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ABSTRACT. — We study the existence of minimizing solutions for an elliptic equation with crit-
ical Sobolev growth on a smooth bounded domaiR&fWe answer in particular two questions
of Haim Brezis. Higher dimensions> 4 are completely understood thanks to previous works
by H. Brezis and L. Nirenberg.2002 Editions scientifiques et médicales Elsevier SAS

RESUME. — On étudie I'existence de solutions minimisantes a une EDP elliptique & croissance
de Sobolev critique sur des domaines de I'espace euclidien de dimension 3. On résout €
particulier une conjecture de H. Brezis sur le sujet. Les questions analogues en dimensions plt
grandes étaient parfaitement comprises depuis des travaux de H. Brezis et L. Nirer@0g.
Editions scientifiques et médicales Elsevier SAS

Let 2 be a smooth bounded domain®?, n > 3, and let us consider the following
problem:
Au+au=u®"1 inQ,
(E) u>0 inQ,
u=0 onog,

wherea is a smooth function in2, 2* = 2n/(n — 2) is critical for the embeddings of
HE(Q) into L4(RQ) and A is the Euclidean Laplacian with the minus sign convention,
that isAu = — div(Vu). We look for solutions of probleniE) which are inHg(S2), the
completion ofC2°(2) for the norm

2 2
g0y = [ 1ValPd.
Q

Any such solution of probleniE) is smooth inQ2 by standard elliptic regularity theory.
As a first remark, one should note that, if problé®) possesses a solution, then the
operatorA + a must be coercive. By definitiom\ + a is coercive if its first eigenvalue
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with Dirichlet boundary condition is positive. From now on, we consider functions
such that the operatak + a is coercive. A natural approach to find solutions(f% is
to consider the following minimization problem:

/- fQ(|Vu|2+au2)dx
T uecE@uz0 ([ |ul? dx)2/?

If J, is achieved by some:, € H}(Q2), up to changingu, into |u,| and up to
normalization, one gets a smooth solution(@f). Such a solution is referred to as a
minimizing solution of(E). It is well known that, in any case,

J, <Kt

n

wherek,, is the best constant in thg?(R")-Sobolev inequality, defined by

2
K1o Jeo [Vul"dr
" ueC® R0 (fga |u]? dx)%/2

Its value, independently computed in [2] and [22], is

_ 4 —2/n
Kn= n(n — Z)w” ’
where w, denotes the volume of the standard unisphere. When looking for
minimizing solutions of(E), it was shown in Brezis and Nirenberg [4] that the situation
changes drastically when passing from dimensions4 to dimension 3. In particular,
Brezis and Nirenberg proved thatyif> 4, the following properties are equivalent:

() Ixre,a(x) <0,

(i) J. <K 1,

(i) J, is achieved by some smooth positive functign
In dimension = 3, the situation is more tricky and still open. Available results concern
the special case = A, A a constant. More precisely, Brezis and Nirenberg proved in [4]
that for any smooth bounded domainof R3, there exists.*(Q2) € (0, A1(2)), A1(RQ)
being the first Dirichlet eigenvalue & in 2, such that

J, = K3t wheni > —1%(Q),
J, < K3t when — 41(Q) < A < —A%(Q)

and such that, is not achieved fok > —1*(2). If Q is a ball B, they also proved that
A*(B) = A1(B) and that/_s, s, is not achieved.

Under the light of these results, H. Brezis asked in [3] the following question:

If n =3, isJ, achieved if and only i/, < Kgl as itis the case in dimensions> 4?
(Question 5 of [3].)

From now on£2 is a smooth bounded domainRf anda € C>(Q) is such thaiA +a
is coercive. We leG,, : @ x Q\{(x, x), x € 2} — R* be the Green function af +a in
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Q with Dirichlet boundary condition. We have, in the sense of distributions,

AyGa(-x?y)+aGa(x»y):5x in Q»

G,(x,y)=0 foryedQ, x e Q,

andG, is symmetric with respect to the two variables. We may write

1
Ga(x’ y) = +ga(x7 y)9
w2|x — |

whereg, € C%(Q x Q) verifies for anyx € Q:

Ayga(x,y) +aGu(x,y) =0 ing,

1
&(x,y)=———— onox.
w2|x —y|

By test functions computations (see [19]), one gets that
x e, g,(x,x)>0=> Ja<K3_1. D)

The condition thatg,(x, x) should be positive somewhere @ plays the role the
condition that:(x) should be negative somewher&lrplayed in the case > 4. Another
natural question then, asked by Brezis in [3], is the following:

Is the converse of (1) true? (Question 7 of [3].)

