0,R)

|zε − y|−1v5
ε dy �

∫
B(zε,|zε |/2)

|zε − y|−1v5
ε dy + 2|zε|−1

∫
�ε∩B(0,R)

v5
ε dy

� C(R, ν)5
(

µε

νε

)5/2−5ν

|zε|5ν−3 + C|zε|−1
(

µε

νε

)1/2

,

where we have also used (11). This leads to

|zε|vε(zε)

((
µε

νε

)1/2

+ ηε(R)

)−1

� C(R) + C

(
µε

νε

)2−5ν

|zε|5ν−2.

Since|zε|νε/µε → +∞ asε → 0, takingν < 2/5, we have obtained (31) in this third
case.

Thus, (31) is proved. As already mentionned, this is equivalent to

vε(x) � C(R)

(
µε

νε

)1/2

|x|−1 (32)

for anyx ∈ �ε ∩ B(0, R)\{0}. By Theorems 8.24 and 8.29 of [11], we then get that

(
µε

νε

)−1/2

vε → H0 in C0
loc

(
�0\{0}), (33)

whereH0 is a nonzero harmonic function in�0\{0} which vanishes on the boundary of
�0. This enforcesH0 to be singular at the origin. Then

H0 = λ

|x| + b(x),

whereλ is some positive constant andb is a smooth harmonic function on�0 which
satisfiesb = −λ/|x| on ∂�0. By the maximum principle,b is everywhere negative and,
in particular,

b(0) < 0. (34)

We apply now the Pohozãev identity tovε on B(0, 1/2). This leads to

ν2
ε

∫
B(0,1/2)

(aε − ε)v2
ε dx + 3

2
ν2

ε

∫
B(0,1/2)

(
xk∂kaε

)
v2

ε dx

= 1

4
ν2

ε

∫
∂B(0,1/2)

(aε − ε)v2
ε dσ − λε

12

∫
∂B(0,1/2)

v6
ε dσ

+ 1

2

∫
∂B(0,1/2)

(
1

2
|∇vε|2 − (∂νvε)

2
)

dσ − 1

2

∫
∂B(0,1/2)

vε∂νvε dσ.
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Multiplying both sides by(µε/νε)
−1 and passing to the limit asε → 0 by using (32) and

(33), we get that

∫
∂B(0,1/2)

(
1

2
|∇H0|2 − (∂νH0)

2
)

dσ −
∫

∂B(0,1/2)

H0∂νH0 dσ = 0.

Since�b = 0, it is easy to check that the left-hand side of this relation is justλω2b(0).
Thusb(0) = 0: this is in contradiction with (34). Thusx0 /∈ ∂�.

Step 5. We let nowε0 > 0 be such that the operator� + (a − ε0) is coercive on�
and we denote byGa−ε0 its Green’s function with Dirichlet boundary condition on�.
We let alsoLε be the operator defined byLεu = �u + au − λεu

4
εu. We compute

LεGa−ε0(xε, x)1−ν on �\{xε} for some 0< ν < 1. We easily obtain that

LεGa−ε0(xε, x)1−ν

Ga−ε0(xε, x)1−ν
= ε0 − ε − λεu

4
ε + ν(1− ν)

|∇Ga−ε0(xε, x)|2
Ga−ε0(xε, x)2

.

Sincex0 /∈ ∂�, it is easy to see that there existsC > 0, ρ > 0 such that

|x − xε| � ρ ⇒ |∇Ga−ε0(xε, x)|2
Ga−ε0(xε, x)2

� C|x − xε|−2.

Then we have

LεGa−ε0(xε, x)1−ν

Ga−ε0(xε, x)1−ν
�

{
Cν(1− ν)|xε − x|−2 − λεu

4
ε in B(xε, ρ),

(ε0 − ε) − λεu
4
ε in �\B(xε, ρ).

Using (14) and (21), we get the existence of someR(ν) > 0 such that forε small
enough,LεGa−ε0(xε, x)1−ν > 0 on �\B(xε, R(ν)µε). By standard properties of the
Green function, sincex0 /∈ ∂�, there existsC > 1 such thatC−1 � |xε − x| ×
Ga−ε0(xε, x) � C, for any x ∈ �. Then, by (11), there existsC(ν) > 0 such that
uε(x) � C(ν)µ1/2−ν

ε Ga−ε0(xε, x)1−ν , for any x ∈ ∂B(0, R(ν)µε). We deduce from the
three last relations, as it was done in the previous step, the following:

uε(x) � C(ν)µ1/2−ν
ε |xε − x|ν−1, for anyx ∈ �\{xε}.

Now, by the Green representation formula, for any sequence(zε) of points of�, we may
write that

uε(zε) =
∫
�

Ga−ε0(zε, y)
[
�uε(y) + (

a(y) − ε0
)
uε(y)

]
dy.

Similar computations to those developed in Step 4 lead to the fundamental estimate:

|x − xε|µ−1/2
ε uε(x) � C. (35)
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A similar fundamental estimate was obtained in [12,14,16]. The proof presented above
follows [9]. We deduce then by standard elliptic theory that

µ−1/2
ε uε → λGa(x0, .) in C2

loc

(
�\{x0}), (36)

whereλ is some positive real number. Applying Pohozãev’s identity touε in B(xε, δ),
δ > 0 small, one gets that∫

B(xε,δ)

[
(a − ε) + 3

2
(x − xε)

k∂ka

]
u2

ε dx

= δ

2

∫
∂B(xε,δ)

(a − ε)u2
ε dσ − λε

6
δ

∫
∂B(xε,δ)

u6
ε dσ

+ δ

∫
∂B(xε,δ)

(
1

2
|∇uε|2 − (∂νuε)

2
)

dσ − 1

2

∫
∂B(xε,δ)

uε∂νuε dσ.

Multiplying both sides byµ−1
ε and passing to the limit asε → 0 by using (35) and (36),

we obtain that for anyδ > 0,∫
B(x0,δ)

(
a + 3

2
(x − x0)k∂ka

)
Ga(x0, x)2 dx

= δ

2

∫
∂B(x0,δ)

aGa(x0, x)2 dσ − 1

2

∫
∂B(x0,δ)

Ga(x0, x)∂νGa(x0, x) dσ

+ δ

∫
∂B(x0,δ)

(
1

2
|∇Ga(x0, x)|2 − (

∂νGa(x0, x)
)2

)
dσ.

Computing an expansion asδ goes to 0 to both sides of this relation, one finally gets that
ga(x0, x0) = 0 which ends the proof of the theorem.
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