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ABSTRACT. - Considering random noise in finite dimensional para-
meterized families of diffeomorphisms of a compact finite dimensional
boundaryless manifold M, we show the existence of time averages for
almost every orbit of each point of M, imposing mild conditions on the
families; see Section 2.4. Moreover these averages are given by a finite
number of physical absolutely continuous stationary probability mea-
sures.

We use this result to deduce that situations with infinitely many sinks
and Henon-like attractors are not stable under random perturbations,
e.g., Newhouse’s and Colli’s phenomena in the generic unfolding of a
quadratic homoclinic tangency by a one-parameter family of diffeomor-
phisms. © 2000 Editions scientifiques et médicales Elsevier SAS

Key words: Random perturbations, Time averages, Physical probabilities, Homoclinic
bifurcations

RESUME. - On considere un bruit aleatoire dans des familles para-
metrees de dimension finie de diffeomorphismes d’ une variete compacte
sans bord, M, de dimension finie, et on montre, sous certains conditions
pas tres fortes sur ces familles, l’existence de moyennes temporelles (as-
symptotiques) pour presque toute orbite de chaque point de M (voir Sec-
tion 2.4). Ces moyennes sont donnees par un nombre fini de mesures de
probabilite stationnaires physiques absolument continues.

1 E-mail: vdaraujo@fc.up.pt.
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On utilise ce resultat pour deduire que les situations de coexistence
d’une infinite de puists et d’attracteurs de type Henon ne sont pas
stables par des perturbations aleatoires ; par exemple, les phenomenes de
Newhouse et de Colli dans le dedoublement generique d’une tangence
homoclinique quadratique par une famille de diffeomorphismes a un
parametre. @ 2000 Editions scientifiques et médicales Elsevier SAS

Mots Perturbations aleatoires, Moyennes temporelles, Probabilites physiques,
Bifurcations homocliniques

1. INTRODUCTION

Newhouse proved in [16-18] that many surface diffeomorphisms have
infinitely many attracting periodic orbits (sinks), a serious blow to early
hopes that generic systems might have only finitely many attractors.
Indeed, see [18] and also [22], arbitrarily close to any C2 diffeomorphism
on a surface M with a homoclinic tangency there exist open subsets of
Diff2(M) whose generic elements have infinitely many sinks or sources.

This result was extended to arbitrary dimensions by Palis and Viana
in [23], see also [25] and [11]. Diffeomorphisms with infinitely many
coexisting hyperbolic attractors were constructed by Gambaudo and
Tresser in [10]. Colli showed in [7] that diffeomorphisms displaying
infinitely many Henon-like strange attractors are dense in some open
subsets of Diff °°( M) , if dim M = 2. Even more recently, Bonatti and
Diaz in [4] showed that coexistence of infinitely many sinks or sources is
generic in some open subsets of Diffl(M), if dim M > 3.

However, apart from these existence results, diffeomorphisms with
infinitely many attractors or repellers are still a mystery. Results of [ 14,8,
5] show that maps which cannot be approximated by others with infinitely
many sinks or sources have properties of partial hyperbolicity. In this
case the dynamics of these maps can be understood to some degree, see
e.g., [3,24,12,6,1]. It would be nice to know that systems with infinitely
many sinks or sources are negligible from the measure theoretical point
of view. Indeed, it has been conjectured that such systems correspond
to zero Lebesgue measure in parameter space for generic families (finite
number of parameters) of maps, see [29] and [22]. Nevertheless this is
not yet know.
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Here we show that this phenomenon of coexistence of infinitely many
sinks or sources can indeed be discarded in the setting of maps endowed
with random noise. We prove that (Theorem 1) every diffeomorphism of
a compact finite dimensional boundaryless manifold M under absolutely
continuous random perturbations along a parameterized family has only
finitely many physical measures whose basins cover Lebesgue-a. e. point
of M .

In the context of the generic unfolding of quadratic homoclinic
tangencies by uniparametric arcs of surface diffeomorphisms, where
the coexistence phenomenon of infinitely many attractors was first

shown to occur, we prove (Theorem 2) a result similar to the previous
one concerning points whose perturbed orbits visit a neighborhood of
the tangency infinitely often with positive probability, which we call
recurrent points.

This result is a corollary of the former since we show the random
parametric perturbations applied on the recurrent points to be absolutely
continuous as well. For an uniparametric arc to satisfy this property
in a surface a quadratic homoclinic tangency is used: the mixture of

expanding and contracting directions near a homoclinic tangency point,
in a neighborhood of it in the manifold for every diffeomorphism close
to the one exhibiting the tangency, is what permits us to get absolute
continuity even when only a single parameter is at hand.
We conclude (Section 14) that there cannot be infinitely many at-

tractors (or physical measures) whose orbits (respectively, supports)
pass near a quadratic homoclinic tangency point or its generic unfold-
ing under random parametric perturbations (i. e., random errors in the
parameters)-in this sense, diffeomorphisms with infinitely many attrac-
tors are not stable under random perturbations.

These results can be seen from the perspective of a broad program pro-
posed by J. Palis in [20]. In particular, he conjectured that systems with
finitely many attractors are dense in the space of all systems. Moreover,
these attractors should have nice statistical properties, including existence
of physical measures supported on them, and stochastic stability under
small random noise-see, e.g., [31].

Fornaess and Sibony in [9] have shown a result similar to Theorem 1
to hold in the context of random perturbations of rational functions. The
precise form of the statement of this theorem and of some definitions was
inspired on Theorem 1.1 of theirs.

Relevant setting and all definitions are in Sections 2 and 3 along with
the precise statement of the result, including the kind of noise to be used
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and some examples. A summary of the steps of the proof is given in
Section 4, where we also sketch the contents of Sections 5 through 9. In
Section 10 we apply our results to perturbations of an example of Bowen.
This provides a good insight into the meaning of these results.

Relevant settings, definitions and the statement of Theorem 2 are in
Section 11. Its proof in Sections 12 and 13.

Several questions arise in this context of systems with random noise
and the simple methods used in this work to derive Theorems 1

and 2 should be generalized and extended. Some of those questions are
presented in the last section (Section 15) of this paper.

2. SOME NOTATIONS, DEFINITIONS AND THE MAIN
THEOREM

Throughout this paper M will signify a compact boundaryless mani-
fold with finite dimension, m will be some normalized (m (M) =1) Rie-
mannian volume form on M and dM : M x M - R a distance given by
some Riemannian structure on M, fixed once and for all. When not oth-
erwise mentioned, absolute continuity will be taken with respect to the

probability m.
The random perturbations to be considered will act on the dynamics

of diffeomorphisms of a parameterized family given by the C~ function
f : M x Bn --~ M, where B n = {y G  1 ~ is the unit ball of

1, ~ ~ ~ f ~ 2 is the Euclidean norm and the map f t : M 2014~ M, x E
M H f (x, t) is a diffeomorphism for every t E Bn .

2.1. Perturbations around a parameter

Let us fix a E Bn and take £ > 0 such that the closed £-neighborhood
of a be contained in Bn, B n (a, Bn . We define the perturbation space
around a of size c to be

with the product topology, which is equivalent to the topology induced

by the metric d ( t , s ) _ ~ ~°_ 12-n ~ - s~ [ ( 2 , L1, and the measure
v°° given by the product of the normalized Lebesgue volume measure v
over each B n (a , ~ ) . For sets A 1, ... , A k of the Borel family in B n (a , ~ )
we have x ... x Ak x B n (a, ~)~) = v(Al) ~ ~ ~ v(Ak) and if
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A C then v(A) = where A ~ [ will mean the

Lebesgue volume measure of A.
Now we define the perturbed iterates of f by

and state the useful convention that fO(z, t ) = z and

for every k > 1. We emphasize a very often used property in what
follows.

PROPERTY 2.1. - For every fixed k > 1 it holds that

Given t E d and z E M we will call {~(z)}~=i 1 the t -orbit of z and
many times write C~ (z , t ) . 

-

In this way, perturbations are implemented by a random choice
of parameters of a parameterized family of diffeomorphisms at each

iteration, the choice being made in a £-neighborhood of a fixed parameter
according to a uniform probability. Such choices are represented by a
vector t in d, an infinite product of intervals, and the greater or lesser
importance of the set of perturbations taken into account will be evaluated
by the measure voo.

This kind of random iteration will be referred to as parametric noise.
With the settings given above, the family of diffeomorphisms acting on M

with parametric noise of level c around fa will be written = { ft : t E

B n (a , ~ ) } . To simplify writing the factors of A we set T = B n (a , ~ ) from
now on, so that A = 

2.2. Stationary probabilities

We can define a shift operator S : M x Zl 2014~ M x zl, (z, t ) H
where a is the left shift on sequences of = s

with t = (tl , t2, t3,...) and s = (t2, t3, t4, ...). By the definition of Sand
Property 2.1 (2) we deduce that S is continuous.
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A probability measure ~c in M is said a stationary probability if the
measure p x v°° is S-invariant:

for every Borel subset A of M x Ll.