In this paper, we answer by the affirmative both these questions. More precisely, we
prove the following:

THEOREM 0.1. — Let Q be a bounded domain of R® and let a € C*®(2) N L*®(2) be
such that A + a is coercive. The following properties are equivalent:
() Ix e, go(x,x) >0,
(i) J, < K31,
(iii) J, isachieved by some smooth positive function u,,.

Note that, by [19], (i) implies (i) (see above) and that, by standard minimization
techniques, (i) implies (iii). Note also that Theorem 0.1 has already been proved in
[3] and [4] in the caser = A andQ is a ball, A a constant. Analoguous results were
also proved by the author [8] in the Riemannian setting. The main difference betweer
dimension 3 and higher dimensions is that the first problem is a global one whereas th
second problem is a local one.df= 3, the condition that there existse Q2 such that
g.(x,x) > 0 is indeed a global condition since the Green functionof a depends on
the values of: on all of Q2 and also on the geometry ©f. There is another difference
between the two cases= 3 andn > 4. Following Hebey and Vaugon [15], we say that
a € C*(Q) is a critical function inQ if and only if

J.=K 1,
J; <Kt foranya<a, a#a.
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Then, ifn > 4, the constant function = 0 is the only critical function in any smooth
bounded domain dR”. Indeed, by [4], ifa is a critical function in2, a(x) > 0 for any
x € Q. SinceJy = K1, the only possibility fora to be a critical function is = 0. On
the contrary, as a consequence of our proof of Theorem 0.1 (see belaws, 3f then
there are critical functions of all shape. More precisely, for any smooth bounded domair
Q of R® and anya € C*(2), there existsB(a) € R such thata + B(a) is a critical
function in Q.

The proof of the theorem is mainly based on a fine blow-up analysis for sequence:
of solutions of an elliptic PDE ifR3. There are many works about this kind of blow-up
analysis: among them, [1,5,12-16,18,20] were a great source of inspiration.

Proof of thetheorem

We first note that for ang, a € C*(R2), we have
aza, da#a= g,(x,x)>gsz(x,x), foranyxe Q. (2)

This follows from the Green representation formula: indeed, foraayz,
8a(x, x) — ga(x, x) = /(51 —a) ()G, (x,y)Galx, y)dy,
Q

>0,

as soon ag > a with a # a. We let nowa € C*(2) and we defineB(a) € R by

Jorp < K3t for B < B(a),

Jorp = K3t for B> B(a).

It is clear thatB(a) is well defined, since foB large (for instanceB > — mina),
Jorp = K:;l and for B small enough (for instanc8 less than the first eigenvalue of
A+aonQ), J,ip < K3‘1. Proving the theorem reduces now to the proof that

(1) there existsg € 2 such thatg, g (xo0, X0) = 0.

(2) JatB 1s not achieved.
Indeed,J, . 5 is clearly not achieved by any smooth positive z for B > B(a), since
otherwise, we would have

Jo(Vitarp® + (a + B(@)uf, p) dx

Ja a <
e (Jo lttar51°d)1/3
<7J Jo(B(a) — B)”2+B dx
ST (g g p 18 d) 23
< Kn_l

which is in contradiction with the definition a8 (a). Thus, if we prove thatl, s, is
not achieved, then properties (ii) and (iii) of the theorem are equivalent. Next, if we
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prove that there existg € 2 such thatg, s (x0, Xo) = 0, we have then by (2) that for
any B < B(a), g.+5(x0, x0) > 0 which proves that property (ii) of the theorem implies
property (i). Since the converse is true by (1), this clearly proves the theorem. Up to
changinga into a + B(a), we may assume thadt(a) = 0.

Step 1. We first prove that/,, 5(,) iS not achieved. Let us assume by contradiction that
there exists, € C* (), u, > 01in Q, which achieved,. Then, up to normalization,
verifies

Au, +au, = Kg_luj in &,

©)
u,=0 onos2,

and

/ugdx —1 (4)
Q

For anyp € C*(R®), sinceJ, = Kgl, we have that for any > 0,
1/3 ,
(/u3(1+ 8<p)6dx) < K3[/|V(ua(l+8<p))| dx +/au§(l+8<p)2dx} (5)
Q Q Q

We clearly get with (4) that

1/3
(/u3(1+8<p)6dx> =1+ ZE/MS(de-i-SSZ/MS(pde
£2 Q

— 482(/ug<p dx>2 +0(&?).

