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ABSTRACT. - We present a sharp local condition for the lack of
concentrations in (and hence the L2 convergence of) sequences of

approximate solutions to the incompressible Euler equations. We apply
this characterization to greatly simplify known existence results for 2D
flows in the full plane (with special emphasis on rearrangement invariant
regularity spaces), and obtain new existence results of solutions without
energy concentrations in any number of spatial dimensions.
Our results identify the ’critical’ regularity which prevents concentra-

tions, regularity which is quantified in terms of Lebesgue, Lorentz, Orlicz
and Morrey spaces. Thus, for example, the strong convergence criterion
cast in terms of circulation logarithmic decay rates due to DiPerna and
Majda is simplified (removing the weak control of the vorticity at infin-
ity) and extended (to any number of space dimensions).
Our approach relies on using a generalized div-curl lemma (interesting

for its own sake) to replace the role that elliptic regularity theory has

I E-mail: mlopes@ime.unicamp.br.
2 E-mail : hlopes@ime.unicamp.br.
3 E-mail: tadmor@math.ucla.edu.
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played previously in this problem. © 2000 Editions scientifiques et

médicales Elsevier SAS

AMS classification : 35Q30, 76B03, 65M12

RESUME. - On presente une condition locale optimale qui garanti
1’ inexistence de concentrations dans des suites de solutions approchees
de 1’ equation d’Euler incompressible (ce qui prouve leur convergence
L2). A 1’ aide de cette caracterisation on simplifie de façon substantielle
les resultats d’ existence connus pour les flots 2D dans tout le plan (on
insiste tout particulierement sur les espaces de regularite invariants par
rearrangement). On demontre de nouveaux resultats d’existence sans
concentrations d’ energie en dimension superieure.
Notre resultat precise la regularite critique qui empeche l’apparition

de concentrations. Cette regularite est quantifiee grace aux spaces de
Lebesgue, Lorentz, Orlicz et Morrey. Ainsi, par exemple, le critere de
convergence forte base dans les termes de circulation logarithmique de
correlations dus a DiPerna et Majda sont simplifies (en eliminant le
controle faible de la vorticite a l’infini) et generalises (en dimension su-
perieure).
Notre approche est basee sur l’utilisation d’un lemme div-curl gene-

ralise (qui presente un interet en soi-meme) qui remplace le role de la
regularite elliptique qui etait utilisee auparavant. © 2000 Editions scienti-
fiques et medicales Elsevier SAS

INTRODUCTION

Incompressible ideal fluid flow is modeled by the Euler equations:

where u = (u 1, ... , Un) is the velocity and p the pressure of the flow.
This system of equations is physically justified when the effects of
viscosity are small. Here, we are particularly interested in irregular flow
regimes that attempt to grasp the convective aspects of turbulent flow. It
is well known that the ideal flow assumption breaks down at the interface
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between fluids and solids, through boundary layer effects. In general,
Eqs. (0.1) may be regarded as an appropriate model for high Reynolds
number flow far away from boundaries. Among the initial-boundary
value problems one may pose for the system (0.1), the full-space problem
is therefore the most natural one.

The theory of weak solutions for Eqs. (0.1) is well developed in two
space dimensions. The best results on the existence of weak solutions are

existence for initial vorticities in BMj n H-1 due to Delort [19], and
for initial vorticities in L ~ n due to Vecchi and Wu [44]. One very
important open problem is to determine whether these weak solutions
conserve kinetic energy or if it is possible to lose energy to the small
scales of the flow, i.e., through concentration of energy. Our main concern
in this work is to characterize those initial vorticities which generate flows

conserving kinetic energy, that is, without concentrations.
Our point of departure is a program set forth by DiPerna and Majda

in [16-18] to study the problem of existence of weak solutions. One
attempts to prove existence by producing an approximate solution

sequence with good a priori estimates and passing to the limit in the weak
formulation of the equations. DiPerna and Majda recognized that certain
physically interesting 2-D flows (vortex sheet initial data) would naturally
give rise to approximate solution sequences that might not converge in
Lfoc. To deal with that, they introduced the notions of reduced defect
measures, concentration sets and concentration dimension, attempting to
describe precisely the energy loss in an approximate solution sequence.
Their two-pronged approach to the existence problem was to show that
the a priori estimates imply that the concentration set is very small, in
the sense of Hausdorff dimension, and that if the concentration set is
sufficiently small, there exists a weak limit of an approximate solution
sequence which is, in fact, a weak solution. This approach was shown
to work for stationary problems but has not yet proven useful in the
time-dependent problem. Nevertheless, their work has been a very rich
source of ideas and originated much of the current research on the weak
solutions of the Euler equations.
As part of their investigation, DiPerna and Majda proved two results

of particular interest here. The first is an existence result for 2D
flows with initial vorticity in p > 1 [16, Theorem 2.1]. They
obtained a weak solution by showing that the approximate solution
sequence generated by mollifying initial data and exactly solving 2D-
Euler is strongly compact in Lfoc. The second result is a criterion for
strong convergence of an approximate solution sequence in terms of
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a logarithmic decay condition on the circulation of the flow on small
circles, [16, Theorem 3.1]. The subsequent research on this problem has
concentrated in determining more precisely for which vorticities in L 1
one can obtain a strongly compact approximate solution sequence. In
[9,10], Chae presented proofs of the existence without concentrations
for flows in the full plane with initial vorticities in the Orlicz spaces
L log L(R2) and for 1 /2. In [33] Morgulis solved
the problem for flows in a 2D bounded domain SZ, with initial vorticity in
Orlicz spaces contained in L (log L ) 1 ~2 ( SZ ) . P.-L. Lions proved an optimal
result for bounded domain flows, assuming that the initial vorticity lies
in the Lorentz space L ~ 1 ~ 2~ ( SZ ) . The results by Morgulis and Lions can be
easily extended to periodic flows or flows on a compact manifold.
Our objective here is to propose that the compactness of the sequence

of approximate vorticities in which we call H-1loc-stability, is
a sharp criterion for the strong convergence of approximate solution
sequences for the n-dimensional Euler equations. Such an H-1loc-stability
condition is implicitly present in Morgulis and Lions’ work on the 2D
problem. We will see that the sharpness of the H-1loc-stability as a criterion
for strong L2-compactness is essentially trivial for flows in a bounded
domain or on a compact manifold.
We want to put our approach in proper perspective with regard to

previous work in this area. To this end, we restrict our attention to

two space dimensions and, to further fix ideas, we assume that wn is a

sequence of approximate vorticities bounded in, say, LP, for some 1 
p  2. In rough terms, our problem consists of showing that a bounded,
divergence free sequence of vector fields u n in L 2 is actually precompact
by making use of additional information on the LP-boundedness of its
curl wn = curl un . To pass information from wn onto the un we have to

use the ellipticity of the system div un = 0, curl un = wn, which has been
done in the literature in one of two ways:

1. Study the properties of the Biot-Savart kernel as a singular integral
operator, mapping wn into u n ;

2. Introduce the streamfunction 03C8n, satisfying 039403C8n = and un =

Then use well-known regularizing properties of the inverse
Laplacian.

The two approaches are equivalent for flows on bounded domains. But
these are not equivalent in the full plane.
The first approach in the full plane is based on the Hardy-Littlewood-

Sobolev Theorem, which together with the L P -boundedness of the Riesz
transforms imply that the Biot-Savart kernel maps LP (JR2) into LP* 
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continuously. This, together with the Calderon-Zygmund inequality,
imply that un is bounded in which in turn is compactly
imbedded in 

The boundedness in of un cannot be derived, however, using
the second approach, because the streamfunction requires an additional
a priori bound in The difficulty lies with the fact that lfrn lacks
an a priori Lkc-bound, due to the growth at infinity of the fundamental
solution of the Laplacian in 2D (see [35] for an explicit example).4
One way of circumventing this difficulty with the second approach, is
to have additional control of the vorticity at infinity. This is the role of the

hypothesis of weak control of vorticity at infinity, imposed by DiPerna
and Majda in their proof of the logarithmic decay of circulation criterion
for strong convergence. We note that even with this additional hypothesis,
the proof of their result in [16, Theorem 3.1] is extremely laborious. Of
course, the first approach is another way to circumvent this difficulty, at
the expense of relying on delicate estimates (of singular integrals) that
become more intricate to extend to spaces other than LP , finally breaking
down as we go ’near’ L 1.