This is equivalent to say that satisfies the following identity

In fact, writing (1) for A = U x L1, where U is a Borel subset of M,
we have

which is equal to  x x d ) = that is,

where 1 v is such that and = 0 otherwise. Then

(2) holds for every 03C6 E L1 (M, R) D C (M, R), because simple functions
are dense in L ~ and the relation (2) is linear.

Conversely, if (2) holds for every 03C6 E eO(M, then it holds for

every element of because ~c and v are Borel measures and

f : M x B --~ M is continuous (so that the left hand side of (2) gives
a regular measure over M). In particular, it holds for ~p = and (3)
is equal to J = x VOO(U x o ) proving that (2)
implies ~c x x o)) _ ~c x v°° (U x o) . Now we see that, if
V C 11 is also a Borel subset,



313
V. ARAUJO / Ann. Inst. Henri Poincare 17 (2000) 307-369

proving the equivalence between (2) and ( 1 ).
2.3. Ergodicity, generic points, ergodic basin

In the same way we have defined a stationary probability, by utilizingthe shift S, we will say that is a stationary ergodic probability measureif p x i s S-ergodic .
In this situation, Birkhoff’s ergodic theorem ensures that

We now remark that, because p x v° is a product measure, we havethe following property. Let X be the set of (x , t ) that satisfy (4) for everycontinuous function w : M - R. If is a denumerable and dense
sequence in C°(M, R) and Xn the set of those points (x, t ) G M x Athat satisfy (4) for n § I , then it is easy to see (cf. [ 1 5, Chapter II.6])that X = Xn is a set of p x v~-measure I . Let us consider nowX(x) = (t G zl: (x, t ) G X), the section of X through x G M. Thenwe have v° (X (x) ) = I for p-a.e. x G M. Indeed, by Fubini’s theorem,p x v°(X) = j v°(X(x)) dp(x) = I with 0 # v°(X(x)) # I for everyx G M. Hence, the last identity implies the statement, because p is aprobability measure.
The points x that satisfy v° (X(x)) = I , that is, for which the limitin (4) exists and equals  03C6 dp for v°-a.e. t G A and every continuousw : M - R, will be called -generic points. The set of -generic points,
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when ,c,c is stationary and ergodic, will be the ergodic basin of ,c,c and will
be written E (,c,c) .

To complete this setting of terms and symbols, those ergodic stationary
probability measures ~, whose basin has positive volume, >

0, will be called physical measures of the perturbed system. We also
convention to write fk(x, v °° ) for the push-forward of VOO by f k (x , ~ ) ,
that is fk(x, = f t ) ) dvOO(t) for every k > 1, x E M and
~p E C° (M, by definition.

2.4. Statement of the results

THEOREM 1. - Let f : M --~ M be a diffeomorphism of class r >
l, of a compact connected boundaryless manifold M of finite dimension.
If f = fa is a member of a parametric family under parametric noise
of level ~ > 0, as in Section 2.1, that satisfies the hypothesis: there are

and ~° > 0 such that, for all k > K and x E M
A) ~0)~ 1
B) v°°) « m ;

then there is a finite number of probability measures 1, ..., l in M with

the properties
1. 1, ..., l are physical absolutely continuous probability mea-

sures ;

2. supp pi n supp j = ~ for all 1  i  j  1;
3. for all x E M there are open sets Vl = Vl (x), ..., Vl = Vl (x) C a

such that

Moreover the sets Vl (x), ..., Vl (x) depend continuously on x E M
with respect to the distance dv(A, B) = B) between v°°-
mod 0 subsets of a.

The theorem assures the existence of a finite number of physical
probability measures with respect to the perturbed system as

defined in the previous subsections, which describe the asymptotics of
the Birkhoff averages of almost every perturbed orbit of every point of M.
Section 10 gives perhaps a clearer meaning for this result.
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The conditions on the noise are about "how much spread" suffer the or-
bits under perturbation when compared with those without perturbation.
They demand that the perturbations "scatter" the orbits in an "uniform"
way around the nonperturbed ones, at least from some iterates onward,
and ask for negligible perturbations (of measure zero) to produce neg-
ligible effects: the result of such perturbations should only be a set of m
measure zero.

These hypothesis try to translate the intuitive idea of random perturba-
tions not having "privileged direction or size", causing deviations from
the ideal orbit that will "fill" a full neighborhood of that orbit and "ig-
noring" sets of perturbations of zero probability. In the light of this, para-
metric noise satisfying conditions A) and B) may aptly be referred to as
physical parametric noise.

Example 1. - Let M = Tn be the n-torus, n > 1, and fo : Tn ~ Tn a

Cr-diffeomorphism, r > 1. Since is parallelizable, T ~n "’ x 

we can find n globally orthonormal (hence nonvanishing) vector fields
in xr (M) . For instance, through the identification ~n "-_’ I~n ~~n via the
natural projection, we may take X 1 (x ) = e 1 = ( 1, 0, ... , 0) , X 2 (x ) =

e2 = (0, 1 , ... , 0),..., Xn (x) = en = (0,0,..., 1) for all x E ~n .
We construct a family of differentiable maps defining f : ~n x 

or equivalently by = f (x , tl , ... , tn ) = fo (x ) + (tl , ... , tn ) mod 
We note that since  ~ implies II ft - fo II cr  ~ for every £ > 0

and is open in ~n ) (cf. [21, Chapter I]), there is ~o > 0
such that the restriction fi : x £0) ~ Tn is a C r -family of C’-
diffeomorphisms 

It is not difficult to see that f satisfies hypothesis A) and B) of
Theorem 1 for K = 1 and for every family = - all2  ~ ~
such that C We may say, in the light of this, that
this specific kind of random parametric perturbation is an absolutely
continuous random perturbation.
Theorem 1 follows and we see that any random absolutely continuous

perturbation of a diffeomorphism of the torus (or of any parallelizable
manifold) is such that Birkhoff averages exist for almost every orbit
of every point of the torus. Moreover their values are defined by a
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finite number of absolutely continuous physical stationary probability
measures.

Remark 2.1. - Example 1 shows that given any diffeomorphism f of
a parallelizable manifold we may easily embed f in a suitable parame-
terized family of diffeomorphisms satisfying hypothesis A) and B).

Example 2. - We now construct an absolutely continuous random
perturbation around any given diffeomorphism f E Diffr(M), r > 1, of
every compact finite dimensional boundaryless manifold M, assuming M
to be endowed with some Riemannian metric. It is most likely that
this kind of construction can be carried out with n = dim(M) or n + 1
parameters.
We start by taking a finite number of coordinate charts { ~i : B(0, 3) --~

M { i -1 such that { ~1 ( B (o, 3))}~~ l is an open cover of M and { 1/r~l ( B (o,
1 ) ) } i -1 also (this is a standard construction, cf. [21, Section 1.2]). In

each of those charts we define n = dim(M) orthonormal vector fields
X i 1, ... , X i n : B (0, 3) -~ and extend them to the whole of M

with the help of bump functions. This may be done in such a way that
the extensions are null outside ~l ( B (o, 2)) and coincide with in

1 ) ) , i = 1, ... , l ; j = 1, ... , n. We then see that
. At every x E M there is some 1 C i ~ 1 such that X i (x) , ... , X i n (x )

is an orthonormal basis for TX M-and likewise for X i 1, ..., X i n
because {03C8i(B(0, 1))}li=1 was an open cover of M.

Finally we define the following parameterized family

where ~ : T M x R - M is the geodesic flow associated to the given
Riemannian metric. Then for some 0 we get a finite dimensional

parameterized family of diffeomorphisms so) --~ Diffr(M)
satisfying conditions A) and B) of Theorem 1 for K = 1 and some ~o > 0,
and for every family = -  ~ } where a G C

(0, so) .

Example 3. - In the context of random perturbation of rational
functions, as in [9], hypothesis A) and B) are immediate.

Indeed, let R : C x W 2014~ C be analytic, where W C C is open
an connected, z R(z, c) is rational for all c E Wand c E W E--~

R(z, c) is nonconstant for every z E C~ (i.e., R is a generic family of
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rational functions). Then it is easy to get_a ~ _ ~ (co, c) > 0 such that
R(z, B(co, E)) co), ~) for all z E C, whenever B(co, ~) C W, by
compactness of C and because analytic nonconstant functions are open.
Moreover, if À is Lebesgue measure normalized and restricted to B (co, ~),
then R (z, À) « Lebesgue on C. Hence we get A) and B) with K = 1.
Theorem 1 then proves something more than Theorem 0.1 of [9]:

we get physical measures whose support contains neighborhoods of the
attracting cycles of Reo and which give the time averages of almost every
orbit of each point of the Riemann sphere.

Example 4. - Let f : M x T ~ M be a parameterized family of dif-
feomorphisms as in Section 2 such that for some a G T the diffeomor-
phism fa is transitive. Let us suppose further that for some £ > 0 the

parametric noise of level c around fa, satisfies hypothesis A) and
B). Hence Theorem 1 holds and let pi be one of the physical absolutely
continuous probabilities given by the theorem.