Q
On the other hand, using (3) and (4),

K3{/|V(ua(l+s<p))|2dx+/au§(1+8<p)2dx}
Q Q

- Kg{/ua(Aua +au,)(L+ep)?dx + 82/u2|V(p|2dx}
Q Q
= [u8+ e dr + Kee? [ W2Vl ds
Q Q
=1+ 2£/ug<pdx +82/<p2u2dx + K382/u§|V<p|2dx.
Q Q Q
Coming back to (5) with these two last relations and lettirgp to 0, we get that
2
4/<p2u2dx < K3/M§|V<p|2dx +4</u2<pdx) . foranyg e C*(R3). (6)
Q Q Q
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We claim now that there exists, 1) € R® x R* such that:

2t(x —
F(y,1):= uSdezo, foranyi =1,2,3,
1+ 12|x — y|?
Q
1—1%x — y?
G(y,t):= 6~ ° dr=0.
(y ) Q/Mal+t2|x_y|2

This result is the equivalent of a result on the standard sphere proved by Chang an
Yang [6]. Following [6], the proof of such a claim may go as follows: one considers
H :R3 x R — R* defined by

/2 1+ 4 Js21 4
H(y,s) = (F(y, %) +y,G(y, %) +s).

One proves, thank to an asymptotic expansiof @ndG that|H (y, s)|? < |y|?> + s2 as
soon agy|? + s? is large enough. This proves in particular that there extsts 0 such
that H (B(0, R)) C B(0, R). SinceH is a continuous function, we may apply Brouwer’s
fixed point theoremH has at least one fixed point B(0, R). But a fixed point ofH is
just a zero of bothF" andG. This proves the above claim.

We now apply (6) to each;, i =1, 2, 3, 4, where

2t (x' —y") )
(x)=——— " foranyi=1,2,3,
@i (x) T+ 20—y yi
) 1—1%x — y|?
X) =
T T

SinceF = 0 andG = 0 for the good choice ofy, ¢), we then obtain:

4 4
4Z/u2(pi2dx <K32/|V<p,-|2u§dx.

iZlQ iZlQ

But

and

4
I —
=~ A+ 12 = yP)?

Thus we have

t2
4 [uSdx <12k / 2 .
!ﬁ“ ?) e -y
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By Hélder’s inequalities and (4), we obtain

/3 2/3
1<3K dx | .
3(! (L+12x = y2)3 )

One then easily verifies that

13 2/3 .
(/(1+;2|x_y|2)3 dx) =(3K3)".
R3

SinceS is bounded, we clearly get the desired contradiction &nchn not be achieved.
The following steps deal with the proof that there exigtg 2 such thafg, (xq, x¢) = 0.
Sep 2. By the definition ofB(a), for anye > 0, we have that

Joe < K3t (7

Remember that we have chosé{a) = 0 for all the proof of the theorem. This
inequality ensures, this is by now standard, the existence of a minimizdy, for Up

to normalization, we thus have for amy> 0 that there exists some smooth positive
functionu, in Q verifying:

Aug + (a — &)u, = Asuf in Q,

u, =0 onoas2, (8)
/u?dx =1,
Q

where we have sét, = J,_,.

The aim now is to study this sequenge) ase goes to 0. First of all(«, ) is bounded
in H3(2) so that, after passing to a subsequengegonverges weakly to soms in
H$ (). We may also assume that, up to a subsequence,, ity = Ao, With Ao < K3‘1
by (7). By passing to the limit in (8), one checks thatverifies

Aug + aug = rouy  in Q,

ug=0 onog2.

Moreover, by weak convergence properties,

/ugdxgl.

Q

SinceJ, = K3*, we have that
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13
(/ugdx) <K3</|Vuo|2dx+/augdx) :A0K3/u8dx,
Q Q Q Q

where we have used the equation verifieddylf uo 0, we obtain thak, = K5 * and
that [, ugdx = 1 which exactly means that, is achieved byuo. Since we proved in
Step 1 that/, was not achieved,

ue —0 in Hy(Q).

