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ABSTRACT. - We consider the periodic problem for a class of planar
N-body systems in Celestial Mechanics. Our goal is to give a variational
characterization of the Hill’s (retrograde) orbits as minima of the action
functional under some geometrical and topological constraints. The

method developed here also turns out to be useful in the study of the
full problem with N primaries each having at most two satellites. @ 2000
Editions scientifiques et médicales Elsevier SAS .
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RESUME. - On considere le probleme periodique pour une certaine
classe de systemes de N-corps en Mecanique Celeste. Notre but est de
donner une caracterisation variationnelle des orbites (retrogrades) de Hill
comme minima de la fonctionnelle d’ action sous certaines contraintes

geometriques et topologiques. La methode ici developpee est egalement
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utile pour l’étude du probleme complet avec N corps primaires ayant
chacun au plus deux satellites. @ 2000 Editions scientifiques et médicales
Elsevier SAS

. 1. INTRODUCTION

This paper concerns the periodic problem for a class of planar N-
body systems in Celestial Mechanics. We mainly deal with a class of
3-body problems, though our method may be applied in some particular
cases of more general N-body systems. We consider the case of two
major bodies and a satellite and we seek orbits when the whole system
revolves with a frequence 0, while the third mass rotates around one of
the other bodies with a T -periodic motion. In the restricted case, when
the motion of the satellite takes place close to one of the primaries, this
problem is known as Hill’s problem and a simple argument based on the
inverse function theorem shows the existence of periodic orbits (in the
rotating frame) for small values of the quantity 8 T , see [12]. Our goal is
to give a variational characterization of the Hill’s (retrograde) orbits as
minima of the action functional under some geometrical and topological
constraints. The method developed here also turns out to be useful in the
study of the (full) problem with N primaries each having at most two
satellites.
The periodic problem for both restricted and full N-body systems has

such a long story that it is impossible to give an extensive bibliography
here; we refer the reader to the classical texts [12-14]. In the last two
decades, a new method for finding periodic motions has been provided by
the use of variational techniques, see, e.g., the book [3] and the references
therein. The first variational characterization of the periodic solutions
of the 2-body problem goes back to a paper by Gordon [ 11 ], where it
is shown that the periodic orbits are local minima of the action under
the topological constraint of non triviality of the rotation index. This
constraint is used to overcome the lack of coercivity of the action integral
in the space of periodic functions. However, from the functional point of
view, the minimization problem (even in a local sense) is degenerate,
that is it possesses a continuum of solutions. This is due to the fact

that every solution to the associated differential equation is periodic,
provided its energy is negative, and the period (and the associated action
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value) depends only on the energy. In particular all the periodic orbits,
including the degenerate ellipses, where the two bodies collide, share
the same variational characterization; in other words, it is impossible
to distinguish them by looking at their functional levels. On the other
hand, even though they can be extended as global solutions to the
differential equations, the motions of collision type are periodic only in a
mathematical sense.

Starting from the subsequent paper by Gordon [10], different kinds
of assumptions have been considered in order to rule out the collision
solutions, in the case of 2-body and N-body problems. In the case
of Keplerian interaction potentials, a fundamental remark is that the
minimization problem may become non degenerate by imposing further
symmetry constraints in the space of periodic functions. This fact has
been first pointed out in the 2-body case in [9], and then exploited in order
to obtain noncollision periodic orbits in various situations [4,6-8,16,17].
In the planar N-body problem this idea has led to associate the boundary
condition xi (t + r) = with the equations system, where xi (t) is
the position of the i -mass, and Rcp a rotation of the plane of angle cp and
r is the period of the mutual distances between the bodies see [4]. In this
setting, it can be shown (see [5]) that the simple minimization argument
in the space of symmetric functions leads to the relative equilibrium
motions that are well known periodic solutions to the system [ 1 ] . In order
to avoid such a triviality, Bessi and Coti Zelati [4] imposed a further
topological constraint, that is one of the body couples has a non trivial
rotation index in the rotating frame. However, though they ruled out the
simultaneous collisions of the whole system, they were unable to avoid
periodic solutions having partial collisions. The aim of this paper is to
go further in the analysis in [4], and prove, by level estimates, that the
minimum of the action functional under both symmetry and topological
constraints is free of any collision. We first deal with the 3-body problem
in the restricted and full cases: to this end, we exploit the variational
structure of the problem, looking for minimizers of the action integral
among the functions which satisfy the above mentioned constraints. More
precisely, we require the system coordinates X (t) = (xl (t), x2 (t), x3 (t))
to satisfy xi (t + T ) = R03B8Txi (t), where ReT is a rotation of angle 9T
in the plane; in addition we require the motion of to have
a negative rotation index with respect to the first body, that is, to be
retrograde. Finally, we use similar arguments to study more general
problems with more major bodies each one having at most two retrograde
satellites.
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2. STATEMENT OF THE RESULTS