Since fa is transitive, there is a residual set R in M whose points xo E
R give dense fa -orbits : = M. Moreover, the c-invariance
of supp i (v. Section 3, Definition 3.1) and hypothesis A) imply that
int(supp 0, and thus there is xo E (R n int(supp 
We deduce that

and so there is only one physical absolutely continuous probability in M,
whose support is the whole of M.

In particular, every diffeomorphism of the torus ~’n (n ~ 1 ) with a dense
orbit, under absolutely continuous noise of arbitrary level s > 0, has
a single physical absolutely continuous probability whose support is M
(and likewise if M is any parallelizable compact boundaryless manifold).

In Section 11 we shall see that certain arcs (uniparametric families) of
diffeomorphisms of class Cr (r ~ 3) generically unfolding a quadratic
homoclinic tangency satisfy both conditions of Theorem 1, restricted to
a neighborhood of the point of homoclinic tangency. For more specifics,
check the abovementioned section. We will then have

THEOREM 2. - There are open sets of arcs (in the C3 topology)
of diffeomorphisms of class C3 of a compact boundaryless

surface generically unfolding a quadratic homoclinic tangency at fo such
that, in a neighborhood Q of a point of homoclinic tangency and for all
fto sufficiently near fo under parametric noise of sufficiently small level
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0  e  co, there are a finite number of probability measures ..., ph
in Q that satisfy the conditions 1 ) and 2) and also 3) of Theorem l, for
points x E M whose orbits t ) have an infinite number of iterates
in Q with respect to a v°° positive measure set ofperturbations.

This result, combined with Newhouse’s phenomenon, shows that
the infinity of periodic hyperbolic attractors (sinks) that coexist in a
neighborhood of a point of homoclinic tangency, for "many" parameter
values near the bifurcation parameter, cannot "survive" the random

parametric perturbation. Moreover it must subsist, at most, a finite
number of analytic continuations under random perturbation of a sink.
Section 14 will specify this conclusions and extend the result in a simple
manner to Colli’s phenomenon, where the infinity of hyperbolic periodic
attractors is replaced by an infinity of Henon-like strange attractors.
Now we will concentrate on the proof of Theorem 1.

3. INVARIANT DOMAINS

Let ~c be a stationary probability measure with respect to a parametric
perturbation of noise level E > 0 around fa. Then supp p is S-invariant:

x v°°)) C supp(  x v°’°).
Let us observe that since = x zl we have for all

(x, t ) E x 24 that fk (x, t ) E supp p, for all k > 1. That is, supp ~,c
is completely invariant according to

DEFINITION 3.1. - A part C of M is said completely invariant or c-
invariant if fk(x, t ) E C for all x E C, t E zl and k > 1.

With the purpose of showing the existence of the kind of stationary
probability measures stated in Theorem 1 and to better understand the
dynamics of the points in their support as well, we make a series of
definitions.

DEFINITION 3.2. - An invariant domain under an £-perturbation with
respect to the family f around the parameter a E I will be a finite
collection Uo, ..., of pairwise separated open sets, that is, i ~ j ~
Ui n Uj = 0, such that Uk mod r for all k > 1, and it will be
written D = (Uo , ... , The number r E N above will be referred to
as the period of the invariant domain.

Let us observe that the open set Uo has a privileged role in the above
definitions.
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DEFINITION 3.3. - An invariant domain that also satisfies

whatever i E f 0, ..., r - 1 } will be a symmetrically invariant domain or
s-invariant domain.

This kind of domains will be at the heart of the arguments within next
sections and the proof of their existence and finite number is the key to
every other result in this paper.

Remark 3.1. - Since the ft are diffeomorphisms for all t E T, we

see that if the collection D = (Uo, ..., is s-invariant, then D =

(Uo, ..., also satisfies (5) and conversely: if the closure D =

(Uo , ... , Ur-l) satisfies (5) with Uo, ..., ur-1 pairwise disjoint open sets,
then D = (Uo, ..., is an s-invariant domain.

3.1. Partial order and minimality

Let D be the family of s-invariant domains. We define the following
partial order relation between its elements.

Let D = (Uo, ..., and D’ = ..., Zlr, _ 1 ) be elements of D.
First, D = D’ if there are i , i’ E N such that mod r = mod r~ ~

1 which implies r = r’, because the open sets that form each
invariant domain are pairwise disjoint.
We say D « D’ if there are i, i’ E N such that Ui mod r c u % mod r’ but

ui mod r # ~~~ mod r’ ~ and mod r C U(i’+k) mod r’ for all k  1 (see Fig. 1
for an example with r = 3 and r’ = 6).
We write D -~ D’ if, and only if, D = D’ or D ~ D’.
Clearly (D, ~ ) is now a partially ordered set.
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DEFINITION 3.4. - A minimal invariant domain is a domain D E D
which is minimal with respect to the partial order « just defined.
Minimal domains will be represented by the letter M throughout this

text.

4. A TOUR OF THE PROOF

With the notions given in previous sections we can now divide the
proof of Theorem 1 in the following steps:

(1) To show that D has some minimal invariant domain and that any
invariant domain contains some minimal one (Section 6.1 ).

(2) To show that minimal invariant domains are pairwise disjoint
(Section 6.2).

By now we can already deduce the number of minimals is finite.
In fact, a minimal invariant domain M is completely invariant and
by hypothesis A) of Theorem 1 we see that every open set of the
finite collection forming M contains a ball of radius ) ~o > 0. The
compactness of M and step (2) above ensure there can only be a finite
number of such open sets and thus a finite number of minimals also.

(3) Every minimal domain is randomly transitive or r-transitive, this
notion will be specified in Section 6.3.

(4) The orbits of every point z E M under noise generate a station-
ary probability measure which is absolutely continuous (Sec-
tion 7.1).

From (3) and (4) we deduce that there exists an absolutely continuous
stationary probability p in the closure of each minimal M (since M
contains every orbit of z E M) whose support is the closure of M (by
the c-invariance of the support and item (3): supp = M .

(5) Every stationary absolutely continuous probability measure p
supported on a minimal domain M is ergodic and its ergodic basin
E (p) contains the whole of M : D M (Section 7.2).

Being ergodic, absolutely continuous and supported on the whole
of M, this probability is physical, since the minimal invariant
domain is a collection of open sets. Consequently since for every such
measure D M holds, this is the only stationary ergodic absolutely
continuous probability measure supported on M. It will be referred to as
the characteristic probability of the minimal M.

(6) Every stationary probability measure is supported on some s-

invariant domain (Section 8).
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This crucial step gives the converse of the property deduced from
step (5). Moreover, combining with the results of the previous steps we
will deduce from step (6) that

(7) Every stationary probability measure is a finite convex linear

combination of characteristic probabilities (Section 8).
(8) Finally, in Section 9, we will use items (4) and (7) to deduce that

perturbation t E 24 is such that eventually falls
into some minimal .J1~I. The perturbations sending z into different
minimals form the partition of item (3) of Theorem 1. Since M
supports a characteristic measure which is physical, we further
derive that Birkhoff averages exist for (9(z, t ) and satisfy (4).

5. FUNDAMENTAL LEMMAS

The measure theoretical lemma that follows will be used frequently
within the arguments of this and next sections.

LEMMA 5.1. - Given V C zl with VOO(V) > 0, we define for fixed
03B8 ~ 0394 and k  1

the k-section of V along B. Then we have

Note. - From now on we will say that a vector fl satisfying the above
limit with respect to a set V C L1 is V -generic.

Fig. 2. Representation of the infinite product of the interval [0, 1 ], a vector 8 and
the sets V and 
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Proof - We may assume, for definiteness, that A = [0, l]N with v the
Lebesgue measure in [0, 1] so that is a probability in Ll. Let V C a
be such that VOO(V) > o.

If B is the Borel 03C3-algebra in [o, 1 ] and

then A = is the a-algebra of a over which v°° is defined,
the a-algebra generated by all Bk. For every f E and

each k > 1 the map A E Bk )-~ JA f dvoo defines a finite measure on
(ZB, Bk, VOO), which clearly is absolutely continuous with respect to the
measure A E vOO(A) (the restriction of VOO to Bk). By Radon-
Nikodym’s theorem there is E Bk, VOO), the conditional
expectation of f with respect to the a -algebra Bk, such that

and this function is unique with this property in Bk, VOO).
Let X k = = 1, 2,.... We are going to see that is

a martingale with respect to the sequence of a -algebras.
Indeed, because Bk C Bk+i 1 we have f A = f A f dvoo

for all A E Bk and by (6) and uniqueness of conditional expectation

By the martingale convergence theorem (cf. [19] for simple definitions
and proofs), the sequence has a voo-a.e. limit that we shall write

By (6) and because f E L 1 (a , A, we have, assuming f > 0, that
Xk > 0 1, and consequently X ~ 0 Moreover

and so X E A, VOO) by dominated convergence and f =

f X d v °° Furthermore, if A E Bk then =

fA f dvoo for all j > k and from this we get = fA f dv°° for
all A ~ Bk and k  1.
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By the absolute continuity of the integral of a L 1-function and by
definition of A, for every £ > 0 and A E A there are 8 > 0, /: ~ 1 and B E
Bk such that B)  ~, X ~ d v°°  ~ and f ~ d v°°  ~.