By the compactness of the embeddingtf($2) into L2($2), we have that

lim u?dx = 0. (9)
Q

We letx, be a point of©2 whereu, achieves its maximum and we set

ug(xg) = /’Lg_l/z = Supu,. (10)
Q
Since
1—/u6dx < Jattcdr
= [uede <=5
Q &

it is clear by (9) thatu, — 0 ase — 0. Combining standard results of elliptic theory
(namely results of [21] and [10] or [17]), one gets that

—2/3 ~1/2
!@OMi/zug(ugx +x,) = <1+ wST|x|2> in C%C(RS) N L%C(Rg). (11)

In particular, we have that
d(x,, 02
( &€ )

i (12)
and that
lim lim / uSdx = 1. (13)
R—+400e—0
B(xe,Rpie)
By bootstrap techniques and sinceverifies (8), one also obtains that
Iimou,s =0 inCL.(Q\{x0}) (14)

wherexg = lim._, o x,, up to the extraction of a subsequence.
Sep 3 (Weak pointwise estimates). We claim that there exists 0 such that for any
e >0,

Ix —x.|Y%u,(x) < C, foranyx e Q. (15)
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A similar estimate was obtained in [16] and [20]. We follow here the proof of [7]. Let us
note, forx € Q,

we (X) = |x — x|V 2u, (x)

and lety, be a point of2 wherew, achieves its maximum. We assume by contradiction
that

w,(ye) = SUpw, — +oo ase — 0. (16)
Q
Clearly, by (11),
lim 1%e = yel =400 a7)
e—0 e
and, by (16),
fim e el L (18)

=0 Ms(ys)_z B

Since is bounded, we also clearly have that ligyu.(y.) = +oo and thanks to (14),

that lim._,o|x, — y.| = 0. We set now, fox € Q, = {ui;})’iz, y € Q},

e () = te (Ve) " Mtte (e () 2% + Ve ). (19)

Itis clear that

Aiig + (a(ue(ve) 72X 4 ye) — )ue(ye) Yiie = Al N Q.
N (20)
i, =0 onog2,.
For anyx € B(0, 1) N €2,, we have that

ug(x) = ”a(ya)_l”a (Ms(ys)_zx + ya)

< We (Ms(ys)_zx + ys) |x5 - ysll/z
ws(ys) |u5(y5)_2x +ys _x5|1/2’
so that
~ Xeg —
Ms(x)z < |xe — Vel

|”a(ya)_2x + Ve — Xel
by the definition ofy,. Then, by (18), we obtain that, farsmall enough,

i, (x)><2, foranyx e B(0,1)NQ,.

We let nown € C°(B(0, 1)) andk > 1. Some integration by parts, using Eq. (20) and
the fact thati, is uniformly bounded inB(0, 1) N 2., lead to the following:

/ |V (itt/)|" de < C(IVnI%, + 1 Anllo + ) / it dx.
B0, )N BO.)NS,
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Using Sobolev’s inequality, we obtain that

( / (nﬁ§/2)6dx) <CIVHlZ + 1Al + k) / ii* dx,

B(0,1)N$2 B(0,1)N$2

1/3

where C is some constant independent ofk and 5. For anyi, we letk; =6 x 3
and we take some; such thaty; =1 on B(0,3 +27%), n; =0 on B(0, 3 + 2771,
IVn: 1% + | Anille < C47I~L. Applying the above inequality by induction an we

obtain that
1/6
sup ﬁg<C< / ﬁfdx) :

.
5020 B(0,)NS,

whereC > 0 is independent of. Sinceii,(0) = 1, we have obtained the existence of
someC > 0 independent of such that

/ i dx > C.
B(0,$N%,
Then, we write that foe small,

1:/ufdx> / ugdx—l— / u?dx,
Q

QOB()’S’MS(_VS)iz) B(xe,Rute)

since B(y,, us(y.)~%) N B(x,, Ru,) = ¥ for ¢ small enough: this is the content of (17)
and (18). By passing to ligL, .« lim._o in the right hand side, we obtain, with (13) and
the estimate above, a contradiction. Thus (15) is proved.