Throughout this paper we denote by G the universal gravitation
constant, by Bi,..., Bn (n = 3 or n = 4) the bodies of the problem we
consider and by m i , ... , mn their respective masses; their positions in the
plane JR2 are described by the n functions xi = xi (t) (i = 1, ... , n ).

DEFINITION 1. - We say that (Xl, ..., xn) is a noncollision orbit on
the interval [0, T ] if Xi (t) ~ xj (t) for all 1  i  j  n and all t E [0, T ].

We first deal with a restricted 3-body problem { Bl , B2, B3 }, which we
briefly describe. Consider for a moment only the system B2 } : if we
assume the center of mass to be fixed in the origin and we set the period
to be 2~c / ~ , then a solution of the following equations of motion

is given by

where

The restricted problem we consider consists in assigning xl (t), x2 (t) as
in (2.1 ), while the motion of B3 satisfies the equation

where

Fix T,03B8 > 0 so that 03B8T  203C0. Let Ra be the rotation in by an angle
a ; we denote by Ra the corresponding matrix as well
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Note that XI (t) = R03B8tx1 (0) and x2 (t) = We look for solutions

of (2.2) satisfying x3 (T ) = to this end we introduce the space

Moreover, we require B3 to orbit around Bi without colliding with neither
Bi nor B2; more precisely we consider the noncollision set

and

where ind(y) denotes the winding number of y in the interval [0, T].
Consider the following Lagrangian functional

whose critical points correspond to solutions of (2.2). Then, we have

THEOREM 1. - There exists a continuum of periodic and quasi-
periodic noncollision solutions of (2.2). More precisely, there exists v E
(0, 27r) (depending only on the ratio m2 / m 1 ) such that v then

problem (2.2) admits a solution x3 moreover; x3 minimizes Lover

We prove Theorem 1 in Section 3. Of course, a major problem
concerning the statement of Theorem 1 is to estimate v : in order to show
that our results are not perturbative we take the masses of B 1, B2 and B3
to be respectively the masses of the Earth, the Sun and the Moon. In this
case m2/m 1 ~ (3.3) 105 : moreover, the real (direct) motion of this 3-body
system has the corresponding ~ T ~ 0.46; hence, it is of some interest

to show that our method avoids collisions (for the retrograde motion)
when v = 0.46. In fact, our next result states that even larger values are
allowed:

THEOREM 2. - Assume that m2 /mi 1 = (3.3) 105 ; then, 0.8

problem (2.2) admits a solution x3 E A 1; moreover, x3 minimizes Lover
Al.
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This result is proved in Section 6 where we also give the pictures of
some numerical experiments: such results lead us to conjecture that the
upper bound for v could be even larger.