In this work we propose a third approach, in which a (generalized)
div-curl lemma plays the role that elliptic regularity theory plays in
the first two approaches. With this new approach we recover DiPerna-

Majda’s original LP result, obtain a complete and simplified proof of
the L(logL)a results stated by Chae, extend the L(logL)a and L ~ 1 ~ q ~
results by Morgulis and Lions to the full plane, and prove a strengthened
version of DiPerna-Majda’s logarithmic decay of circulation, greatly
simplifying the original proof and eliminating the hypothesis of weak
control of vorticity at infinity. Moreover, our approach applies equally
well to the general n-dimensional case; in particular, we extend the
circulation decay criterion (expressed in terms of Morrey regularity) to
the n > 2-dimensional case.

Nothing is said here about uniqueness. In this context we refer

the reader to the classical uniqueness results of Yudovich [47] for

c~ (~, t) E and of Vishik [45] for c~ (~, t) E Bl (L2~s (1I~2)), and

4 This subtle difficulty in implementing the second approach has been overlooked in
the proof of [10, Lemma 6], and therefore the proof given by Chae of existence without
concentrations for initial vorticities in L (log (II~2), 1 /2  a  1, is incomplete. We
note that an arduous and correct proof of a version of [ 10, Lemma 6], based on the first
approach described above, was given by Schochet in [38].
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their recent ’logarithmic’ refinements in [48,46]. The first examples of
nonuniqueness within the class of L2loc(Rn x R)-bounded velocities were
constructed by Scheffer [37] and Shnirelman [39].
The remainder of this work is divided as follows. In the first section we

introduce the notion of H-1loc-stability and we prove it is a sharp criterion
for the strong L2-compactness of approximate solution sequences. In
Section 2 we obtain existence without concentrations for 2D flows with

initial vorticity in LP, p > 1, in Orlicz spaces contained in L (log L )a ,
a > 1/2, and in the Lorentz spaces 1  2, by showing that,
in each case, the space in question is compactly imbedded in The

proof of existence is very simple in these cases. We consider the critical
Orlicz space and note that an observation of Chae reduces

the problem here to the previous cases. Finally, we present a proof of the

L~l ~2> case, based on the ideas of P.-L. Lions for bounded domain flows.
We prove that approximate solution sequences corresponding to mollified
initial vorticities in L(1,2)c are H-1loc-stable, even though L(1,2)c itself is

continuously, but not compactly imbedded in All these 2D cases

are singled out as they respect the rearrangement invariance property of
the 2D vorticity. Next, we move beyond the rearrangement invariant case.
In Section 3 we prove lack of concentrations if the velocity field belongs
to for some p > 2 with borderline regularity of
vorticity in ,~3./1~i ~ (II~2 ) . (The corresponding n-dimensional generalization
is outlined in Section 4.4). We then turn to the general n-dimensional
setup. In Section 4 we cast DiPerna-Majda’s circulation decay estimates
as bounds in the logarithmic Morrey space, > 1, which
we prove to be compactly imbedded in argument extends

naturally to higher space dimensions where p > n /2, is

compactly imbedded in and the result obtained is related to

work on well-posedness of the 3D Navier-Stokes equations with initial

vorticity in a Morrey space due to Giga and Miyakawa [22],
and to work by Constantin, E and Titi on the Onsager conjecture [13].
Finally, we conclude with two appendices. In Appendix A we include
still another proof which is interesting for its own sake, of the generalized
div-curl lemma stated and used in the first section. And in Appendix B
we provide a specific example for our convergence results in the context
of finite-difference approximations. We present the 2D high-resolution
central scheme recently introduced in [27] and we prove its H-1loc-stability.
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1. STRONG COMPACTNESS OF APPROXIMATE

SOLUTIONS2014H-1loc-STABILITY
Let us start by fixing some notations. If ~ _ ~ (x) is a vector field on
then the Jacobian matrix D ~ has entries = A ball

of center xo and radius R is denoted BR (xo) . Let Q be a smooth domain
in ?". If X is any Banach subspace of we denote by Xc the space
of distributions in X with compact support in Q . We use to denote

Sobolev spaces and HS for the Hilbert spaces 
We begin by recalling from [ 16] the definition of approximate solution

sequences for the incompressible Euler equations (o.1 ), defined over any
fixed time interval T > 0.

DEFINITION 1.1 (Approximate Euler solutions). - Let uni-

formly bounded in L °° ( [o, T ] ; II~n ) ) . The sequence { u ~ } is an ap-
proximate solution sequence of the n-dimensional incompressible Euler
equations (o.1 ) if the following properties are satisfied.

The sequence { u E } is uniformly bounded in Lip ( (o, T ) ; 
L > 1.

P2. For any test vector field 03A6 E T) x Rn) with div 03A6 = 0
we have:

Remarks. -
1. In particular, u is a weak solution of the Euler equations (o.1 ) if it

forms a (fixed) sequence of approximate Euler solutions, u£ = u.
Thus, a weak solution, u, is an incompressible field, div u = 0, such
that for all test vector fields with div ~ = 0 there holds equality
in property P2,

2. In the general case, these weak formulations hold in some negative
Sobolev space tested against vector fields in H~ ( [o, T ) x I~n ) .
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It then follows from the assumed uniform bound on the kinetic

energy, u £ E that u E has the Lipschitz
regularity required in u £ E Lip((0, T ) ; for some

L = L (s , n ) > 1, consult [16, Lemma 1]. In particular, any H -S -
weak solution satisfies property PI.

3. The results in this paper (following the Main Theorem below)
apply to a larger class of approximate solutions { u £ } than those
classified by properties ~ 1-~3 . In particular, the requirement of
incompressibility P3 can replaced by the weaker H-1-approximate
incompressibility, namely

Let us introduce the curl of a vector field u = (u 1, ... , in I~n as the

anti-symmetric matrix w = curl u whose entries are = (u‘ )x~ - (u~ )x~ .
We will denote the vector space of n x n anti-symmetric matrices with
real entries by An .

DEFINITION 1.2 The sequence {uE } is called 
stable if {curl u~ = precompact subset of C ( (o, T ) ; 
An)). .

If { u £ } is an approximate solution sequence of the n-dimensional
Euler equations then we will refer to u8 as velocity and to curl u8 ==
c~£ as vorticity. Note that, in contrast with [16, Definition I.I], we
have not imposed any conditions on the behavior of u8 near infin-
ity in Definition 1.1. Consequently, the Biot-Savart Law, which relates
vorticity to velocity, is only valid up to an arbitrary harmonic func-
tion.

The above definitions are easily adaptable to flows on domains Q with
boundary; one needs only to remove the "loc" subscript in the function
spaces above and add the boundary condition u8 . n = 0 on a Q in the
trace sense.

We are now ready to state our main result.

THEOREM 1.1 (Main Theorem). - Let {u~ } be an approximate solu-
tion sequence of the n-dimensional Euler equations. If is -stable

then there exists a subsequence which converges strongly to a weak solu-
tion u in T ] ; 

The conclusion of the Main Theorem may be referred to as strong
compactness of the approximate solution sequence. In particular, 
stability is a criterion which excludes the phenomena of concentrations,
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[16]. The proof of this theorem relies heavily on the following time-
dependent generalization of the classical div-curl lemma of Tartar and
Murat [40, 34] .

LEMMA l.l (Generalized div-curl lemma). - Fix T > 0 and let

{uE (~, t) } and { v£ (~, t) } be vector fields on I~’~ , for 0  t C T. Assume
that:

This generalization reduces to the classical div-curl lemma (see [40])
when the vector fields uE and VC are constant in time, since the imbedding

~ is compact. Although this generalization is not

surprising, it has not appeared previously in the literature, and a proof-
interesting for its own sake, is given in the appendix. Equipped with the
generalized div-curl lemma we now turn to the

Proof of the Main Theorem. - Our objective is to apply the generalized
div-curl lemma with the same two vector fields, v£ = u£ .

Note that since UC is divergence-free and H-1loc-stable, hypothesis
A2 and A3 are automatically satisfied, and thus it remains to

verify Since is assumed to have a uniformly bounded ki-

netic energy, UC E L °° ( [0, T]; we can extract a weak-* con-

verging subsequence, - u in (for exam-
ple, by taking a diagonal of weak-* converging subsequences in the
N-balls, and letting N --~ oo ) . Thus, the first

half of Al holds. Moreover, the L2loc-energy bound ( { u £ } bounded in
L °’° ( [0, T ] ; together with the Lipschitz regularity assumed in
~ 1 ( { u ~ } bounded in Lip((0, T); with L > 1 ), produce,
by the Aubin-Lions lemma [41], a strongly converging subsequence in

C ( [0, T ] ; since L2loc  H-1loc  H-Lloc. Thus, the second half
of A l also holds.