A simple adaptation of the above proof gives that

lim lim sup  |x, — x|Y2u.(x) =0. (21)
R—)-‘rOO EQOXEQ\B()CS,R/LE)

Sep 4 (Ruling out boundary accumulation). In this step, we prove that the accumula-
tion pointxg cannot be on the boundary ©f Let us assume by contradiction that

Ve i=d(x,,0R2)— 0 ass— 0. (22)

We set forx € Q, = (%, y e Q,},

Ve
ve(x) = v3/2u8(v8x + x;).

Thenv, verifies the following:

Avg + (a, — s)vgzv5 = Asv? in Q,,
(23)
v, =0 onog,,
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where we have set. (x) =a(v.x + x.). Moreover,

/QM=L (24)

Qe

One also checks that (11), (13), (15) and (21) are scale invariant and thus continue t
hold with v, u./ve, Q. and O instead af,, u., 2 andx, (note that, by (12)u./v. — 0
ase — 0). SinceQ2 is smooth and with (22), we have that, up to a rotation,

IimOQg =Qo=R?%x ]—00; 1].

For anyR > 0, we let

Ne(R) = sup V. (25)
x€Q:NB(0,R)\B(0,R/2)

We let alsoL, be the operator
_ 2 4
Lou=Au+ (a, —&)viu — v u

and we computé , (|x|"~1) for some O< v < 1 onB(0, R) N 2,\ B(0, R’:—j) whereRr is
fixed andR will be fixed later on. Easy computations lead to

Le(Ix]"71) = [x[" 2 (0L = v) + (@ — e)v2|x[* — re|x[?0d).

Thanks to (21), we may choogesuch that for small enough,

1 e
helxPu! < Sv(L—v) onB. R)HQS\B(O,RM—)
V

&

With (11), we may findC(R, v) such that for any > 0 and anyx on the boundary of

m 1/2—v
v£<x)<C<R,v)((—8) +n8<R>)|x|”—1.

Ve

If we let G.(x) be the right-hand side of the above equation, we have obtained that
Lo(Ge —v) =0 mBMJDﬂQAB(QRﬁ—,
vé‘
G — v, >0 ona<B«xR)mS%\B(b,Rﬁﬁ)>,
Ve

sinceL,v, = 0. This leads to

Ls(Gs - Us)_ X (GF - Us)_ < Oa
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where(G, — v,)~ denotes the negative part @, — v.). Integrating by parts, we get
that

/|V<Gs —vg)—|2dx+v3/(a5 —9)[(Ge — ) Pelx

< As/”j[(Gs - Us)_}zdx

1/3
< )\s (/ [(Gs - Ua)_]6d~x) ’

where we used (24) and where the integrals are taken B(@&rR) N 2.\ B(0, 15’:—;).
This clearly violates the definition aof, unless(G, — v,)~ = 0. Thus we have that

1/2—v
0. (¥) < C(R, v)((’;‘—) + ng(R)) Pt (26)

foranyx € B(0, R) N2,. Indeed, by (11), this inequality obviously holds B0, 15‘:—:).
Let us now prove that ‘

m 1/2—v
@< () @7
Assume that, on the contrary, there exiSts- 0 such that
i 1/2—v
n:(R) > C (—) : (28)
Ve
so that we may rewrite (26) as
v (x) < C(r ) (R) x| (29)

Then, for any compact subs&tof B(0, R) N Q. \{0}, there existL (K) such that

(UE(X)> < C(K), foranyxeKkK
X . X .
7e(R) Y

By Harnack’'s inequality, we clearly get the existence of sobw&) > 0 (for any
compact subsek’ of 2,\{0}) such that

( e (%) ) <D(K), foranyxeK
B y X .
n:(1/2)

By standard elliptic theory, see Theorems 8.24 and 8.29 of [11], we obtain then tha;

(ve/n:(1/2)) is bounded irCE,’g(Q_E\{O}). Thus, by Ascoli’s theorem, after passing to a
subsequence,

; Vg o . 0 /=~
!@0(,78(1/2)) =Go In C|0C(QO\{0})9 (30)
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where we have extendad by 0 outside2,. Moreover,Go # 0 andGy verifies:

AGog=0 in Q0\{0},
Go=0 onad Q.