Next we consider a full planar 3-body problem { B1, B2, B3 }; their
motion is described by the equations

where the potential is given by

and Vi (x) = Consider the Hilbert space

the noncollision set

and

By adding the three equations in (2.4) we get ~i mixi (t) = 0, therefore,
without loss of generality we may seek solutions x = 
of (2.4) which satisfy the constraint = 0; in particular, this
implies that the "interesting" degrees of freedom of the system are 4. The
Lagrangian of this 3-body problem is

Also in this case we obtain infinitely many noncollision periodic or
quasi-periodic solutions of (2.4): in Section 4 we prove
THEOREM 3. - lf m3 is sufficiently small, then there exists a contin-

uum ofperiodic and quasi-periodic noncollision solutions of (2.4). More
precisely, there exist two constants v E (0, and M > 0 depending
only on ml, m2 such that v and m3  M, then problem (2.4)
admits a solution x E moreover, x minimizes ~ over 

’
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This result enables us to study the planar 4-body problem { B 1, B2, B3 ,
B4} where B3 and B4 are two satellites of Bi. Their motion is described

by the equations

where the potential is given by

Define the Hilbert space

the noncollision set

and

The corresponding Lagrangian is

Then, in Section 5 we will prove

THEOREM 4. - If m3 and m4 are sufficiently small, then there exists a
continuum of periodic and quasi-periodic noncollision solutions of (2.6).
More precisely, there exist two constants v E (o, 2~ ) and M > 0

depending only on ml, m2 such that v and m3, m4  M, then

problem (2.6) admits a solution x E 11 { ; moreover, x minimizes 03A6 over

Remark 1. - The proofs of our results may be naturally modified in
order to obtain similar statements for N-body problems { B1, ..., BN }
with k major bodies (k  N), each one having at most two satellites.

Remark 2. - Although we seek solutions in A (a set having nontrivial
index for some couples of bodies), in fact by construction all the solutions
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we find have the index equal to -1, therefore they represent a clockwise
motion, while the two major bodies are assumed to rotate anticlockwise.

3. THE RESTRICTED PROBLEM

In this section we prove Theorem 1.

First assume that  27r. We switch to a rotating coordinate frame
(0, e2) so that the bodies Bi and .62. whose motions in the original
coordinate frame are described by (2.1), are at rest. More precisely,
the position of Bi is -R1e1 and the position of B2 is R2e1. If we set

-(? 0’)
denotes the standard symplectic matrix, then we get ~3(~) = +

and ~3~)~ = ~)+~7~)~; the condition x3 (T) = 
becomes q(T) == ~(0). Next we rescale the period r and we translate the
system in order to have Bi at the origin by setting 
so that we get the standard Lagrangian functional of the restricted 3-body
problem:

where

Up to the addition of a constant, we may redefine the Lagrangian I as
follows:

we remark that the corresponding Euler-Lagrange equations are un-
changed. We set x(t) = we introduce the adimen-
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sional parameters p = m2 /m 1 and v - ~9T and we define

so that we get

. ,

For all 03BE E define the functions

and

so that

Note that
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and, by expanding in McLaurin polynomial, there exists s E (0,1) (s =
s (~ ) ) such that

therefore, we also have for some s = s (~ ) G (0,1)

The Lagrangian functional L defined in (2.3) is therefore transformed
into @ while the original space H is transformed in the Hilbert space Hl
of 1-periodic functions in Consider the noncollision open subset

and

Theorem 1 is proved if we show that the problem

admits a solution x E A and no solutions in 

LEMMA 1. - Let {xn} C 111 be a minimizing sequence for 03A6; then
there exists x E A such that xn --~ x, up to a subsequence, and ~(x) _
infx~1 03A6 (x ) .

Proof - In the following c represents a generic positive constant which
may vary within the same formula. Let xo = cos 2~ t) with
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R = ~ZTC ~ -2~3 ; then xo achieves the minimum of the functional

under the constraint ind(x) == 20141; xo is not a minimum of @ , therefore
for large values of n we and

Note that if v C v then

so the last inequality yields

and finally c. By the topological requirements and Poincare
inequality we infer c, therefore is bounded in
H and, up to a subsequence, it admits a weak limit x E H, which is a
minimum of CP by the weak lower semicontinuity of the functional CP.
Finally, x E A by uniform convergence of f xn } . D

To complete the proof of Theorem 1 we exclude the case x E ~1 in
the statement of the previous lemma; first of all it is possible to obtain
a contradiction to a collision between B3 and B2, because they are not
linked by a topological constraint. Indeed, if there exists r E [0, 1] such
that x (r) = ( p + 1 ) 1~3 v-2~3e1, we can modify the trajectory of x = x (t)
in a neighborhood of T in order to lower both the kinetic part and the
potential part of 03A6 and to avoid a collision. Since the proof is standard,
we omit it.