Granted that hypothesis ,,4.1-,A.3 hold we can now apply the general-
ized div-curl lemma with UC = vc, to conclude that there exists a sub-

sequence such that ~ ~ D’([0, T] x l.l~n ) . This implies
that uCk converges strongly to u in L 2 ( [0, T ] ; Strong quadratic
convergence is all we need: it is then immediate to verify, by passing to
the limit in property P2 of Definition 1.1, that u is a weak solution. D
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Remarks. -

1. We do not know whether the converse of the Main Theorem 1.1
is true. Of course, if - u strongly in L 2 ( [0, T ] ; II~~ ) )
then - curl u strongly in L 2 ( [0, T ] ; (I~n ; An ) ) . However, it
is not clear how to improve the L2 into the C° convergence, required
by Definition 1.2 of -stability, nor is it clear how a weakened
version of that Definition still yields the main Theorem 1.1.

2. In contrast, for flows over bounded simply-connected domains,
H-1loc-stability is equivalent to strong compactness. The proof is a
trivial consequence of elliptic regularity theory in H-1. To see this,
fix an approximate solution sequence to the Euler equations on
a bounded, smooth simply-connected domain SZ C ?". Denote by
~-1 the solution operator of the homogeneous Poisson problem, so
that 0-1 : (S2) ~ Ho (SZ).

Since = it follows that is precompact
in C ( [0, T ] ; L 2 ( S2 ; I~n ) ) if and only if is precompact in

C([0~ 
The interesting consequence of this equivalence is that, if u£

conserves kinetic energy in time then any strong limit u will as
well. 

’

2. THE 2D PROBLEM-REARRANGEMENT-INVARIANT
SPACES IMBEDDED IN H-1loc (R2)

In this section we will concentrate on the initial value problem for the
2-dimensional incompressible Euler equations in the full plane.
The study of incompressible fluid motion in two space dimensions

becomes considerably simpler than the n > 2-dimensional case, because
the 2D vorticity equation reduces to the (scalar) transport equation

It is governed by a divergence-free velocity field, u, which is recovered
by the Biot-Savart law u = with K (~ ) : _ ~ 1 / (2~ ( ~ ~ 2 ) . Of course,
this is literally true only for smooth solutions, where (2.2) implies
that (at + u . = 0 for all smooth ~’s, and hence, since u is

incompressible, that c~ is a renormalized solution, [15], in the sense that
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It follows that the total is conserved in time, and
hence the distribution function of cv (with respect to the 2D Lebesgue
measure), ~,~,~.,t~ (a) := meas{x t) ( > a }, is also invariant in time.
Our task is to carry these arguments of smoothness to the limiting
cases of regularity, and to this end one employs appropriate families of
(regularized) approximate solutions.
We say that an approximate solution sequence of the 2D incompress-

ible equations, {u£}, is associated with initial vorticity 03C90 if 

lim u~ (., 0) = uo = K * wo. Which 03C90 give rise to permissible initial ve-
locities uo = K * cvo E Since K belongs to weak-L2(R2) and
since convolution maps boundedly, * : L2~°° x -~ it follows

that Wo E L 1,2 will do.
Let us mention a few possible approaches to generate approximate

solution sequences for the incompressible 2D Euler equations in ac-
cordance with Definition 1.1. DiPerna and Majda [16] have indicated
that one may obtain approximate solution sequences associated with
c~o E H-1 (IL~2) by the following three strategies : 5

~ Mollification of initial data. Using the global well-posedness of
the 2D Euler equations for smooth initial data, one obtains a

family of approximate solutions, { u £ ( ~ , t ) }, corresponding to the
mollified initial data, { u o : - 1]s * u o } (where ~~ denotes any standard
Friedrichs mollifier);

. Navier-Stokes solutions. Taking the vanishing viscosity limit of the
2D incompressible Navier-Stokes equations, [41];

w Vortex methods. Approximating the solution by a desingularized
vortex (blob) method, [12,2,26]. There is a large literature devoted to
the convergence of these methods-consult the recent contribution

[29] and the references therein.
In addition, there is a whole variety of classical discrete methods-íinite-
difference, finite-element and spectral schemes, with particular emphasis
on the 2D vorticity formulation. We make no attempt to list them all,
but refer instead to prototype studies in [3,7,24,23,21] and the references
therein. In particular, in the context of finite difference methods we refer
to the high-resolution central scheme recently introduced by Levy and
Tadmor in [27], which is singled out in the present context for its notable
stability properties. This central scheme and its H-1loc-stability properties
are outlined in the appendix.

5 A complete discussion of the relevant temporal estimates involved in Definition 1.1
can be found in [25].
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Let X be a rearrangement-invariant Banach function space with respect
to Lebesgue measure in IL~2. Canonical examples are Lebesgue LP spaces,
Orlicz L~ spaces and Lorentz spaces. We refer the reader to [6,
Sections 1-2] for a comprehensive discussion. The relevant property
of such rearrangement-invariant spaces is that their norm is the same
for any pair of (Lebesgue) equimeasurable functions, i.e., =

whenever their distribution functions Àf and Àg coincide. We

recall that smooth solutions of the vorticity equation (2.2) form a time-

parameterized family, 03C9(., t ) , of equimeasurable functions, 03BB03C9(.,t)(03B1) =

~,~,o~.~ (a) . Thus, it is natural, when considering approximate solution
sequences associated with Wo EX, to require the additional estimate:

In fact, since under smooth flows the norm of vorticity in any

rearrangement-invariant Banach function space X is a conserved quantity
(being a function of ~,~, ~., t~ (a ) ), it is natural to seek approximations that
respect the same invariance of X-regularity:

these approximations enjoy the advantage that verifying their initial X-

regularity, EX, will suffice to guarantee that (2.4) holds at later
times. This relation between approximate solutions and rearrangement-
invariant spaces is what distinguishes the 2D theory from higher dimen-
sional flows. We turn to a few examples.

2022 Mollification of initial data. If X is such that the Friedrichs mol-
lifications converge in X, then clearly (2.5) holds for approximate
solutions, obtained by exactly solving the 2D Euler equations
with the mollified initial velocity Uo = K£ ~ c~o with where

K£ denotes the mollified kernel K£ .- r~£ * K. This is the generic
case which applies to all rearrangement-invariant spaces discussed
in this paper: a rearrangement-invariant X is closed under mollifi-
cation if it contains the continuous functions, C, as a dense subset,

e.g., [6, Section 3, Lemma 6.1, Lemma 6.3].
. Navier-Stokes approximate solutions. A large class of rearrange-

ment-invariant spaces is provided by Orlicz spaces, L~ := {f [
 oo}. With convex ~’s one has 

which implies the usual ’entropy’ decay in time of

It follows that (2.5) holds for approximate solutions



383M.C. LOPES FILHO ET AL. / Ann. Inst. Henri Poincare 17 (2000) 371-412

obtained by the vanishing viscosity limit with initial vorticities in
Orlicz spaces.

. Vortex blob approximations. There are difficulties in proving (2.4)
for vortex blob schemes. See [38] for a thorough discussion of this
problem.

. Finite diff ’erence schemes. In [27] we introduced a high-resolution
central difference approximation of the 2D vorticity equation (2.2)
which satisfies the maximum principle. In Appendix B we prove
that like the Navier-Stokes approximation, the difference solution,
c~£ ( ~ , t ) , maps every Orlicz space L ~ into itself.

Before turning to our main result dealing with rearrangement-invariant
spaces X, we need to clarify the precise notion of their localized version,
Xioc. We define Xloc as the Frechet space determined by the family of
seminorms == We say that Xloc is compactly imbedded
in (R2) if any sequence c Xloc with each seminorm uniformly
bounded, is precompact in H-1loc (R2). We note that this is equivalent to
X (Bk (0)) being compactly imbedded in for all kEN.
We are now ready to give the main application of Theorem 1.1 to 2D

flows.