Now we have, in succession

and from this we get dvOO - fA f 2~ with £ > 0 arbitrary.
We conclude that = f A f dvoo, VA E A and so X = fvoo-

a.e.

In particular if f = 1 v we have 
= f B 1 v dvoo equals VOO(V n B) by definition of conditional expectation.
But VOO(V n B) = fB also equals for

every B E Bk and k > 1 by Fubini’s theorem, where = 

and vk (A) = A E A with A - [0, the natural projec-
tion 03B8 = (8i)°°_1 H (91, ... , That is k)) = E(lvIBk) = Xk
voo-a.e. t E zl, and the proof is complete. D

This lemma will be utilized essentially in the following way. Let V, W
be subsets of A with VOO -positive measure and t a V-generic vector. Then
there is ko E N such that

Since VOO(V(t, k ) ) = 0 for all t E a and k > 1 we may wonder whether
we may use (7) in arguments proving some VOO -a.e. result. The answer is
in the following
LEMMA 5.2. - Let V, W C a be such that VOO(V), VOO(W) > 0. Then

for v °’° -a. e. t E V there is a ko E N such that for all k > ko and every
r~ > 0

Hence we may not have (7) but we know we can choose with positive
probability a vector in V arbitrarily close to t whose kth shift is in W.
This will be enough for our purposes.

Proof. - Let V c A be such that VOO(V) > 0. For every n > 1 and j >
1 let Kn, j be a compact set inside V such that Kn,j)  (n ~ 2~ ) -1
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and is continuous-we are using Luzin’s theorem (v. [13,
Chapter IV, Section 21]). Then Cn = is a compact subset of V,

and is continuous for every j , n > 1.
We have V = Cn, v°° mod 0 and so v°°-a,e, t e V is in some Cn,

n > 1. Moreover is a voo-density point of some Cn and
we may suppose VOO(Cn) > 0 for all n > 1 (otherwise we consider only
n > no for some big no EN).
From now on we suppose t is V-generic and a v~-density point of

some Cn with VOO(Cn) > 0. We let W C L1 be such that VOO(W) > 0, set
8 = > 0 and let ko E N be such that k)) > 1 - ~,
for every k > ko by Lemma 5.1. By the choice of t and Cn we have
vOO(B(L, n Cn ) > 0 for all1J > 0 and for some r~o > 0 we have further
that, fixing ~ ~ ko,

by the continuity of at t. Therefore we deduce that

and so, for any ~ > 0, we have

where we have used Fubini’s theorem and vk is as before in Lemma 5.1.
D

In Section 13 a slight generalization of Lemma 5.1 will be needed.

DEFINITION 5.1. - Given V C a and t, s E a we define a double
section through t and s at k > 1 by V ( t, k, s ) = {_~ E V : = tl , ...,
SPk = tk and = s 1, = s2 , ... { .
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LEMMA 5.3. - Let V C a be such that VOO(V) > 0. Then for voo-a.e.
t E V and for every 0  y, b  1 there exists ko E N such that for all
k > ko there is a set Wk C V with the properties

where pk : A - B is the projection on the kth coordinate.

Proof - (An application of Lemma 5.1 and Fubini’s theorem.)
Defining Vn = {t E V: k)) > 1 - 8 . (1 - y), n} we

have Vn C Vn+i 1 and Lemma 5.1 says V = VOO mod 0. We set

ko E N such that for every k > ko. Definition 5.1 and
Fubini’s theorem imply

for every t E Vko and k > ko. We define now for each t E Vko and k > ko
the set

and by the last inequality we see that 1 - y. Then defining
for k > ko

we get

We finally note that VOO -a.e. t E V is in every Vk for sufficiently
big k. D
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The following notions will be extremely useful. They are mere

adaptations of the usual notions of 03C9-limit to the context of random
parametric perturbations.

DEFINITION 5.2. - We take z to be some point in M, U some subset
of M, t some vector in 4 and define

such that (z) ~ w when j ~ oo }
(the usual definition of co-limit for the orbit O(z, t));

such that --~ w when j -~ oo ~
(the 03C9-limit of a set under a perturbation vector t);

such that fe~~~ (z) ~ w when j --~ oo ~
(the w-limit of a point under every perturbation);

such that (u j ) -~ w when j ~ oo ~
(the same as before with respect to a set).

LEMMA 5.4. - Let us suppose U to be a subset of M whose orbits,
under a positive v~-measure set V C a of perturbations, go through a
finite family ofpairwise separated open sets Ao, ..., Al- 1 in a cyclic way,
that is

fkV(U) ~ Ak mod l, ~k  1 (8)

(example: the set Uo of an invariant domain D E D with respect to
uo, ..., ur_ 1 ).

Then the set c~ (U, o ) of accumulation points of the orbit of U under
a V -generic perturbation 8 E V is such that 03C9(U,03B8) C Ao U ... U Al-1
and if .z E c~ (U, 8 ) n Ai with 0  i  l - 1 and 1/r~ E a, then E

A (i +k) mod l for all k > 1.

LEMMA 5.5. - If in the last lemma we had V = a then the set

a ), besides having orbits that go in a cyclic way through the
Ai , i = 0, ..., I - I, under any perturbation, would also be invariant
under every perturbation: f(z) E w(U, a) for all k > 1, for all z E

a) and for all 03C8 E a.
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These lemmas essentially state that whenever we look at limits of

generic perturbations we find a point whose perturbed orbit does not
depend on the perturbation chosen, in the sense that it is carried cyclically
through some specified family of sets. This property is the key idea
behind the construction of s-invariant domains in Lemma 5.6

Let us now fix and assume z E Ai for some i E {o, ... , l - 1 } .
We want to show that f (z, _~ ) E A ~i +k~ mod l ~

Once k is fixed, Property 2.1 implies that, for given 8 > 0, there are
y, v > 0 such that

By Lemma 5.2 and the convergence of W = B(_~, y/2)
we may choose a sufficiently big j e N such that 
v/2 and a sufficiently small ~ > 0 such that, with positive probability,
there can be found p.- E V with

Hence, by the choice of y and v we will have that:

But we can take v > 0 so small that besides ( 10) and we get

With this we have z~ E Ai and also E mod l by the
hypothesis (8), with 8 > 0 arbitrary, and the lemma follows immedi-
ately. D

Proof of Lemma 5. 5. - Let us take z E w (U, d ) and suppose .z E Ai for



328 V. ARAUJO / Ann. Inst. Henri Poincare 17 (2000) 307-369

Then there are C d, {u~ }~°_{ C U and {n~ }~°_1 C N with
n  n2  ... in such a way that z~ = (u3, -~ .z when j -~ oo.

For 8 > 0 let us take v > 0 as in (9), and v so small that (11) holds.
Moreover, let j0 ~ N be such that j  j0 ~ dM(fnj (uj, 03B8(j)), z)  v.

We now have

We state the following lemma (which should be a corollary of the
previous two) with a slight abuse of language: we say an invariant domain
D = (Uo, ..., Zlr _ 1 ) contains (is contained by) a set C if Uo U... U ur- 1 ~
C (respectively, C D Uo U ... U 

LEMMA 5.6. - If C is a c-invariant set contained in some domain
D = (?~1~, ... , invariant with respect to a system under

parametric noise satisfying hypothesis A) of Theorem l, then it contains
some s-invariant domain.

Proof - Let C and D be as stated and let us consider X = c~ (C, d)
(cf. Definition 5.2). 

_ _ _

By Lemma 5.5 we know that X c C c Uo U ... U is a c-invariant

set whose points are carried cyclically through the U i, i = 0, 1,..., r 2014 1.
By hypothesis A) of Theorem 1 it holds that int(X) ~ 0. Thus the

collection D = (Uo n int(X),..., Ur-i n int(X)) is a member of D, an
s-invariant domain.

Indeed, since the ft are diffeomorphisms for all t E B, the interior of
X must be sent into the interior of X. But, by Lemma 5.5, the orbits of
points of X must respect the cyclic order of the Ui, i = 0,..., r - 1.
We conclude that X contains an s-invariant domain in its interior

(the open sets forming D are pairwise separated by construction). Since
X C C, we have the same for C. D
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DEFINITION 5.3. - Let D = ..., blr _ 1 ) be an s-invariant domain
( D E D) and .z E M. We define G(z) = G D (z ) = f t E d : 3n E N such
that ft(z) E D ~ and H (z) = HD (z) = a B G (z), the perturbation vectors
that will send z into D and those that never do so, respectively.

LEMMA 5.7. - Let us suppose that z E M is such that v°° (HD (z)) > 0
for some D E D and t is a H -generic vector ( H = H (z) = HD (z)).