LEMMA 2. - Let x be as in Lemma 1; then x(t) ~ (p + 1)1~3v-2/3e1
for all t E [0, 1].

The proof that B3 does not collide with B1 is more subtle and requires
some estimates; we exclude collisions for sufficiently small v :
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LEMMA 3. - Let x denote an orbit obtained in Lemma 1. There exists
v E (0, 2n ) such that if v ~ v then x (t) ~ 0 for all t E [0, 1 ] and

in particulaq x E 

Proof - In this proof we denote by Ki (i = 1,..., 4) positive constants
depending (eventually) on p. By contradiction, assume that x E ~1,
where x is determined by the statement of Lemma 1; without loss of
generality, we may assume that x (o) = 0 and hence

Consider again the function xo = R (sin cos with R = (2~c ) -2~3;
if v is sufficiently small, then we have (p + 1 ) 1 /3 v-2/3 e1 ~ ~
~ (p + 1 ) 1 /3 v -2/3 for all t E [0,1] and s E (0,1), hence, (3.1) yields

and

Since x minimizes ~, by (3.3) (3.4) and (3.5) we get

therefore, we obtain (independently of v  v  K4 : in turn, if
v is sufficiently small, by (3.4) this yields
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On the other hand, by (3.1 )

which, together with (3.6), gives

finally, note that

Therefore, since we assume that x E HJ minimizes ~, by (3.4), (3.5),
(3.7) and (3.8)

which is impossible if v > 0 is small enough: hence, for such v, we get a
contradiction and the lemma is proved. D

Theorem 1 is proved: if 9 T C v we obtain a solution of (2.2); such
solution is periodic if 03B8T/03C0 E Q, while it is quasi-periodic if 8T In E
RBQ.
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4. THE FULL 3-BODY PROBLEM

In this section we prove Theorem 3.
To this end, we show that the Lagrangian functional @ defined in (2.5)

admits a global minimum in the (open) set

where Ao is the noncollision open set

We first prove

LEMMA 4. - Let C ll 1 be a minimizing sequence for then 
is bounded in H.

Proof. - ~i pi ~2 for all x E Ao, then II2 is
bounded. Since xi (T ) = then + T) - = 

= But xi (t + T ) - xi (t) = xi(s)ds, hence
~xi (t) ~2  C ~~2 for all t, so ~~~ is bounded and
finally ~xn~ is bounded. 0

We use again a rotating coordinate system by setting Qi (t) = (t)
for all x = (xl, x2, x3) E H so that xi (t) = Qi (t) + Qi (t) and

= Qi (t) + ~ J Qi (t) ~2. Next we rescale the period by setting
y (t/ T) = Q (t) . Up to a multiplication by T, the Lagrangian becomes

clearly, the constraint - 0 transforms into - 0.
We introduce a new Hilbert space of periodic functions (which we still
denote by H ), defined by

the corresponding noncollision open set
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and its subset

Therefore, the original problem of minimizing @ is reduced to the

following minimization problem:

We prove that the infimum in (4.1 ) is achieved:

LEMMA 5. - There exists y E A such that I (y) = infy~1 I (y).

Proof - Let {yn} C 111 1 be a minimizing sequence for I ; then, the
corresponding sequence {xn} defined by setting xn (t) = is

minimizing for @ : by Lemma 4, it is bounded and so is {yn } . Therefore,
up to a subsequence, {yn} admits a weak limit y E H, which is a
minimum of I by the lower semicontinuity of the functional I ; finally,
y E A by uniform convergence of the sequence { yn } . D

As in Section 3, one can easily exclude collisions between B2 and B3:
we have to exclude the other possible collisions.