COROLLARY 2.1. - Let X be a rearrangement-invariant Banach
space such that Xloc is compactly imbedded in Let be
a family of approximate solutions associated with c~o E X, so that

u £ ( ~ , 0) - u o = K * Wo in Assume that is uniformly bounded
in L °’° ( [o, T ] ; X). Then, strongly compact in L °° ( [o, T ] ; 
R~)), and hence it has a strong limit, u(~, t), which is a weak solution
associated with uo with no concentrations.

Proof - Since is a family of approximate solutions in the sense of
Definition 1.1, then property ~ 1 implies that is uniformly bounded
in Lip([0, T]; This, together with the assumption that 
is uniformly bounded in T]; X) with Xloc comp H-1loc  H-L-d1loc
imply precompactness in C ( (o, T); Thus is 

stable and the desired result follows from Theorem 1.1. D

In case of approximate solutions generated by initial mollification we
are led to a further simplification which allows us to check only the
regularity of the initial vorticity, wo.

COROLLARY 2.2. - Let X be a rearrangement-invariant Banach
space such that C is dense in Xloc which in turn is compactly imbedded
in (I~2). Let be the family of approximate solutions associated
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with the mollified initial vorticity = r~£ E X. Then is strongly
compact in L°° ([0, T]; II~2)) and hence it has a strong limit,
u(., t), which is a weak solution associated with the initial velocity
uo = K * c~o without concentrations.

The last corollary is particularly useful to identify regularity spaces of
initial vorticities which give rise to weak solutions with no concentra-
tions. In the remainder of this section we will use this strategy to derive
the existence of concentration-free solutions of the 2D incompressible
Euler equations with compactly supported initial vorticities in Lebesgue
spaces LP, p > 1, Orlicz spaces contained in L (log L)" , a > 1/2, and
Lorentz spaces L ~ 1 ~ q ~ , 1  q  2.

2.1. Initial vorticity in Lebesgue space Lf (II~2 ) , p > 1

We begin with

THEOREM 2.1. - Let c~o E with p > l. Then there exists a

weak solution of the incompressible 2D Euler equations, u (. , t), associ-
ated with the initial conditions uo = K * with no concentrations.

This result-originally due to Yudovich [47] and DiPerna and Majda
[16], follows immediately from Corollary 2.2, since 1 (I~2) is com-

pactly imbedded in (II~2 ) (and of course, C~ is dense in L p ‘°° ) .

2.2. Orlicz spaces L (log L ) a (II~2 ) , a > 1/2

We now extend our discussion to the more general Orlicz spaces.
An Orlicz space, L~, consists of all measurable functions f such
that  oo . Here, $ is any admissible N-function-

a convex function such that = l, l E f 0, oo}. (We refer
the interested reader to [1,6,20], for a detailed discussion on Orlicz

spaces.) Lebesgue spaces correspond to ~ (s) ^- sP, yet Orlicz spaces
offer refinement of the Lebesgue ladder of spaces. We consider initial
vorticities Wo in the Orlicz space L(logL)", corresponding to ~ (s ) -~
s (log+ Our objective is to simplify and complete the proofs of Chae
in [9,10] and extend the results of Morgulis in [33] to full plane flows.

THEOREM 2.2. - Let Wo E L (log L)" (II~2) with a > 1 /2. Then there
exists a weak solution of the incompressible 2D Euler equations, u(~, t),
subject to the initial condition uo = K * with no concentrations.

Remark. - We observe that proof of Theorem 2.2 includes any of the
admissible Orlicz spaces considered by Morgulis in [33].
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Proof - Let Q be a bounded smooth domain in R~. We begin by
recalling Trudinger’s imbedding theorem [43,20], which states that

Ho (S2 ) is compactly imbedded in for any N-function 1Y which
is dominated by a := es2 - 1 is dominated by 03C32014denoted 03C8 « a , if

- oo for all positive c’s). Next we invoke a duality
argument. The dual of L 0/ is isomorphic to if the primitives of
the corresponding N-functions, 03A6 = s qy (r) dr, 03A8(s) = JS dr, are

complementary in the sense that @ 0 1[1 = I d . Denote ~~ = 1/1. Then the
dual statement of the compact imbedding Ho c~ L~ states that is

compactly imbedded in for any $ which dominates c~ (s), i.e.,
~ » S(lOg+S)1~2.

Let us assume first that c~o E for some N-function (~ »
S (lOg+ S ) 1 ~2 . For example, qya = s(log+ s)a corresponding to L(logL)a
with a > 1 /2. Then Corollary 2.2 applies with the rearrangement-
invariant X ! L03C6(R2) since Xloc comp H-1loc. Hence there exists a subse-
quence of u ~ which converges strongly in to a weak solution, having
u o as its initial data.

Finally, we consider the borderline case, c~o E L(log L)~l2(I1~2). Then,
as was pointed out by Chae [10], there exists an N-function Q~ which
dominates ~1~2 = s (log+ s) 1~2 such that c~o E L~ (IE~2), and we conclude
as before.

Remark. - We note the special role of L (log which is on
the borderline of the logarithmic Orlicz spaces, >

1/2, which are compactly imbedded in In Theorem 2.2
we maintain that certain special L (log L)1/2c-sequences of approxi-
mate vorticities-those corresponding to mollified initial L (log L ) 1 /2-
vorticities, are H-1loc-stable; but, for other sequences, this need not be the
case since is not compactly imbedded in as

demonstrated by the following

Counterexample. Consider the domain Q = B(O; n -1 ~2), and the
sequence of radial functions, f ’n (x ) = given by

The function gn ( ~ ) is non-negative and non-increasing, provided that
n > 9, and thus fn ( ~ ) coincides with its decreasing rearrangement,
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fn(x) = It is easy to estimate, directly from the definition
that this sequence is bounded in Indeed, expressed in

terms of its decreasing rearrangement, the norm of f
(say, with 1), is given by, e.g. [6, Section 4, Lemma 6.12],

= logs)a f*(s)ds. A straightforward computation
then yields  Const.

Yet, we claim that this sequence is not precompact in To this

end we compute the unique solution of 039403C8n = fn in which can

be done explicitly, using the symmetry of Q and of fn. It is then a simple
calculation that:

for all n. However, fn is precompact in if and only if lfrn is

precompact in which by the Dunford-Pettis Theorem, implies that
must be uniformly integrable, which is contradicted by the

calculation above.

2.3. Lorentz spaces L ~l ~ q > (II~2 ) , 1  q  2

Recall that ~, f(a) = f (x)~ > a} denotes the (non-increasing)
distribution function of f, and let its (generalized) inverse, f *, denote the
usual non-increasing rearrangement of f. The Lorentz spaces 
consist of all measurable functions f such that dsjs 
00 . Whereas LP’P coincides with LP, Lorentz spaces offer yet another
finer grading in the ladder of Lebesgue spaces. We refer the reader
to [6] for details. Here we remark that it is customary to use an

equivalent characterization of Lorentz spaces where f * (s) is replaced
by its maximal function, 6 f ** (s ) : := f* (r) dr. We denote the latter

by 

Whereas LP,q and coincide for p > 1, they differ, however, for

p = 1, which is precisely the focus of our interest. Indeed, while the

6 We recall its maximal property to be used later on, namely, f ** (s) =
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vary between L 1 ~ °° = weak-[L 1] and Z.~~ = L 1, the are

strictly smaller, varying between = L (log L ) and = L 1. The
interested reader is referred to a detailed discussion in [4,5]. For the sake
of completeness, we outline the following lemma which shows how the
Lorentz spaces interlace with the closely related Orlicz spaces we
encountered before.