Then H (w) = HD (w) = 0394 for every w E t ).

This lemma assures that those points whose perturbed orbits never
fall in some invariant domain D for many (VOO -positive measure)
perturbations have 03C9-limit points (under generic perturbations) which are
never sent into the same domain D by every perturbation. This is another
"independence of perturbation" property for the orbits of 03C9-limit points.

Proof - Let us fix a H-generic perturbation vector t and w E c~ (.z, t ) .
By contradiction, let us suppose there are s E d and n E N such that

f n ( w ) ED. Then there must be a neighborhood Uw of w in M and a
neighborhood VS of s in a such that f n ( Uw x V_S ) c D by the continuity
of fn: M x d -~ M (by Property 2.1 ) .

But w E w(z, t ) and t is H-generic, thus there are k ~ N and 9 E H
very close to t, with positive probability, such that f k (z, t ) E Uw and
03C3k03B8 E VS by Lemma 5 . 2, since vOO(H) > 0. Therefore fk+n(z, o ) E D
contradicting o E H . v

LEMMA 5.8. - Let z be a point of M and V a subset of a, with
v°’° (V ) > 0, such that for vOO-a.e. vector t E V and every w E t )
there is s E a ( s = s ( t, w)) such that the orbit C~(w, s ) eventually falls
in some minimal invariant domain:

Then we will have a «-minimal domain M, a set W c V, with
VOO(W) > 0, and a such that E M for every e in W.

Let us observe that the hypothesis does not prevent the point from
being sent into different invariant domains by different perturbations, but
the lemma ensures there will be a positive measure set of perturbation
vectors sending the point into the same invariant domain ! In other words,
the system under parametric noise cannot be unstable to the extent
of sending a given point into completely different places by nearby
perturbations.
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Proof - As in the proof of Lemma 5.2 let us fix 8 > 0 and a compact C
contained in V such that v°° ( V B C)  ~ and is continuous
for every j > 1. We may assume VOO (C) > 0.
Now we take t E C such that t is both V-generic and a v~-density

point of C.
Let w be a point in w (z , t ) and {n ~ { ~°_ 1 c N a sequence n  n 2  ...

such that - w when j - oo. We will fix, from the hypothesis,
a minimal domain M , an integer k e N and a perturbation vector 8 E d
such 

Since M is open and fk: M x A - M is continuous (see Prop-
erty 2.1 ), there are neighborhoods Uw of w in M and Ue of 0 in Zl such-

By the choice of w and t there is mEN with the property

Because is continuous, there is p > 0 such that

and fnm(z, B ( t , p ) ) c Uw by the continuity of f nm : M x ~1 --~ M.
Then we have n U8 ) > fJ/2 > 0 for every s E

B ( t, p) n C because

It follows that

is a subset of V such that
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because t is a v~-density point of C. Moreover

6. FINITE NUMBER OF MINIMAL INVARIANT DOMAINS

Two basic properties of the members of D are the following direct
consequences of hypothesis A) of Theorem 1 and Definitions 3.2 and 3.3.

PROPERTY 6.1. - Any s-invariant domain D = ..., is such

that every open set contains some ball of radius ~o > 0, i = 0, ... ,
r - 1. Consequently, each open set has a volume (m measure) greater
than some constant lo > 0.

PROPERTY 6.2. - The period of any invariant domain D E D is

bounded from above by a constant Tp E N dependent on lo (Tp  1 / lo).

6.1. Minimals exist

We start by showing that Zorn’s lemma can be applied to the partially
ordered set (D, ~) of completely and symmetrically invariant domains
of M. Having established this, we conclude that there are minimal
invariant domains in M.

Let C be a ~ -chain in (D, ~ ) , that is, if D, D’ E C then either D ~ D’
or D’ -~ D. By Property 6.2, the domains of C have a finite number of
distinct periods. So if p : C -~ N is the map that associates to each D E C
its period p (D) then p (C) = {rl , ... , rl } and C = We
need to find a lower bound for C in (D, ~). We can suppose that C does
not have a minimum, otherwise we would have nothing to prove. Now
we establish

CLAIM 6.1. - There is a jo E f 1, ... , l } such that the subchain S =
does not have a lower bound in C. Moreover S precedes every

element ofC:for all D E C there is a D’ E S such that D’ ~ D.
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Fig. 3. Da’ with Da , Da’ in a subchain of period three after suitable
arrangement of indexes.

Indeed, if every subchain of constant period S j = p-1 {r~ } had a lower
bound D~ E C 1, ... , l , then the minimum of the subchain

{ D 1, ... , C (which always exists because S’ is finite) would
be a minimum for C, in contradiction to the supposition we started with.
So there is some S = without a lower bound in C.
Now for the second part of the claim. Let us suppose, by contradiction,

that there is a D E C such that DiD for every D E S. But we are within
a chain, thus D - D for all D E S, that is, D would be a lower bound
for S in C, and this contradiction proves the claim.
Now we just need to show that S has some lower bound in (D, ~) in

order to get a lower bound for C.
To do that, let us first observe that S is made by nested invariant

domains of equal period, all symmetrically invariant. Thus we can

always write D E S as D = (Uo, ..., and, for any other D’ =

(?~lo, ..., ~lr_ 1 ), we can never have two different Lli , ~1~ intersect the same
uk, i, j, k E (0, ... , r - 1 (see Fig. 3 for a representation of S
with period three).

Hence we can rearrange the lower indexes of the open sets that form the

domains of S in order to obtain S = with Da = (~loa? , ..., 
for a E A, A some set of indexes, and satisfying the following property

for all c~, a’ e A.
We can now consider the intersections ~li = = 0,...,

Y _- 1, and observe that, because each Da is s-invariant, the family
( Uo, ... , satisfies
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and since fixing ao E A we have Ui C for i = 0, ... , r - 1, the

Zlo, ... , are pairwise separated, because ..., already
were pairwise separated.

Finally, hypothesis A) of Theorem 1 and (12) ensure that every Ui has
nonempty interior (i = 0, ... , r - 1). Since the ft are diffeomorphisms
for t E B, hence open maps, we deduce that D = (int( Uo), ... , int( 
is an s-invariant domain of D which clearly is a lower bound for the
subchain S. Consequently we got a lower bound for the chain C we
started with and proved that Zorn’s lemma can be applied to (D, ~).

Moreover, it is easy to see that each member of D contains a minimal
domain.

In fact, let us now fix Do E D and consider the partially ordered set
(DD° , ~ ), where DD° = {D E D: D ~ Do}. Since it can be shown that
each chain of (DD° , ~ ) has a lower bound in DDo, in the same way we
did before, there must be some minimal domain in (DD° , ~ ) which, by
the definition of DDo, is also a minimal domain of (D, ~ ) .
We conclude that each domain in D contains a minimal domain of

(D, ~).

6.2. Minimals are pairwise disjoint

Let us now observe that, because each open set of the collection that
forms an invariant domain has a volume (Riemannian measure m on M)
of at least lo > 0 by Property 6.1, to prove there is a finite number of
« -minimals we need only show they are pairwise disjoint.

Let D = (Llo , ... , and D’ = (~lo , ... , Ll; , _ 1 ) be two minimals of
(D, ~) whose open sets have some intersection, Ui n Ll~ ~ ~ say, for
some i E (0, ... , r - 1 ~ and j E (0, ... , r’ - 1 } . 

Because both D and D’ are s-invariant, we have for all k > 1

and thus fo (Ui n Uj) mod r n mod r~ ~ Therefore if we define

we will get D E D (here [r, r’] is the least common multiple of r and r’).
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The invariance property is clear. Let us check that the open sets

forming D are pairwise separated. Indeed, if we had

However by Definitions 3.2 and 3.3 we conclude that ki = k2 (mod r)
and ki = k2 (mod r’ ) with 0 ~ ki  k2  [r, r’ ] - 1, contradicting the
Chinese Remainder Theorem.

We have now D ~ D and D ~ D’, so the minimality of both D and D’
implies D = D = D’. We have shown that if two «-minimals intersect
then they are equal. Consequently, we have that they are pairwise disjoint
and, as mentioned above, we conclude there is a finite number of

minimals in (D, ~).

6.3. Minimals are transitive

The following is an expression of the dynamical indivisibility of
minimal invariant domains.

LEMMA 6.1. - Every minimal invariant domain M = (Uo, ..., 
is transitive in the following sense. For every z E M (meaning z E
Uo U ~ ~ ~ the sequence is dense in M.

We will say that minimal invariant domains are randomly transitive or
r-transitive when referring to this kind of transitiveness.

Proof - In fact, let M = (Uo, ..., E D be a minimal and let us

take some point with i E {0,.... r - 1 } and X = zB) (cf.
Definition 5.2). 