Since G # 0, by the maximum principleGo must clearly be singular. Moreover, by
(29), the only possible singularity is at 0. Thus

Golx) = 2 + b(x)
x|

for some positive constarit and some smooth harmonic functiénin Qo with b =
—A/]x] on 8. Integrating (23) orB(0, §) for § > 0 small enough, we obtain that

- / 0,v, do + v52 / (a, — e)v, dx = A, / vfdx,
3B(0,8) B(0,5) B(0,5)

where v denotes the outer normal tB(0, §). By (29) and (30), using Lebesgue’s
dominated convergence theorem, we have that

1 -1

778(5) Ae / U,ssdx — — / 0,Godo.
B(0,8) 9B(0,5)

For$ small enoughs- [; 0 5) 9 Godo is positive. Thus

1 u 1/2
n8<§><c / vfdx<C<—8> +C / vfdx,
vE

B(0,5) B(o,a)\B(o,R’;—g)

for any R > 0 provideds is small enough: we have here used (11). Next, by (29),

/ v?dx<Cn5 (%) / |x|”_1vfdx

B(O,S)\B(O,R’;—j) B(O,&)\B(O,R’;—g)
1 2/3 1/3
<onfp)( [ bae) (] wee)
Q\B(O,REE) B(0,5)

) [ e

Q\B(O,REE)

Coming back to the next to last estimateriil/2) and choosingk large enough so that
fQE\B(O’R&) v8dx is small (this is possible by (13)), we obtain the existenc€ of 0
such that

12
ne(R) < C(“—) ,

Ve
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which is clearly in contradiction with (28) singe. /v, goes to 0 as goes to 0. Thus we
have proved (27).

We want now to prove that (26) still holds for= 0. Of course, with the same
argument than above, we will then clearly have that

1 e\ 2 1
C_l e\ A < - <C e\l A
n(3)<(5) <en(3)

for someC > 1 independent of. We let(z,) be a sequence of points 8f0, R) N Q,.
The aim now is to prove that there exigi$R) > 0 such that

-1

1/2
mmm((%) +ng(R)> <C(R). (31)

&€

We distinguish three cases.
Casel: |z.|ve/ . — & ase — 0. By (11), we clearly have (31) in this case.
Case2: |z.| > R’ ase — Owith R/2 < R’ < R. By the definition ofy. (R), we clearly
have

|Z£|U8(Z£)US(R)_1 <R

so that (31) is valid in this case.

Case 3. |z.| > R’ ase — 0 with R < R/2 and|z.|v./us — +00 ase — 0. We let
H, be the Green function ak — gq with Dirichlet boundary condition o, N B(0, R)
for somegg > 0 small enough. By Green'’s representation formula, we may write that

0 (ze) = / Ho (2o, y) (Avs(y) — 0ve(y)) dy — / 8, Ha(ze. y)vs () do
Q:NB(O,R) Q:NIB(O,R)

where v denotes the outer normal &fB(0, R). By standard elliptic theory, since
Q. — Qg ase — 0 and sincdz.| < 2R /3, we get that

- / 0y H, (26, V)vs(y) doy < C(R)(R).
Q:NIB(O,R)

On the other hand, using (23), we may write that

H,(zz, y) (Ave(y) — €ov:(y)) dy
Q:NB(O,R)

— / H.(zs,y) [Asvf — (agvg2 — evsz + &0)ve | dy.

Q:NB(O,R)

Since, by the maximum principle?. (z., y) < 1/(w2|z. — y|), we get that, forr small
enough,

v (z0) < C / 12 — yI WS dy + C(R).(R).
Q.NB(O,R)
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But, by (26) and (27),

&

|ze — y| tv2dy < / |ze — y| 7t o2dy + 2zt / v2dy

Q:NB(O,R) B(z¢,12¢1/2) Q:NB(O,R)
" 5/2—5v " 1/2
<C(R,v)5(—€) |zs|5“—3+C|zs|—1(—€) :

Ve Ve

where we have also used (11). This leads to

PR
|z8|v8(zs)((v—f) + m(R))

Since|z.|v. /e — +00 ase — 0, takingv < 2/5, we have obtained (31) in this third
case.
Thus, (31) is proved. As already mentionned, this is equivalent to

-1 w 2—-5v
<CR)+ C(v—f) 2.