LEMMA 2.1. - The following inclusions hold

Proof - Consider a measurable function f, compactly supported on
Q. For simplicity we assume I Q I = 1. The characterization of its

L (log L)a-norm is given by (see [6, Section 4 Lemma 6.12]),

Integration by parts and the Holder inequality yield, for a > 0

and hence the estimate Const~ s0 *~Lq(ds/s) which proves
(2.7) for (1 - a)q’ > 1. The left side of the inclusion in (2.7) as well as
a refinement of the inclusion on the right can be found in Lemma 4.1
below. a

Using the compact imbedding of Orlicz spaces together with the last
lemma yields

THEOREM 2.3. - Let cvo E with 1  q  2. Then there
exists a weak solution of the incompressible 2D Euler equations, u (. , t),
subject to the initial condition uo = K * cvo with no concentrations.
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2.4. The Lorentz space I, ~l , 2) (~2 )

The space j, ~l , 2) (~2 ) will play the role for Lorentz spaces that

did for Orlicz spaces. We observe that L ~l ~ 2~ is strictly
larger than L(log (consult Lemma 2.1). ~ In fact, it was observed

by P.L. Lions that L ~ 1’ 2~ (S2 ) is the largest rearrangement-invariant space
which is continuously imbedded in H -1 ( S2 ) . g

In this subsection we will be concerned with putting together the basic
approach of Section 1 and the ideas developed by P.L. Lions for the
bounded domain case in [30, Section 4.2] in order to prove existence
and absence of concentrations for an initial vorticity c~o E L ~l , 2) (~2 ) .
We first note that a straightforward application of our H-1loc-stability

result, e.g., Corollary 2.2, does not apply, since L~1~2) is not compactly
imbedded in in fact, our counterexample above shows that already
its subset lacks H-1loc(R2)-compactness. We will show, how-
ever, that as in the case, special L(1,2)c-sequences of approxi-
mate solutions-those corresponding to mollified initial vorticity c~o with
03C90 E L(1,2)c(R2), are H-1loc-stable.
We begin with the following sufficient condition for the 

pactness of L(1,2)c subsets, taken from [30, Lemma 4.1].
LEMMA 2.2 (P.L. Lions). - A family C L(1,2~(S2) is precompact

in H-~ (S2) if the following conditions hold:
1. There exists C > 0 such that C uniformly in c,

Our next step is to prove a basic functional analytic result which will
allow us to develop the time-dependent aspect of the work done so far.

LEMMA 2.3. - Let X be a reflexive, separable Banach space. Let
{ fn } be a bounded sequence in C ([o, T]; X ). Then { fn } is precompact
in C ([0, T ] ; X) if and only if the following two cond itions hold:

(a) { fn } is precompact in C ([0, T ]; w - X ).
(b) For any t E [o, T] and for any sequence tn -~ t, we have that

{ fn (tn ) } is precompact in X.

~ Let F(t) denote the primitive of f * . Then, f belongs to L(log L) 1/2 if

E L~ (0, 8), and it belongs to L~1~2) if E L2(0, 8). Hence
F (t ) = (log t ) -1 /2 (log log with 1 /2  ~B  1 are examples for functions in the gap
L(1,2) _ 
8 We note the difference in notations-Lorentz spaces L I 5q) are denoted as L 1 ~ q in

[30].
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Proof - It is immediate that if { fn} is precompact in C([0, T]; X) then
conditions (a) and (b) hold.
We now assume (a) and (b). By (a), we can choose a subsequence

(without relabeling) such that:

We will show that this subsequence converges strongly in C([0, T ]; X).
Consider t E [0, T] and a sequence C [0, T ] with tn - t. From the
strong convergence in C([0, T ]; w - X) it follows that:

weakly in X. Since { f"(tn)} is strongly precompact, the weak conver-
gence implies that ~ fn(tn)} has f (t) as its single possible strong limit.
Hence,

in X, without needing to pass to a further subsequence.
Our next step is to prove that f E C([0, T ]; X). It is enough to show

that, for any t E [0, T ] and {tn } g [0, T ] with tn - t, we have that
f (tn) --~ f (t) in X. Fix t and {tn } as above. First observe that, for n fixed,
fm (tn) - f (tn ) , when m - oo . Fix £ > 0. We choose a subsequence
{ f mn} such that:

On the other hand, since {fmn} is a subsequence of { fm } it satisfies (2.8)
and condition (b). Therefore we have, as in (2.9):

as n -~ oo. Hence, there exists No = such that, for n > No:

Putting together (2.10) and (2.11 ), we have shown that f ’ E C([0, T ] ; X ) .
Now that this is established, it is easy to see that the convergence

of fn to f in C([0, T ] ; w - X) can be improved to convergence in
C([0, T ]; X). This is done by contradiction, using the compactness of
[0, T] and (2.9). 0
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Before we proceed, a couple of remarks are in order.

Remarks. -

1. A compactness derivation of this nature with X = L2(S2) and
fn as an approximate velocity sequence for incompressible 2D
Euler in a bounded domain Q was argued as part of the proof
of [30, Theorem 4.3]. Our contribution is to observe that no fluid
dynamical considerations are necessary to prove it.

2. The proof of this Lemma shows that, in a very general sense, the
absence of sequential concentrations (in the sense of DiPerna and
Majda) in a pointwise fashion in time (condition (b)) is equivalent
to the absence of dynamical concentrations, i.e., strong temporal
continuity in the limit.

We are ready to prove the main result of this subsection, stating
an existence result for full plane flows with initial vorticity in L ~l ° 2> ,
thus extending the corresponding result [30, Theorem 4.3] for flows in
bounded domains.

THEOREM 2.4. - Let c~o E j,~1,2) (~2). Then there exists a weak

solution of the incompressible 2D Euler equations, u(~, t) subject to the
initial condition uo = K * c~o with no concentrations.

Proof - As before we first mollify, denoting by c~n ( ~ , t) the vorticity
corresponding to the mollified initial data, c~o := where En :=

1 / n . To show -stability it is clearly enough to show that for any
fixed test function E we have that is precompact
in C([0, T]; H-1(BR(0))).
We appeal to Lemma 2.3 with fn = cpwn and X = H-1 (BR(0)). Its

requirement (a) holds since L ~ 1’ 2> ( BR (O) ) is boundedly imbbeded in
H-1(BR(0)), and hence, consult [30, Lemma C.l], is precompact
in C([0, T]; w - H-1(BR(0)).

Next, let tn -~ t E [0, T ], and we turn to consider the second

requirement of Lemma 2.3, verifying the required H-1-compactness of
(~, tn ) } . It is an elementary consequence of the definition of the non-

increasing rearrangement functions that t ) ) * ~ t ) )’~ .
Furthermore, since c~n ( ~ , t) is a rearrangement (c~n ( ~ , t)) * = * .

And finally,
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It follows that fn = tn ) are uniformly bounded in L 1’ 2~ . Moreover,

as 8 2014~ 0, uniformly in n. The precompactness of { fn ( ~, tn)} follows from
Lemma 2.2.

We can now use Lemma 2.3 with X = to conclude the

H-1loc-stability. Of course, by Theorem 1.1, we conclude existence of
a weak solution for initial vorticities in L ~l , 2) (~2 ) ~ without concentra-
tions. D

Lemma 2.1 shows that Orlicz space 1/2, and
Lorentz space L ~ 1’ q ~ ( SZ ) , q  2 (as well as, of course, LP(Q), p > 1),
are all contained in L ~ 1’ 2~ ( S2 ) . Hence Theorem 2.4 covers, in fact, all
the previous existence results. However, the proof of existence without
concentrations in those spaces other than L ~ 1’ 2~ was so much simpler than
in L ~ 1’ 2~ that the authors felt justified in including them as independent
results. This simplicity will reinforce itself as we turn to the general n-
dimensional case.

3. THE 2D PROBLEM BEYOND
REARRANGEMENT-INVARIANT SPACES

3.1. Velocity in Lebesgue space T ] , L o~ (II~2 ) ) , p > 2

As the regularity of the 2D vorticities approaches the limiting case
of bounded measures, BMc, (and in fact, even before that--consult
the discussion in Section 4.3.1 below on the limiting case of Morrey
space M ~ 1 ’ 1 /2) ), one encounters the phenomenon of energy concentration.
Our next theorem shows that if one departs from the borderline case of

energy bound on the velocity, then there are no concentrations.

THEOREM 3.1. - Let be a family of approximate solutions of the
2D Euler equations (0.1 ), with vorticities, {c~E }, uniformly bounded in

T ] ; ,t3J~I ~ (II~2 ) ) . Assume that the is uniformly bounded in
T ] ; I~2 ) ) , for some p > 2. Then, is strongly compact



392 M.C. LOPES FILHO ET AL. / Ann. Inst. Henri Poincare 17 (2000) 371-~ I 2

in L°’°([0, T ]; I~2)), and hence it has a strong limit, u (. , t), which
is a weak solution with no concentrations.

The proof a straightforward application of the main Theorem 1.1 on
-stability, proceeds along the lines of the Murat Lemma, [34], [ 11,

Theorem 2.3]. The assumed LP bound on the velocity implies that

is uniformly bounded in with X p = 
for some p > 2, and the bound on the vorticity implies that

is compactly imbedded in Vq  n/(n -
1). It follows, by interpolation, that is compactly imbedded in

T ] ; Wlo~ ’r (S2 ) ) for all r’s, q  r  p. This, together with the
uniform boundedness of in Lip([0, T ] ; (by property

imply H-1loc-stability and the result follows.