_ _

By Lemma 5.5, we have X c M = Uo U ... U X is c-invariant

and goes cyclically through the ?~l o, ... , ~l r _ 1, under every perturbation
vector of L1. Besides, by Lemma 5.6 there is D E D such that D C X. So
D ~ .~t , in contradiction with the ~-minimality of M .
Hence it must be that M = D and then { fo(.z)}°°_1 is dense in

Uo U ... U as stated. D

Given a minimal M = (Uo, ..., since it is s-invariant, it will

also be invariant with respect to ft for every t E T, because the vector
(t, t, t,...) is in L1.
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However, we cannot state any kind of indivisibility for this domain
with respect to ft because the domain was originally a minimal domain,
but with noise. The perturbations around the system fa may have
mixed, in a single collection of open sets, several attractors indivisible
with respect to ft, but that under random choices of parameters were
indistinguishable. We cannot proceed further in this because we made no
hypothesis about the dynamics of the fi without noise.

7. STATIONARY PROBABILITY MEASURES

7.1. Existence and absolute continuity

Let z be a point of M. The formalization of the dynamics under noise
by means of the operator S enables us to naturally associate a probability
measure to the orbits of the system: the push-forward of v°° from 24 to M
via the map f k given by fk(z, 1. We have defined this as the

probability which integrates continuous functions as

These probabilities are not stationary in general, but if we consider
their averages

we obtain a sequence of probability measures in M which, by compact-
ness of the space P(M) of probabilities measures over M with the weak
topology, has some limit point ~ = This
means the integral of a continuous with respect to po is given
by

This accumulation point is a stationary probability. In fact,
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and

for i  1. Since supw~M |03C6(w)| = is finite, the second term of the last
expression converges to zero when i -~ oo, while the first term gives the
integral of 03C6 with respect to that is

where we have used the dominated convergence theorem to exchange the
limit and the integral signs. In addition, because is dense in

L 1 (M, with the L 1- norm, we see the last identity holds for every
~-integrable cp : M ~ R.
Moreover, if E is any Borel subset of M we can write
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for k = 1, 2, 3 .... Hypothesis B) of Theorem 1 guarantees that

fk (x, « m for k > K. Thus (E) = 0 whenever m ( E ) = 0. We

have just proved

LEMMA 7.1. - Given z E M, any accumulation point of the aver-
ages ( 13) is a stationary absolutely continuous probability measure over
M.

Let us remark that depends on z E M and the accumula-
tion point of the averages (13) may not be unique.

7.2. Ergodicity and characteristic probabilities

Let us suppose zED for some D G D. Then it is clear that supp C

D, whatever accumulation point of the averages (13) we choose.
Moreover, by Remark 3.1 we have that D = (Uo , ..., satisfies (5)
also. Thus if w E supp we get by hypothesis A) that f k (w, 
B ( f o ( w ) , ~o ) for all k > K, and by the invariance of the support we
conclude supp p n D ~ ~ because int(9D) = int(~U0 U ... U = 0.
In addition, if z belonged to a minimal G D, then the invariance of the

support, the fact that supp JL n D ~ 0 and the r-transitiveness of A4 (given
by Lemma 6.1 ) together imply supp ~c = A4 .

LEMMA 7.2. - If M G D is a minimal invariant domain and a

stationary absolutely continuous probability measure with supp = .Jlil,
then

for every bounded measurable function cp : M ~ R.

Proof - What we want to prove is equivalent to the following for every
Borel set E :
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Let E be a Borel set that satisfies the left hand side of (14) and let us
suppose that > 0. Since Ec « m we have m(E) > 0 and thus there
is a closed F c E such that m(E B F) = 0 = JL(E B F). Moreover the
following holds 

In fact, let N be the set of those points x which do satisfy the left hand
side identity of ( 14). Then p (N) = 1 and also p x x L1 ) = 1. Since
~,c is stationary we have JL x (N x zl)) = 1, that is (cf. Section 2.2)
f = 1 ~ = 1 for v°°-a.e. sET. Moreover
the set

is equal to ( fs)-1 (N) for all sET. Therefore = 1 for v-a.e. sET.

This means 1E(ft(fs(x))) dv(t), for sET and ,u.-
a.e. x.

In particular we get (15) when integrating both sides with respect to s.
Likewise we can have (15) with any number of compositions, that is

and we can write

by hypothesis B) of Theorem 1. From the last two identities we arrive at

This identity implies that for F we have fk (x, t) E F
for t E L1 and k > K. However, since t E A f-~- fk (x, t ) E M
is continuous for every fixed ~ ~ 1 and f k (x, t ) E F for a dense set of
vectors t in ~l (because implies density in ZB), we deduce that
f k(x, t ) E F for all t G A (because F is closed) and k > K. Then, if we
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define U[ = Ui n ~1 ) ) , i = 0,..., r - 1, we see that
the UJ c F are open, nonempty (by hypothesis A) and because supp ~c =

and = = Uo U ... U and so D = (Z1o , ... , ?~lr _ 1 ) is
an s-invariant domain.

In fact, fixing y E u’ for some 0 ~ i  r - 1, ~ E zl and n > 1, there
are k > K and 8 > 0 such that B ( y , 8 ) C fk(x, L1) and f n ( B ( y , ~ ) ) C
fk+n(x, L1) ~Ui+n mod r by definition Hence E int(fk+n(x,
4 ) ) n Ui +n mod r after Property 2.1 (3). 

-

We have built an s-invariant domain D E D such that D ~ .J1 ~( . The
minimality of A4 gives D = M and hence F ;2 A4, that is, =

~(~’) > ~(.M) =1. D

Lemma 7.2 implies that is ergodic, that is, x VOO is S-ergodic.
(For ease of writing we make JL = in the following discussion.)

Indeed, let us assume that M x zB 2014~ R is an S-invariant bounded
measurable t )) t ), JL x v°-a.e. (z, t ) E M x L1.

For each k > 0 we define

and we have, by the invariance of lfr ,

Therefore, by Lemma 7.2, we conclude that 03C80 is constant. In

general, for k > 1,

We then have x v-a.e.; JL x v2-a.e.; ... and so,
by induction
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However if we identify with then ~
coincides with x v°-a.e. and we have seen in Lemma 5.1
that x v°-a.e., when k -~ oo. Hence we have also
~ = constant, p x and conclude that p x VOO is S-ergodic.

Ergodicity, Birkhoff’s theorem and the absolute continuity imply
that p = is physical. Indeed, supp JL = = be-
cause = 1 by B irkhoff’s ergodic theorem. So, if E = 
then 1 E (x) for x because E is invariant.
Hence, recalling the proof of Lemma 7.2, we get E = D A7 and

> 0 (.J~l is a collection of open sets).
We easily deduce that any two physical probability measures ~,c2

whose support is A4 must be equal. Indeed, since both and E 
contain M, the time averages of every continuous on the
orbits of some x G M must equal both  03C6 d 1 and f cp 
The above arguments prove the existence of a characteristic measure

for each minimal invariant domain.

PROPOSITION 7.3. - Given a minimal E D there is only one
physical absolutely continuous probability measure whose support is
contained in M. Moreover, every x E M is in the ergodic basin of this
characteristic measure.

8. DECOMPOSITION OF STATIONARY PROBABILITIES

Let JL be a stationary probability. Then supp p is a c-invariant set. By
hypothesis A) of Theorem 1 we deduce that int(supp p) ~ ~.

Let Ci, C2, ... be the connected components of int(supp it is an at
most countable family of connected sets and int(supp ~) = Ui ~ 1 Ci.

Since It is a diffeomorphism for every t G T, thus a continuous open
map, we deduce that each is a connected open set contained in

supp , by the c-invariance. Hence there is some j = j (i , t ) such that
it (Ci) C C j by openness and connectedness.

In particular, by the same reasoning, we see that every point in Ci is
sent by ft in the interior of supp p for all t E T and i > 1.
We show that j = j ( i , t ) does not depend on t G T.
By contradiction, let us suppose there are i > 1, to and tl in B

such that jo = j (i, to) ~ j (i, tl ) = jl and let us fix x E Ci. We take a
continuous curve y : [0, 1] -~ T with endpoints to and tl in B : y (0) = to
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and y ( 1 ) = tl . We know that

but since f (x , y(0)) = f (x , to) E Cio and f (x , y ( I)) = f (x , E C~ 1
with Cio’ distinct connected components of int(supp we conclude

there is S E ]0, 1 [ such that

a contradiction. So every Ci is sent into some by any ft and the
permutation i H j (i ) does not depend on t E T.
We remark, in particular, that if for x G Ci we have fk (x, t) E C~ for

some j , k > 1 and t E L1, then fk(x, ~1) C Ci.
Since ~c x x ZB) > 0 (i > 1) Poincare’s recurrence theorem guar-

antees that x pair (x, t ) E Ci x d is w-recurrent with regard
to the action of S. By last remark, we see that fk(Ci, Zl) returns to Ci in-
finitely often, for every fixed i . Hence, again by hypothesis (A), each Ci
contains a ~o-ball. Thus, because M is compact, the pairwise disjoint fam-
ily Ci, C2, ... must be finite and so int (supp ~c) = UCl (a disjoint
union).
The open sets Ci,..., Cz may not be pairwise separated. However,

the following reflexive and symmetric relation Ci n C i =I
0, _( 1  i , j_  I) generates a unique equivalence relation such that,
if Ci,..., Cq are the ^_--equivalence classes, then Wi = U Ci,..., Wq =

U Cq are pairwise separated open sets. Moreover, these sets are inter-
changed by any ft (t E T ) in the same way the C1, ... , Cz were, that is,
the permutation of their indexes by the action of ft does not depend on t.
The permutation of the indexes of the Wi , ... , Wq has a finite number

of cycles which are a finite collection of pairwise separated open sets
satisfying Definition 3.3. We have proved

PROPOSITION 8.1. - Every stationary measure  is such that the
interior of its support is made of a finite number of s-invariant domains.