&

i 1/2
v.(x) < C(R) (—) x|t (32)
Ve
foranyx € Q. N B(0, R)\{0}. By Theorems 8.24 and 8.29 of [11], we then get that
i -1/2 L
(v—) ve — Ho in CL.(Q0\(0}), (33)

where Hy is a nonzero harmonic function fp\ {0} which vanishes on the boundary of
Qo. This enforcesH, to be singular at the origin. Then

A
Ho=—+b(x),
|x|

where is some positive constant armdis a smooth harmonic function dg which
satisfiesh = —A/|x| on d€2o. By the maximum principle) is everywhere negative and,
in particular,

b(0) <O0. (34)
We apply now the Pohozaev identity ipon B(0, 1/2). This leads to

3
2 / (a,;—fs)vgzdx—i—évs2 / (x*dpa.)v? dx

&
B(0,1/2) B(0,1/2)

1 A
=ZV52 / (ag—s)vfda—1—82 / P do
9B(0,1/2) 9B(0,1/2)

1 1 1
+5 / <§|Vv8|2 — (E)vvs)2> do -3 / Ve 0y v, do.
9B(0,1/2) 9B(0,1/2)
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Multiplying both sides by(u, /v,)~ and passing to the limit as— 0 by using (32) and
(33), we get that

1
E|VHO|2 — (BVHO)Z) do — / Hod, Hydo = 0.
9B(0,1/2) 9B(0,1/2)

SinceAb =0, it is easy to check that the left-hand side of this relation isjusb(0).
Thusb(0) = 0: this is in contradiction with (34). Thusg, ¢ 9.

Sep 5. We let nowep > 0 be such that the operatar + (a — gg) iS coercive onQ2
and we denote by,_., its Green’s function with Dirichlet boundary condition éh
We let alsoL, be the operator defined by.u = Au + au — r.u?u. We compute
L:Gyeo(xe, x)17 0N Q\{x.} for some O< v < 1. We easily obtain that

L, Ga—so (xe, x)l—v
Ga—so(xén x)l—v

IV Gyeeo(Xe, X)I?
Ga—so(xsa X)2

=80—8—)»81/lg+l)(1—l))

Sincexg ¢ 092, it is easy to see that there exigls> 0, p > 0 such that

VG (xe, )12
Ga—so(xsa x)2

X — x| < p= > Clx — x| 2.

Then we have

LeGye(xe, )17 N Cv(l—v)|x; —x|72 = A.u? in B(x,, p),
G o (X, )17V (g0 — &) — Aeu? in Q\B(x., p).

Using (14) and (21), we get the existence of soR@) > 0 such that fore small
enough,L.G,_.,(x, x)*™" > 0 on Q\B(x., R(v)i.). By standard properties of the
Green function, sincexy ¢ 922, there existsC > 1 such thatC—! < |x, — x| x
Gy_gy(xe,x) < C, for any x € Q. Then, by (11), there exist€(v) > 0 such that
ue(x) < CWIUY?7"Gygy(xe, x)177, for anyx € 9B(0, R(v) ). We deduce from the
three last relations, as it was done in the previous step, the following:

e (x) SCWu? I —x|"74, foranyx e Q\{x.}.

Now, by the Green representation formula, for any sequéngef points of2, we may
write that

e (2e) = / Gaveyzer ) [ Dt () + (a(y) — £0)us(y)] dy.
Q

Similar computations to those developed in Step 4 lead to the fundamental estimate:

Ix — xelp; Y Pu . (x) < C. (35)
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A similar fundamental estimate was obtained in [12,14,16]. The proof presented abov:
follows [9]. We deduce then by standard elliptic theory that

172U, — AGo(xo,.) i CEo(Q\{x0}), (30)

wherea is some positive real number. Applying Pohozé&ev’s identity tan B(x,, §),
8 > 0 small, one gets that

{(a —&)+ :—;(x - xg)kaka} ufdx

B(xe,8)

:% / (a—e)ufda—%S / u® do

0B(x¢,6) 0B(x¢,6)
1 1
+4 / (§|Vu8|2—(81,u5)2> do——E / u0,u, do.
9B (x¢,8) dB(x¢,0)

Multiplying both sides by and passing to the limit as— 0 by using (35) and (36),
we obtain that for anyg > 0,

/ (a + :—;(X - Xo)kaka> G (xo, x)? dx

B(x0,0)

) 1
=_ / aGa(xo,x)zda—E / G, (x0, X)9,G4(x0, x) do

2
9B (x0,5) 3B (x0,8)
1 5 2
+5 / SIVGa (0,02 = (8,Galx0, 1)) do.
9B (x0,5)

Computing an expansion agjoes to 0 to both sides of this relation, one finally gets that
g4(x0, x0) = 0 which ends the proof of the theorem.
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