4. THE GENERAL n -DIMENSIONAL PROBLEM

4.1. Vorticity in Lebesgue space L °° ( [0, T ] , L p (II~n ) ) , p > 2n / (n + 2)

The extension of our H-1loc-stability theory to the general n -dimensional
case is straightforward. For example, arguing along the lines of Corollary
2.1 we have

THEOREM 4.1. - Let be a family of approximate solutions

of the n-dimensional Euler equations (O.1), so that properties Pl-
P3 hold. Assume that {03C9~(., t ) } is uniformly bounded in L °° ( [0, T],

An)) with p > (p*)’ = 2n / (n + 2). Then is strongly compact
in L °° ( [O, T]; II~’~ ) ), and hence it has a strong limit, u(., t),
which is a weak solution of the Euler equations with no concentrations.

The proof is immediate based on the dual statement of the compact

imbedding, c~ with p  p* = 2n / (n - 2).
Of course, one can refine the above statement with Orlicz and Lorentz

scaling. In the general n-dimensional case, however, rearrangement-
invariant spaces play no special role and therefore we prefer to continue
our discussion with the non-rearrangement-invariant Morrey spaces. In
order to put the latter in proper perspective, it would be instructive to

briefly overview the Lorentz-Zygmund spaces.
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4.2. Lorentz-Zygmund spaces 

The most refined scaling of the Lebesgue spaces is offered by the
Lorentz-Zygmund spaces. We refer the reader to the detailed survey [6,
5]. Here is a readers’ digest.

Consider a bounded Q c R" (for simplicity, we assume = 1). The
space = consists of all measurable functions f
such If we replace f * with
its maximal function, f **, we obtain the closely related spaces denoted

these are the Lorentz-Zygmund spaces which consist of all
measurable functions f such that

Similar to the situation with the regular Lorentz spaces, coincide
with for p > 1, [5, Corollary 8.2]. For p = 1, one has, in the
notations of [5, Section 11], = The secondary index
of q = oo is of particular interest to us. Using the maximality of f ** (s) =

we find that consists of all functions f
such that

The are rearrangement-invariant spaces which include as
special cases both the Lorentz spaces, = and the logarith-
mic Orlicz spaces we encountered before, [5, Theorem 11.1],

The basic hierarchy of these spaces is given by (consult [5, Theorem 9.3],
[6, Section 4, Theorem 6.14] for with p > 1, and [5, Theorem
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11.2] for the corresponding statement for 

We shall concentrate on two cases, depending on whether n = 2 or
~>2:

. The 2D case (n =2). Restricting attention to p = 1, we find the
following refinement of Lemma 2.1.

LEMMA 4.1.- We have the following relations

The left of (4.16) follows from (4.15) with (a, a, b, 03B2) = ( 1, 1 /q -
1, q, 0). The right of (4.16) (which follows with (a, 03B1, b, 03B2) =

(q , 0, oo, 1 /q ) ) offers a refinement of Lemma 2.1, since (4.15-
4.14) imply that C L(logL)" whenever aq  1. In fact,
the latter can be verified directly in view of the straightforward
inequality,

which yields the desired estimate for the right side of (4.16)

. The n -dimensional case, n > 2. Here we restrict attention to a = 0,
where coincide with the usual Lorentz spaces, ==

1.

4.3. Morrey spaces and 

In this section we will consider vorticities in multidimensional Morrey
’ 

spaces. These further extend the Lorentz-type spaces we encountered so
far.
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Motivated by the Lorentz-Zygmund spaces we introduce the

Morrey-type spaces which consist of all L1loc(03A9)-functions
such that

(Of course, one might further refine this definition with a secondary
index q along the lines of A comparison with (4.13) shows that
these Morrey spaces enlarge the ladder of spaces beyond the Lorentz-
Zygmund spaces

We shall concentrate on two cases depending whether n = 2 or n > 2.
In two space dimensions we will consider the logarithmic Morrey

spaces 

We conclude that the ladder of two-dimensional spaces is endowed with

a complete hierarchy, L(log L)«(SZ) C L(1,1/«)(~) C C

In the n-dimensional case, n > 2, we consider the canonical Morrey
space, = MP (Q) for p > 1 ,

In the present context, we inquire about the compact imbedding of
these space in (I~n ) . This issue is addressed in the following theorem,
proved independently by DeVore and Tao. 9

THEOREM 4.2 (R. DeVore; T. Tao). - Let SZ C Ilgn be a bounded
domain and let f c~~ } C C°° (S2) be a bounded sequence in f1

L 1 (S2). If either:
(a) p > n/2, or

9 Private communication.
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(b) p = n/2 and a > 1,
then is precompact in 

Proof - For simplicity, assume that Q is included within the unit

n-box, Qo = [0, We will consider an orthonormal wavelet basis
for L 2 ( S2 ), This basis may be built using a (finite) wavelet set,

{lfr}, supported in Qo, which we will require to belong to 
(consult [14, Section 3.6] for a brief overview). Specifically, the wavelet
basis consists of

which are supported in the dyadic cubes Qjk := 2-k ( Qo -f- j ) ; of course,
2-k for all j’s.

Next, we consider the wavelet expansion of each 

The boundedness of {cv£ { in Morrey’s yields two type of bounds
on the corresponding wavelet coefficients. First, each Qjk has a volume
of 2-kn and is covered by a ball with radius R = c2-k, and hence

Next, we estimate the of the wavelet coefficients
in terms of the II L ~ . In fact, since for each fix k, the 

form a pairwise disjoint cover of S2, we have

We conclude that the are bounded in H -1. Indeed, the are

H-1-orthogonal, each of which does not exceed 

min{2-2k ~ ~ ~, (~) ~2~ ( ~ ~2, 1 ~, and hence
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Using (4.21 ) x (4.22) we find the upper-bound

which shows that 03C9~ are H-1-bounded if either (a) or (b) holds.

Moreover, we have H-1-compactness of in view of the uniform
summability

The uniform high-frequency decay (in H -1 ) converts weak compactness
in H -1 into a strong one. D 

’

Next, following [22], we introduce the spaces as the spaces of
measures p E BMloc with the estimates analogous to (4.17)

Our objective is to extend Theorem 4.2 to a result regarding the
compact imbedding of M(p;a) in Unfortunately, these spaces
are not separable and we can not perform the obvious density argument
suggested by Theorem 4.2. We will work around this difficulty with an
argument inspired on Lemma 2.3.

THEOREM 4.3. - Let SZ C JRn be a bounded domain. Then MP’" n

compactly imbedded in H-1 (S2) i,f (p - n/2)+ + (a - 1)+ >
0.

Proof. - We denote by X either (1,03B1)(03A9), if 03A9 ~ R2 with some a > 1
or if S2 c 3, with some p > ~z/2.

Given p e X, define - p * 17m, where 17m is a standard Friedrichs
mollifier. It is easy to see that may not converge to p in the topology
of X. Our first observation is that the X -norms of do converge to
the X-norm of ~,c nevertheless (this property is, in a sense, inherited from

where it is rather trivial). Indeed, the total variation (which is the
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norm of J.L in is lower semicontinuous with respect to the weak-*
convergence in Hence, by the definition of the Morrey norms:

On the other hand, the space 8M is a Banach algebra under convolution,
so that, once again using the definition of the Morrey norms we get:

Consequently,

Next we use (4.24) and the proof of Theorem 4.2 to deduce that X is
continuously imbedded in H -1. Let cp E Then:

where, in the last inequality, we used (the proof of) Theorem 4.2. We
conclude that X is in fact continuously imbedded in H -1.
We will now prove the compactness of the imbedding. Let be a

bounded sequence in X. By what we have just proved, we may extract a
subsequence converging weakly in H-1 to Jl E H-1. We will have
concluded the proof once we show that Jlik in fact converges strongly to
Jl.
We introduce the mollifications - ~m ,~ Jli and observe that, since

is uniformly bounded in H-1, the mollifications converge
weakly in H-1 to Jli as m - oo, uniformly in i . Indeed, for cp E Ho :

which converges to zero as m ~ oo, uniformly in i .