Let Io be the Lagrangian I corresponding to m3 = 0: as Io does not
depend on the third component y3 of y, we may identify it with its
restriction to the subspace Ho corresponding to y3 = 0, namely

.... L ~ 1

and we study the minimization (2-body) problem

where Qo is the corresponding noncollision open set. Consider the
function f : IL84 ~ R defined by

one can easily check that f has a unique strict global minimum, up to a
SO(2)-symmetry: more precisely, there exists E C R~ (which is a SO(2)
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orbit), such that f attains its global minima on ~. One such minimum is

and the corresponding Hessian matrix of f has rank 3 with 3 strictly pos-
itive eigenvalues (we denote by C > 0 the smallest of these eigenvalues);
the 0 eigenvalue corresponds to the direction tangent to JC. Therefore, if
we denote by ~~ _ (~~, ~2 ) the projection on E of any $ = (~~ , ~2) E JR4
sufficiently close to E we have

c-i 
- - 

c-i

in particular, any (stationary) point in ~ is also a minimum for the
functional Io .

Fix 03B8 > 0: we prove that if m3 and T are small enough and y =

(yl , y2, y3) is the minimum obtained in Lemma 5, then (yl , y2) is close
to ~ in the H norm topology. In particular, this shows that Bl and B2 do
not collide.

LEMMA 6. - There exist two constants T, M > 0 depending only on
o , ml, m 2 and a constant c > 0 such that for all T C T, all m 3  M
and all y = (yl , y2, y3 ) E H achieving the minimum in (4.1 ) (as given by
Lemma 5) we have

where y03A3i = is the (pointwise) projection of yi(t) onto 03A3.

Proof - Take any ( yE , Ys) E ~ and consider the function Y E H
defined by

so that
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and Y3 . (t) = Then the kinetic part of Y3 is

given by

If T is small enough, then YEA 1, and by taking into account that
infAl I  I (Y) we obtain

Let f m 3 } be a vanishing sequence, let In be the functional correspond-
ing to m 3 and let yn = yn(m3’ T) E A7 be the minimum of In obtained in
Lemma 5. If yr (i = 1, 2, 3 ) denote the components of yn , then by (4.4)
we infer that (y~, y) is a minimizing sequence for Io, hence it converges
weakly in H and uniformly to some ( yE , Ys) E E, up to a subsequence.
In particular, this proves that for any given £ > 0 there exists m3 > 0 such
that if m 3  m 3 , then

For all y E JR2) satisfying Jol y = 0 we have ~ !!y!!i 1 ~
y II y II 2 (the first is Wirtinger inequality and the second is Holder’s). Then

Now let y = (yE, ys), fix y E and let y = y - y; since

Recall that fCy) = f(yE (t)) for all t E [0, 1 ] , using (4.3), (4.5) and (4.6)
we get:
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the last inequality follows by Wirtinger inequality and (4.6) since, for T
small enough, we have

Finally, from (4.4) we get infAl I - infAl cl T4~3m3 + c2T2m3 and
therefore

which proves the estimate. D

Finally, to prove that the minimum obtained in Lemma 5 is a

noncollision minimum, we show that Bi and B3 do not collide:

LEMMA 7. - If T and m3 are sufficiently small, then

in particular, there exists y ~ 1 such that I (y) = infy~1 I (y).