Remark 8. l. - If were ergodic, then
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for p x (x, t ) E M x zl and 1 q. So almost every point
of Wi U ... U Wq returns to Wi infinitely many times. In this case the
interior of supp ~c is made of a single s-invariant domain.

Let now ./~L 1, ... , ./1~f h be all the minimal domains inside the s-

invariant domains given by Proposition 8.1 (recall Section 6.1). Provi-
sionally we assume the following

LEMMA 8.2. - The normalized restriction of a stationary measure to
a c-invariant set is a stationary probability.

Let the normalized restrictions be ~~~1 ~ ~ n 

i = 1, ... , h, where A is any Borel set and 0 (because i

is a collection of open sets inside int (supp ~c) ). By Proposition 7.3, ~c~~
must be the characteristic probability of A4i , i = 1, ... , h .

Remark 8.2. - This means the characteristic probability of each 
must give zero mass to the border since it coincides with its

normalized restriction to the interior of 

To see that these probabilities are enough to define we consider
h ... If À =1= 0, then À is a

stationary measure (of course, being stationary is an additive property)
whose support is nonempty. By Proposition 8.1 and by Section 6.1 we
have some minimal domain in supp A with ~, (.J1 i( ) > 0. But supp ~. C
supp JL B (MI 1 U ~ ~ ~ U A4h ) and the .J1 it 1, ... , Mh are the only minimals
in supp We have reached a contradiction, so À - 0 and we have proved
(apart Lemma 8.2)

PROPOSITION 8.3. - Every stationary probability is a linear finite
and convex combination of characteristic probabilities.

Let us note that these arguments show that supp ~c = supp 1 U ~ ~ ~ U
supp and consequently + ... + = 1, that is, the
linear combination above is indeed convex.

To end this section we prove the remaining lemma.

Proof of Lemma 8.2. - Let ~c be a stationary measure and C a c-
invariant set.

We remark that we know every point of C stays in C, but we do not
know whether points in the complement supp C enter in C by the
action of ft .

First, we show D = supp  B C to be almost completely invariant.
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In fact, we may assume > 0 (otherwise C = supp , -mod 0)
and write

because p is S-invariant. By the invariance of C, x E C » f (x, t) E
C ~ 1D(f(x, t)) = 0 for every t E T and so

where for every t E T. Thus = JL(D) for
v-a.e. t, that is, f (x, t) E D for x v-a.e. (x, t) E D x T. In other words,
points outside C almost never enter in C.
Now we know that lc(x) = lc(f(x, t)) for p x v -a. e . pair (x , t ) .

Hence,

for any cp E II~), that is, the restriction of to C is stationary. o

9. TIME AVERAGES AND MINIMAL DOMAINS

What remains to be done is essentially to fit together previous results.
Indeed, Sections 6 and 7 prove items 1 and 2 in the statement of
Theorem 1. To achieve the decomposition of item 3 we are going to
show that every point z E M is sent into some minimal domain by v°°-
a.e. perturbation of zl and the voo-mod 0 partition of zl obtained by this
property satisfies 3(a), 3(b) and 3(c), since we already know that m-a.e.
point inside a minimal belongs to the respective ergodic basin.

Let z E M and let JL be a stationary probability given by some
accumulation point of the averages (13). By Proposition 8.3 we know p
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decomposes in the following way

where 0  aI, ... , ah  1, a 1 + ... + ah = 1 and i,c 1, ... , are the

characteristic probabilities of the minimals ./~t 1, ... , Mh, respectively.
Decomposition (17) and the construction of  ensure there is, for every

i = 1,...,h, a set Vi with > 0 such that there is k ~ N

satisfying E for every s E Vi . 
_

Indeed, ~c (J1 ~l i ) > 0 implies there exist open sets U C U C V C 
such that > 0 and so cp E C(M, R) with 0  cp 1, supp03C6 ~ V
and = 1 satisfies = t )) > 0.

Then we have, for some j G N: 
’

Now we claim the sets Vi occupy the entire space L1 or equivalently
(cf. Definition 5.3)

PROPOSITION 9.1. - For every Z E M we have (z) U ~ - ~ U
= a, v°°-mod 0 and n - ~ for every pair

1 where M 1, ..., Ml are all the minimal invariant domain

of D.

Proof - By contradiction, let us suppose there is V C L1 with 
0 such that n (z)) = 0, i - 1,... I (or V C (z),
v°-mod 0).

Let t be a V-generic vector and let w E w (z , t ) . By Lemma 5.7
we have (w) = o, v~-mod 0, that is, the orbit of w under
almost every perturbation never falls in A4 U ~ ~ ~ U .Jlill. Consequently
any stationary probability obtained from the orbits of w as in Section 7.1
will admit a (nontrivial) decomposition (according to Proposition 8.3)

i +... + 13ft . jih such that 0 ~ ,~ 1, ... , 1 ~81-E- ... + 13h = 1

and each is the characteristic probability of = 1,..., h, where

each of the J1~( 1, ... , A4h is distinct from M1,..., 
This contradict the supposition that the are all the

minimal invariant domains of D and so such a set V cannot exist. D

We now easily derive the continuous dependence of the sets Vi (x ) from
x E M with respect to the distance between v°-mod 0 sets A, B C o

given by dv (A , B) = B).
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We fix x E M and note that each Vi (x) can be written as

are open and for all k > 1 by the complete invariance
of Mi, i = 1, ... , l. This implies that for some 8 > 0 we can find ko E N
such that Vi, ko (x ) )  ~ for all 1 ~ I.

On the one hand, by the finiteness of ko, Property 2.1 and the openness
of the domains that form At, we get the existence of y > 0 with the

property Vi,ko(X) for all y E B (x , y ) . Hence 
whenever dl,,l (y, x)  y

and for every i = 1, ... , l .
On the other hand

for all 1 I and continuity follows.
We are left to show item 3(c) of Theorem 1 holds with respect to this

decomposition.
Let us fix 1 I such that > 0.

We note that (18), the openness of the and the continuity
Property 2.1(1) imply the Vi (z) to be open subsets of zl, that is, for every
t E Vi(z) there are kEN and p > 0 such that fk(z, B ( t, p)) c Mi i and
so B( t, p). According to Section 7.2 we have

This means that every s in B ( t, p) C VZ = Vi (z) is such that w =

(.z, s ) C E that is,
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Since time averages do not depend on any finite number of iterates,
item 3(c) of Theorem 1 follows and the proof of Theorem 1 is complete.

Remark 9.1. - We note that diffeomorphism in the arguments and
definitions of Sections 2 through 9 may be replaced throughout by
continuous open map. This means Theorem 1 is a result of continuous

Ergodic Theory and not specific of differentiable Ergodic Theory : a C°-
continuous family of continuous open maps ft : M ~ M, t G B, would
suffice.

Remark 9.2. - The conclusions of Theorem 1 can be obtained with

weaker hypothesis instead of the stated A) and B).
Indeed, it is very easy to see that the integer N may depend on x in the

statement of A). Thus it can be replaced by
A’) There is ~o > 0 such that for all x E M there exists N = N(x) E N

satisfying fk (x, B (fk (x), ~o) for all k > N.
Moreover, B) can be weakened so that the absolute continuity of a
stationary probability still holds by allowing fk (x, « m for some

A; ~ 1. If this k does not depend on x E M, then we can still write ( 16)
and proceed to prove Lemma 7.2.

Other weakenings of B) are possible, one such will be of use

following Section 11 dealing with random parametric perturbations near
homoclinic bifurcations.

10. BOWEN’S EXAMPLE

This is the answer to a question raised by C. Bonatti. This example
captures the meaning of Theorem 1: even if a given deterministic
(noiseless) system is devoid of physical measures (its Birkhoff averages
do not exist almost everywhere) we may nevertheless get a finite number
of physical probabilities describing the asymptotics of almost every orbit
just by adding a small amount of random noise.