From the fact that Jlik is bounded in X and (4.24), we have that,
for any increasing sequence of natural numbers the sequence
of mollifications is bounded in X and, by Theorem 4.2, is

precompact in H-1. Because Jlik is weakly convergent, we can prove that
is not only strongly compact, but actually strongly convergent

to the weak limit p of Jlik. To see that, we consider some subsequence
of (which, for obvious reasons, we do not relabel), strongly
convergent in H -1 to some v. Then:
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since

Hence p = v. Since the converging subsequence above was arbitrary, we
may conclude that converges strongly to ~,c in H-1 as we wished.

Note that, by standard properties of mollifications, we have that for
each fixed i, - strongly in H-1 as m -~ oo.
We are now ready to conclude the proof, by proving that converges

strongly to Let £ > 0 and choose mk an increasing sequence of natural
numbers such that:

Also choose K sufficiently large so that if k > K then:

Consequently, - ~,c strongly in H-1. D

We now return to incompressible flows, beginning with the 2-dimen-
sional case.

4.3.1. Vorticity in 2D Morrey space M~ 1; a ) (~2 ) ~ a > 1
We have

THEOREM 4.4. - Let be a family of approximate solutions

of the 2D Euler equations (o.1 ), and assume that the corresponding
sequence of vorticities is uniformly bounded in L °° ( [o, T ] ; M~ 1; ")
(II~2 ) ), with a > 1. Then, is strongly compact in L °° ( [o, T ] ; 
II~2)), and has a strong limit, u (. , t), which is a weak solution with no
concentrations.

The proof, based on the H-1loc-stability asserted in Theorem 4.3, follows
along the lines of Corollary 2.1.
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Remarks. -

1. The result stated in Theorem 4.4 is originally due to DiPema and
Majda [16, Theorem 3.1]. They show, using elliptic regularity,
that the streamfunction corresponding to approximate vorticity
~(’, t) e M~~(R~) has a logarithmic Holder regularity of order
a-1,

Here we extend their result in both generality and simplicity. In
particular, we remove their extra assumption of weak uniform
control at infinity on the approximate vorticities, since our approach
based on the generalized div-curl lemma is local, in contrast to the
elliptic regularity used in [16, Theorem 3.1].

2. Why Morrey spaces? bounds in Morrey spaces have physical sig-
nificance as estimates on the decay rates of circulation of the flow.
Since M~l’a) (~2) are not rearrangement-invariant spaces, how-

ever, there is no known strategy for obtaining a priori Morrey-
type bounds. One interesting exception that was observed by Ma-
jda, [31], deals with approximate vorticities, f c~£ ~ in the cone

of positive measures in conservation of the pseudoen-
implies that 03C9~ E are contained in

M~( 1;1 /2) (~2) . In [31 ], Majda has shown how the Morrey regularity
in /2) (~2 ) of one-signed vorticities, plays a fundamental role
in his simplified proof of the concentration-cancelation argument
of Delort [19]. We note in passing that in fact, the concentration-
cancelation property is guaranteed by Morrey regularity, though
with no a priori specified rate. That is, if supx dx x

0, then the corresponding velocity field satisfies
RO

the concentration-cancelation property, uj ~ u i ~ u ~ for i ~ j .
3. The discussion above leaves us with a gap between those weak

solutions obtained from approximate solution sequences without
concentrations, corresponding to a > 1, and approximate solutions
with concentration associated, for example, with positive vorticities
corresponding to a = 1 /2 (for a specific example, consult [16,
Section 1]). The gap 1/2  a  1 remains open with regard to the
question of compact imbedding of M~ 1; a ) (IL~2 ) in (II~2 ) .
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4.3.2. Vorticity in n -dimensional Morrey space p > nl2
We now consider three and higher dimensional flows. First we remark

that the Morrey space estimates do not have the physical interpretation
as circulation decay estimates in higher dimensions. On the other hand,
there is no natural set of a priori estimates for vorticity, in contrast with
dimension two. We state

THEOREM 4.5. - Let be a family of approximate solutions of the
n -dimensional Euler equations (o.1 ), and assume that the corresponding
sequence of vorticities is uniformly bounded in L °° ( [o, T]; 

with p > n /2. Then, is strongly compact in L °° ( [o, T];
M")), and hence it has a strong limit, u (. , t), which is a weak

solution with no concentrations.

Remarks. -

1. In the particular case of three-space dimensions, Theorem (4.5)
indicates that the Morrey space M3/2(JR3) is the borderline case
for H-1-compactness and hence existence without concentrations.
This space was already addressed by Giga and Miyakawa [22] who
proved existence and uniqueness of a global solution to the 3D
incompressible Navier-Stokes (N-S) equations on the full space
with initial vorticity sufficiently small in M3~2 (I~3 ) _

2. Why Morrey spaces with n > 2? One important feature
of the work [22] is that it includes vortex ring initial data, i.e., initial
vorticities supported on closed curves. These vorticities generate
physically interesting flows that do not have locally finite kinetic

. energy. In particular, generalizing this example in the obvious way
for higher dimensions, this implies that the condition p > n /2 is
optimal for our compactness results inside the Morrey hierarchy,
since we can exhibit compactly supported measures in 
which are not in for n > 3.
We note in passing that Morrey regularity is also related to the

sharp partial regularity result for the 3D Navier-Stokes equations
obtained by Caffarelli, Kohn and Nirenberg [8]; consult also the
simplified proofs in [28,42]. These results involve an a priori space-
time Morrey-type estimate of the form



402 M.C. LOPES FILHO ET AL. / Ann. Inst. Henri Poincare 17 (2000) 371-412

where BR (x, t) denotes the space-time parabolic ball, BR (x, t) :=
BR(x) x (t - R2, t). We observe that this kind of bound re-

spects the basic similarity invariance of N-S solutions, t) :=
~,Zt), VÀ > 0. Our arguments are essentially stationary and

cannot be directly interpreted in this context. Under the assumptions
of [42, Theorem 3.1] one concludes Const. R r2

and (4.25) then yields Morrey boundedness in M3~2 (I1~3 ) we en-
countered before.

3. And finally, we comment on the existing gap between Morrey vs.
Lebesgue regularity. Theorem 4.1 implies that within the Lebesgue
hierarchy, the critical Lebesgue exponent is ( p* )’ = + 2), so
that all with p > 2nl(n +2) are compactly imbedded
in Theorem 4.2, however, identifies the critical Morrey
spaces for a smaller range of exponents with p > n /2.
Though the Morrey space are bigger than the corresponding weak-
LP, C MP, they both admit the same scaling. Thus, for
n > 2 we are left with the open question with regard to the

’correct’ scaling exponent within the intermediate gap n/2 > p >
+ 2), which will suffice for compact imbedding in 

4.4. Velocity in Lebesgue space T ] , > 2

2n

The space L ~ +2 is the borderline case within the Lebesgue
hierarchy for the regularity (lack of concentration) of approximate n -

dimensional vorticities, analogous to the borderline role of L~ (or 
in the 2D setup. Observe, for example, that with 
one finds for the corresponding velocity field, 
Lfoc (JRn). .

Following the 2D setup of Theorem 3.1 we have

THEOREM 4.6. - Let be a family of approximate solutions of the
n-dimensional Euler equations (o.1 ), with vorticities, {c~£ }, uniformly

2n

bounded in L °° ( [o, T]; L ~ +2 Assume that the is uniformly
bounded in L °° ( [o, T ] ; with p > 2. Then, is strongly
compact in L °° ( [o, T]; and hence it has a strong limit,

M(-, t), which is a weak solution with no concentrations.

For the proof one makes use of the interpolation argument between

X r’s, X r = The compact imbedding c~ X q



403M.C. LOPES FILHO ET AL. / Ann. Inst. Henri Poincare 17 (2000) 371~12

with q  2 together with the boundedness of in X p for some p > 2
imply H -1 stability.

Here, there are no known strategy to guarantee the Lr bounds on the

vorticity (for r > 2n I (n + 2)) and the velocity (for r > 2).