Proof. - Fix T > 0, let IT be the corresponding functional and let
IT E Ai be the minimum of IT over Ai obtained in Lemma 5: we
claim that a ~ 1 for T and m 3 sufficiently small. By contradiction,
let y E 1 be a collision minimum, that is, I (y) = inf1 I, where we
have set I = IT. By Lemma 6 we know that (yi, y2) is close in the norm
topology of 7~ ([0,1], to some point in 17; in particular, yi (t ) ~ Y2(t)
for all t E [o, 1 ] . Moreover, if we set
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then y3 minimizes the restricted functional

on the set Q of functions q E H 1 ( [o, 1 ] , I~2 ) satisfying q(0) = 

q (t) ~ yl (t) for all t E [0, 1] and i = 1, 2 and ind(q - yl ) _ -1.
We set e (t) = (t), q (x) = T 2~3 (x ~ e) = 

(q (x)); then, we infer that yp (t) = T 2~3 (y3 (t) - yl (t)) minimizes the
functional

where

Next we define

so that yo also minimizes the functional

where G (x) is the smooth function given by
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moreover, since y2 (t) 7~ 0 for all t, by the asymptotic expansion

(which holds for all u, v E II82 B {0} as e ~ 0) we have as T -~ 0

Let 5’ = {t E [o, 1 ]: yo (t) = 0~ . It is well known [2] that 5’ has measure
zero and that yo (t) satisfies the Euler equation corresponding to @ for all
t ~ ~ , namely

and if we compute the scalar product of this equation by Jyo we obtain

since Yo E aA1 we may assume that 0 is a collision time, i.e. (yo, Jyo) (0)
= 0: hence, by integrating the previous equation on the interval [0, t ] with
0  ~ 1, we get

Now we estimate the integrals in (4.7): since, yo = yo(T) is bounded in
H ~ as T -~ 0, we have

for a.e. t E [o, 1 ] . Choose a constant J.L > 0 and let
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since e(t) = by Lemma 6 we have /~7~~~ and
therefore

for a.e. t E [0,1]. Hence, by (4.7), (4.8) and (4.10) we obtain for small T

Consider the function

which minimizes the functional

under the constraint ind(x) = -1; we have (X,7X) and

therefore

for small T. This contradicts the assumption that yo minimizes @ and
proves the lemma. D

To complete the proof of Theorem 3, note that a noncollision crit-
ical point x = (xl, x2, x3) of 03A6 satisfies (2.4); then, it also satis-

fies

for all p E T ] , I~2 ) ; hence, xi(T) = This proves that

the motion x is periodic if 0T/7r e Q while it is quasi-periodic if



638 G. ARIOLI ET AL. / Ann. Inst. Henri Poincare 17 (2000) 617-650

5. THE 4-BODY PROBLEM

In this section we prove Theorem 4.
We may assume that m4  m3. As in the previous section, by rotating

and rescaling, the Lagrangian becomes

where

we consider the Hilbert space H defined by

the corresponding noncollision open set Ao and its subset Al } = (y e
Ao: 1 yi) = -1, i = 3 , 4 } . By arguing as in Lemmas 4 and 5 one
can prove that the Lagrangian achieves a minimum on 

LEMMA 8. - There exists y E A such that I (y) = infy~1 I (y).
We can exclude the collisions between B2 and B3 and the collisions

between B2 and B4.
Let Io be the functional corresponding to the case m3 = m4 = 0, let Ho

and E be as in the previous section and consider again the problem (4.2);
then we obtain

LEMMA 9. - There exist two constants T, M > 0 depending only on
8, m 1, m2 and a constant c > 0 such that for all T  T, all m4  m3  M
and all y = (yl, y2, y3, y4) E H achieving the minimum in (4.1) (as given
by Lemma 8) the following holds

where y~ = y~ (t) is the (pointwise) projection of yl (t) onto ~.
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Proof. - Take any (yE, ys) E ~’ and consider the function Y E H
defined by

so that (4.4) holds (recall that m4  m3). The proof may now be
completed as in Lemma 6. D

In particular, Lemma 9 excludes collisions between Bi and B2.
Now we return to the original problem: in order to prove Theorem 4 it

suffices to show that the functional

satisfies

indeed, by Lemma 8, this would imply that @ achieves a minimum over
A 1. Here ø is defined on the space

and A is given by

where Ao = {x E H, xi (t) Vt E [0, T ] di ~ j }.
From now on we denote by x = (x 1, x 2 , x3, x4) the minimum of 03A6

over A corresponding to the orbit y obtained in Lemma 8; we exclude
the collisions of the two satellites with Bl.

LEMMA 10. - If T, m3 (and m4) are sufficiently small, then x3 (t) ~
xi (t) and ~ xi (t) for all t E [0, T ].

Proof. - Consider the functional
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defined on the space Ki = {x E H 1 ( [o, T ] , II~2 ) } and the corresponding
noncollision set

Consider also the functionals

where

and

defined on the space K2 = {x = E T ] , I~2 ) } ; finally,
consider the noncollision set

Since x minimizes 45 over the couple (x3, x4) minimizes the
functional @ over 

Take T > 0 sufficiently small and m3  ~cT $~3 as in (4.9); then, by
Lemma 7, there exists CT > 0 (independent of m3 and m4) such that

the two infima being in fact two minima: let X be one minimum of F
over ill. By definition of 03A8 we also have

and the minimum of 03A8 over Q2 is achieved by (X (t), X (t + s)) for any
s E [0, T]. Now take X3 (t) = X (t) and take X4 (t) = X (t + T /2) so that
X4 is also a noncollision minimum of F. Since X minimizes F, then a



641G. ARIOLI ET AL. / Ann. Inst. Henri Poincare 17 (2000) 617-650

simple argument shows that X 3 (t ) ~ X 4 (t ) for all t and we can define
Co = Assume by contradiction that (x3, x4) E 8 Q2 ; then, by
(5.1 ), we have

and > ~ (X3, X4) for sufficiently small m3 (and m4):
this contradicts the assumption that (x3, x4) minimizes @ over Q2 and
proves the lemma. D

Finally, we exclude the case where the two satellites collide with each
other:

LEMMA 11. - x3 (t) ~ x4 (t) for all t E [0, T ].

Proof. - We make the following change of variables: let

and we denote by (X, r) the couple corresponding to (x3, !4). We focus
our attention on x3 and x4 and we consider the restricted Lagrangian

where

Obviously,
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By contradiction, assume that in the motion described by x = x (t) the
satellites B3 and B4 collide with each other, but not with at t = 0, that
is r(0) = 0 and X(0) ~ ~i (0). Let £ > 0 satisfy

and let t£  0 be such that = r (t£ ) ~ _ ~ and r (t) ~ ]  ~ if
t E (ts, if 6’ is sufficiently small (say £  ~), then r (t) ~ 0 for all
t E (ts , t£ ) B {o} . We will get a contradiction by showing that there exists
B E (0, s) and r : [ts , t£] ~ II~2 B {OJ such that the function

satisfies R E H1([o, T], and f/I (X, r) > Q (X, R).
We may assume that = (s, 0) and = for some a E

(-jr, 7!-]; let p = Let

since ~a ~ /2  yr/2, we have

Let Si and S2 be respectively the segments connecting and 

with p and let r(t) be such that

Since the motion of r is straight, for all t E 0] we get
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and by (5.2)

similarly, we obtain the same inequality when t E LU, rj. Next, note that

this, together with (5.3) yields

To estimate ~~-~,~ - we argue as in [17]: by conservation of the total

energy E we obtain for all t E [4, t~ ]

the latter inequality being consequence of the fact that there exists K > 0
such that for all E E (o, ~ ) we have

Therefore, if we let p (t) = we have

this proves that

Let t£  si  0  s2 satisfy r (si ) ~ I = 83/2/2 and r (t) ~ I  ~3~2~Z
for all t E (s 1, s2 ) ; by (5.5) we obtain c~9~4. Moreover, since
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> Ir(t)1 for all t E (t£, t£) we infer that

on the other hand, ~3/2 > ] for all t E (sl, s2) so that, by
(5.5), we obtain

This, together with (5.4), implies that tJt (X, r) - ~ (X , 7?) ~ C~3~4 - c~ >
0 if ~ is small. D

The proof of Theorem 4 may now be completed as in the previous
section.