5. CONCLUDING REMARKS

The analysis developed in this paper is related to the question
of characterizing weak solutions which conserve kinetic energy. This
question was considered for 3D-flow by Onsager in [36], in connection
with conditions of asymptotic validity for Kolmogorov’s description of
the energy spectrum of turbulent flow in the inertial range. More recently,
P. Constantin, W. E and E. Titi, [13] proved that weak solutions of the 3D
incompressible Euler equations for periodic flow conserve kinetic energy
if the velocity belongs to L 3 ( [0, T ] ; B~ ( L 3 (II~3 ) ) ) n C([0, T] ; L 2 (II~3 ) ) ,
for any s > 1 /3, answering in the affirmative part of the Onsager
conjecture, that the energy would be conserved if and only if the

velocity is at least Holder continuous of exponent 1 /3. We observe that
our work shows that flows which are much more irregular may still

conserve kinetic energy. For instance, consider a periodic, or bounded
domairi flow obtained as a limit of an approximate solution sequence
of velocities in L°° ([0, T ]; for any s > (3/ p) - (3/2). Then, in
view of the discussion in the end of Section 1, this flow conserves kinetic

energy. Finally, note that this observation does not disprove the "only
if" part of the Onsager conjecture, since we are not able to produce
such an approximate solution sequence. We are merely saying that it is
conceivable that such a counterexample exists.
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APPENDIX A. A GENERALIZED DIV-CURL LEMMA

Below we present a proof of Lemma, 1.1. This proof is based on a new
proof of the classical div-curl lemma, [40,34].

Proof. - The first (and standard) step is to observe that, without loss of
generality, one can assume and share a single compact support
and the same weak limit u = v = 0.

Indeed, fix cp E C °’° ( [0, T ] x and let 1/1 E C~([0,TI ] x 
be such that 1/1 _ 1 on the support of cpo Let u~ = u ) and
v~ = ~c/f(v£ - v). It is easy to see, passing to a subsequence if nec-

essary, that US - 0 and v’ - 0 weak-* in L°°([0, T]; and

strongly in so that assumption Al holds. More-
over, { div u£ } and are precompact in C([0, T ] ; and

respectively in C([0, T ] ; (and thus assumptions A2-A3
hold). Indeed, from the hypothesis, the only non-trivial condition to
verify is that div(cpu) and belong to 

and to C([0, T ]; An)), respectively. This follows since, pass-
ing to a subsequence if necessary, div(cpuS) converges strongly in

C([0, T] ; to a limit which has to equal a. e. in time;
analogously for 
Our next step is at the heart of matter. Denote

Fourier transform in the spatial variables leads to the following system

We view these as a system of ( 1 /2)n (n - 1) + 1 equations in the n
unknowns § . In the 2-dimensional case, one finds a 2 x 2 system which is

easily inverted; in the n-dimensional case, n > 2, it is an over-determined
system. In either case, we can solve this elliptic system and recover §
as long as the inner product of a~ and b~ does not vanish. To this end,
multiply the second equation on the right by a~ and use the first equation
to obtain = Take the inner product of both sides
of the last equality by the vector ~ / ~ ~ ~ 2 . We obtain our main identity
which reads

where
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Thus, we can integrate (A.1 ) on [0, T] x R" and use the Plancherel
Theorem and the Cauchy-Schwartz inequality to get:

Therefore, to conclude that J[ JJRn v~ dx dt ~ 0, it is enough to
show that both and converge to 0 strongly in L 2 ( [o, T] x

We will give the proof for rS; the proof for SS is analogous.
We proceed by separating the low and high Fourier modes:

The assumption of H-1 compactness tells us precisely that the high
Fourier modes vanish in the limit 8 - 0:

Of course, the low-modes are already controlled by the weak conver-

gence (to zero), since r £ (~ , t ) _ ~ ~ u~ (~ , t ) , and hence f r £ (~ , t ) ( 2 ~ ( ~ ~ 2 
( u£ (~ , t ) ~ 2 . But the u~ are uniformly bounded in T ] x (since
the u~ are in T ] ; and they converge pointwise to zero:
since u~ ~ 0 in C([0, T ] ; and

Consequently, by dominated convergence, fa and hence Ti,
tends to zero.
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From the fact that f T JJRn US . VS dx dt - 0 it follows that, at least up
to subsequence,

To prove that the entire sequence f T Rn cpus . v £ dx dt - f T 
v dx dt we observe that this is the only possible limit of any converging
subsequence of the bounded sequence of real numbers JIRn cpus .
vE dx dt } . This concludes the proof. D

APPENDIX B. A HIGH-RESOLUTION CENTRAL SCHEME
AND ITS -STABILITY

We describe the approximation of (0.1 ) by the central scheme recently
introduced in [27]. It enjoys the advantages of having high-resolution
while avoiding spurious oscillations. Indeed, we extended the maximum
principle studied in- [27, Theorem 4.1], proving the more general 
stability statement below.
The solution of this central scheme is realized as a piecewise-constant

approximate solution, w (x, y, t), at the discrete time levels, tn = n At,
= with cell-averages, corresponding to

the cells, Cj,k:== {(~~ ~) ~ !~’ - Ox/2, ~~ - Dy/2 }~
To evolve in time, we first need to be able to recover the velocity

field (u, v) from the discrete vorticity. To this end, we define the discrete
vorticity at the mid-cells as the average of the four comers of each cell,
i.e.

We then use a streamfunction, ~, such that A p = 2014~, which is obtained
in the mid-cells, e.g., by solving the five-points Laplacian,

Then, its gradient, ~ ~ recovers the velocity field
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Here and below, Jlx, JLy denote averaging in the x - and y-directions,
e.g., xf03B1 := 1 2(f03B1+1/2 + f03B1-1/2), and similarly, Vx , ~y denote x- and
y-differencing, e.g., := g,~_1~2). Thus, for example,
(B.2) amounts to 

Observe that with this integer indexed velocity field, we retain the fol-
lowing discrete incompressibility relation (centered around ( j + 1 /2, k +
1 /2) ),

This discrete incompressibility plays the key role in the H-1 stability
study below.

Equipped with the velocity values at tn we advance in time in two
steps: we first compute the midvalues, c~ J k 1 /2, using a first-order Taylor
expansion (Àx := At /Ax and Ày := are the usual fixed mesh-

ratios),

and using these midvalues, the vorticity at the next time step =

tn + At is then realized by its staggered cell-averages,

where

Here, and denote discrete ’numerical slopes’ in the x- and
respectively y-directions. Let us consider two examples.
As our first example, we set these numerical slopes to zero, f’ == 

0. Then c~n+ 1 /2 - ~n and the central scheme (B .4)-(B .5 ) is reduced to the
classical Lax-Friedrichs (LxF) scheme
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Here is the key observation. By the discrete incompressibility relation
(B.3) we find that 1 

can be rewritten as a convex combination of the

neighboring averages at t = tn, namely

Observe, that the 0’s are nonnegative under the CFL condition +
1/2. By convexity, therefore,

for all convex cp’s and thanks to the incompressibility relation (B.3)
we find that c~ (~, ~, t) is a renormalized ’entropy’ solution satisfying the
discrete analogue of (2.3)

It follows that the total mass of our piecewise-constant approximate
solution,  03C6 (w (x, y, tn ) is nonincreasing in time.

In particular, w ( . , 0) )2014~ c~ ( ~, tn ) maps any Orlicz space into itself.
The LxF scheme (B.6) is a first-order, low-resolution scheme. Higher

resolution is obtained if we set the discrete slopes f’, g as appropriate
numerical derivatives. Namely, second order accuracy is guaranteed
wherever these slopes approximate the corresponding derivatives, 
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There is a variety of choices to reconstruct such discrete slopes from
the given cell-averages. As our second example for the class of central
schemes, we set

Here, MM, denotes the usual Min-Mod limiter

and 8 E (0, 2), is a free parameter which retains the non-oscillatory
properties of the approximate solution. We note in passing that stability
enforces this type of nonlinear reconstruction of discrete slopes from
the cell-averages of the vorticity. Straightforward divided differences are,
of course, another accurate choice but they sacrifice stability. Following
the argument along the lines of [27, Theorem 4.1 ] one finds that under
a restricted CFL condition (outlined below), ~n+1 can be written as a
convex combination of its neighboring gridvalues at t = tn . We conclude

THEOREM B.l. - Consider the two-dimensional central scheme

(B.4)-(B.5), complemented by the streamfunction computation of the ve-
locity field (B.2), and discrete slopes using the 9 -dependent Min-Mod
limiter (B.lo).

{i{ Then for any 9  2 there exists a constant,

such that if the CFL condition, u I  Ce is fulfilled,
then (B.9) holds.

{ii} In particular, the evolution mapping c~ (~, 0) H c~ (~, maps any
Orlicz space into itself, i. e., (2.5) holds.

The last statement of -stability implies that the finite difference
solution, cv°t (~, t), is an approximate solution (satisfying properties ~1,
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P2 and P3’ ), and L2-convergence follows for (. , 0) in the host of 2D
rearrangement-invariant spaces outlined in Section 2.
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