6. NUMERICAL RESULTS

In this section we prove Theorem 2 and we give some numerical
results illustrating the orbits determined in Theorem 1. Since all the

solutions we obtained are minima, it is possible to numerically compute
them by a rather simple procedure. The technique is standard: one

chooses a finite dimensional vector space H f which approximates the
Hilbert space H, introduces a functional 03A6f: Hf ~ R approximating
~ and looks for minima of CP f by choosing an arbitrary starting
point xo e H f and defining a sequence {xn} by setting xn+1 = xn -

hn~03A6f(xn), where ~03A6f: H f - H f is the gradient of CP and represents
the maximum slope direction of the functional 03A6f, while h n is computed
at each step in order to minimize the function h If the

approximated functional maintains the properties of CP, then the sequence
converges to a minimum point of the functional 03A6f.

We only treat the restricted problem (although there are no obstructions
to the treatment of the complete problem). As an approximate space H f
we chose the set of closed m-gonals and we let m vary between 100 and
300, depending on the values of the parameters. A function x E H f is
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uniquely characterized by the coordinates of the vertices, therefore it can
be represented by a point in Given x E H f by xi E R2 we denote the
coordinates of the i th vertex. The (full) functional we consider is

and its representation in H f is given by

where h = 1 / m . We also have

Clearly, also in the numerical approximation we have to cope with the
presence of the singularity in the potential; furthermore is it not very clear
how to implement the topological constraint. In order to overcome these
problems we introduced a naive method, i.e. we checked that at every
step no vertices of xn were too close to the singularities. More precisely
we checked that the minimum of the distances of the vertices from the

singularity was larger than the maximum of the length of the sides of the
m-gonal. In fact this condition was satisfied at all times during all our
computations.
The following pictures represent the results we obtained for various

values of the parameters v and p. As a starting point xo we chose the
orbit corresponding to the solution for the case v = 0, that is the circular
orbit of radius R = (2~z ) -2~3 . Although analytically we could exclude
collisions in the case p = (3.3) 105 only for values of v smaller than 0.8,
numerically it clearly appears that the minima of the functional is very
close to a circular orbit even for values of v up to 3. For larger values
the orbit becomes more similar to an ellipse, but still it does not come
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close to a collision orbit. In order to show some different behavior, we
also show a picture (Fig. 1) in the case p = 1 and v = 5.

Proof of Theorem 2. - Let p = (3.3) 105, v  0.8 and let x denote
a corresponding orbit found in Lemma 1. We argue as in the proof of
Lemma 3 making finer estimates. By contradiction, assume that x E 8 A i
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and consider again the function

By arguing corresponding to (3.5) we find that (if v  0.8)

Since x minimizes l/J, by (3.3) and (6.1) we get

by (3.4) this proves that

Now we claim that for all t E [o, 1 ] we have

If (x (t), el )  0, (6.4) follows readily. If (x (t), el ) > 0, then by (6.3) we
get

then (6.4) follows by estimating (x (t), el ) with and by (6.3).
Since v  0.8, by (6.4) we may replace (6.2) with

which, by (3.4), proves that
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this allows to prove that

Indeed, if (x (t ) , e 1 )  0, we have

If Cr(t), > 0, then by arguing as for (6.4) and by taking into account
(6.6) we get (6.7).
By (6.7) the inequality (6.5) becomes

which, by (3.4), proves that

Finally, repeating once more the whole procedure, we get h(;f(t)) >
(0.267)pv2~3 (p + 1)-1~3 which yields

Hence, (p + 1)1~3v-2~3e1 ~ > (0.444)(p + 1)1~3v~2~3 and

Therefore, by (3.1) and (6.1 ) we obtain
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this proves that

Repeating this procedure we get

Therefore, by (3.1 ), (6.1 ) and Jensen’s inequality we obtain

which proves that

and

Therefore, by arguing as in the proof of Lemma 3 we get

Since v  0.8 we have (1 - (1.074)v2 03C02)1/3  1- (0.038)v2 and therefore the
last sequence of inequalities yields (0. 37) v > 0.541 which contradicts
v C 0.8 and proves the statement. a
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