Example 5. - Bowen’s example (see [28] for the not very clear reason
for the name) is a folklore example showing that Birkhoff averages need
not exist almost everywhere. Indeed, in the system pictured in Fig. 4
Birkhoff averages for the flow do not exist almost everywhere, they only
exist for the sources s3 , s4 and for the set of separatrixes and saddle
equilibria W = Wi U W2 U W3 U W4 U s2 } .
The orbit under this flow 4Jt of every point z E 5~ 1 x [-1, 1 ] = M not

in W accumulates on either side of the separatrixes, as suggested in the
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figure, if we impose the condition ~.1 ~.2 > ~ i ~2 on the eigenvalues of
the saddle fixed points si and s2 (for more specifics on this see [28] and
references therein).
We apply Theorem 1 to this case. We remark that M is not a

boundaryless manifold, but its border Sl x {~ 1 { is sent by ~i into

5~ 1 x [-1, 1 ] . Moreover, Theorem 1 refers not to perturbations of flows,
so we will consider the time one map ~i as our diffeomorphism
f : M -~ M and, since M is parallelizable, we can make an absolutely
continuous random perturbation, as in Example 1 of Section 2.4. In this
circumstances the proof of Theorem 1 equally applies.

For everything to be properly defined, though, we must restrict the
noise level E > 0 to a small interval ]0, such that the perturbed orbits
stay in S x ] -1, 1 [. After this minor technicalities we proceed to prove

PROPOSITION 10.1.- The system above, under random absolutely
continuous noise of level ~ E ]0, Eo [, admits a single physical absolutely
continuous probability measure whose support is a neighborhood of
the separatrixes: int(supp ~ W. Moreover the ergodic basin of ~,c is

the entire manifold: E = M, ~,c mod 0.

Proof - Let c E ]0, so[ be the fixed noise level from now on and let U
be the ball of radius ~/4 around sl. We will build fundamental domains
for the action of f = ~i over M B W in U, as explained below.
We choose two strait lines II, 12 through si crossing U and let l2 be

their images under ~i as sketched in Fig. 5. Now we choose two points in
each line li , 12 on either side of s 1: p1, p2 , p3 and p4, and consider their
orbits under the flow (~ for positive time, until they return to U and cut

l2, as depicted in the abovementioned figure.
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The four intersections of the orbit of pi with the proper I j , together
with portions of the orbit and of I j define a "square" Fi (shadowed in
Fig. 5) which is a fundamental domain for the dynamics of f = (~i on the
connected components of M B W, i = 1, 2, 3,4 and j = 1 or 2.

This means that every z E M B W is such that there is a k > 1 with
zk = fk(z) E F = Fi U F2 U F3 U F4. Moreover, by the choice of U, zk
may be sent into any Fi, i = 1, 2, 3, 4, by adding to a vector of length
smaller than £. Thus we deduce that fk(z, Fi U F2 U F3 U F4 and
even more: fk (z, U.

Keeping in mind that for m > 1 we have fk+m(z, Q ) = 
d ) = {fm(w, o ) : w G 4 ) } , we see that fk+m(z, 4 ) will contain all
the f -images of each Fi, F2, F3 and F4, which will return to U infinitely
many times. Furthermore, at each return the points may again be sent into
any F2, F3 or F4 by an £-perturbation. Hence the sets of the sequence
{fn(z, contain F1, F2, F3 or F4 for infinitely many n’s and also
all their f -images.
We conclude that c~(z, zl) contains a neighborhood of W.
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The same holds for w E W, since f 1 ( w , L1) is an open set and so

contains some z E M B W. That is, every z E M is such that w(z, a)
contains a neighborhood of W.

Therefore, there can be only one minimal A4 in the perturbed system,
such that D W and into which every point z E M finally falls by
almost every perturbed orbit (this is a consequence of Sections 6.2, 7,
8 and 9). We have further that the characteristic probability is the

physical probability ~c of the system, with = M, ~c mod 0, and

supp p D W, as stated. D

11. HOMO CLINIC BIFURCATIONS AND RANDOM
PARAMETRIC PERTURBATIONS

’ 

We consider arcs (one-parameter families) of diffeomorphisms exhibit-
ing a quadratic homoclinic tangency and derive similar properties for
their random parametric perturbations to those stated in Theorem 1.

11.1. One-parameter families

The arcs we will be considering are given by a C°° function

such that for every -1  t  l, ft : M2 -~ M2, x H f(x, t) is
a diffeomorphism of the boundary less surface M2. The family of

diffeomorphisms 0 = ( ft ) _ 1 t  satisfies the following conditions.
1. F has a first tangency at t = 0, that is (v. [22, Appendix 5])

(a) for t  0, ft is persistently hyperbolic;
(b) for t = 0 the nonwandering set Q(fo) consists of a closed hy-

perbolic set = limt /,0 Q (it) together with a homoclinic
orbit of tangency 0 associated with a hyperbolic fixed saddle
point po, so that Q(fo) = Q(fo) U (9;

(c) the branches W+ (po), of the invariant manifolds
have a quadratic tangency along 0 unfolding

generically as pictured in Fig. 6 (v. [22, Chapter 3]): 0 is the
only orbit of tangency between stable and unstable separatrixes
of periodic orbits of fo ;

2. The saddle po has eigenvalues 0  ho  1  ~o satisfying the
conditions for the existence of C2 linearizing coordinates in a

neighborhood of (po, 0) in M2x] -1, 1 [ (v. [27]).
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Condition 1 imposes bounds on the region where new accumulation
points can appear for t > 0 (small) Section 11.3 will specify this

(cf. [22, Appendix 5]).
We note that condition 2 above is generic in the space of all C°° one-

parameter families satisfying 1. Moreover, those families that satisfy 1

are open (cf. [22, Chapter 3, Appendix 5] and references therein).

11.2. Statement of the results

For some small t* > 0, to be explained in the following sections, we
fix to E ]0, t*[, ~o = min{ ( t* - to ( ~ and the noise level ~ E ]0, 
We consider the system fto under a random parametric perturbation of
noise level ~, as defined in Section 2.1. We let L1 = be the

perturbation space [to - + ~]~.
We will be interested in studying what happens in Q, a closed

neighborhood of q to be constructed. We need an effective definition of
interesting points.

DEFINITION 11.1 (First Return Times). - Given some z E M2 and

t E A we let

DEFINITION 11.2. - A V-recurrent point is a Z E ~ for which there
exists a V C 4 satisfying
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In other words, z E ~ is interesting if its perturbed orbits pass through
Q infinitely often under a positive measure set of perturbations.
We can now state

THEOREM 2. - For every C°° arc of diffeomorphisms as described
in Section 11.1 and any given homoclinic tangency point q associated
to the saddle po, there are a closed neighborhood Q of q and t* > 0
such that, for each > 0 satis, fying 0  to  t* and 0  c  co =

~ t* - to ~, the random parametric perturbation of fto with
noise level ~ admits a finite number of probabilities ,c,c 1, ..., l whose

support intersects Q and that
1. 1,..., l are physical absolutely continuous probability mea-

sures ;

2. supp pi n supp = ~ for all 1  i l ;
3, for all .z E ~ and V c a such that z is V -recurrent there are open

11.3. Adapting the linearization

As preparation for the proof of Theorem 2 by using Theorem 1 we

study the adaptation of the linearizing coordinates to our setting.
Condition 2 enables us to consider a change of coordinates L C

II~2 -~ M2 in a neighborhood L of every where It  t* for some small

with 0  1  o-t the eigenvalues of the hyperbolic saddle fixed
point These coordinates will be adapted much like [22, p. 49 and
Appendix 5]. Specifically, after choosing a homoclinic point q associated
to poi

I) we suppose q E WU (Po) n WS (po) to be in L-to achieve this
we may extend L along as explained in [22, Chapter 2] ;
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II) we extend L along WU (Po) in order that r = fo (q) be in L ;
III) we use the implicit function theorem and two independent

rescalings of the x- and y-axis to get, because of condition 1 (c):
( a) q = ( 1 ~ 4) ~ r = (0~ 1 ) ~ pt = (0,0) and 

are the x- and y-axis, respectively;
(b) ft (0, 1 ) is a local maximum of the y-coordinate restricted to

1

for every  t* in the coordinates defined by 
IV) writing Ao the basic set to which po belongs (possibly Ao =

trivially) by condition 1(b) we have WS(Ao) = 
and WU (Ao) = WU (Ao U 0) and there exists a filtration Q~ ~
Mi C M2 C M such that (v. [22, Appendix 5, pp. 212-214] and
cf. [26, Chapter 1 ] ) :
(a) Mi is closed and fo (Mi ) C int(Mi ) for i = 1, 2 ;
(b) Mi C int(M2), and

V) since Ao is a basic set (of saddle type) there is a small compact
neighborhood U of Ao where extensions of the stable

and unstable foliations WS (Ao), Wu (Ao) are defined (v. [22,
Appendix 1] and references therein), and by IV(c) there is

N* E N such that:

(a) C U where ~* C
L is a neighborhood of the portion of 0 outside U

with finitely many components 61, ~2, ... , Qi and Q* n
U = 0. Moreover we can assume they satisfy C

~2 , ... , C Ql with q E Q = Qi, L E ~ 1, ... , l ~ ~ §
(b) making t * > 0 smaller if need be and Q* and U a little

bigger, we get also for all ti , ... , tN, tl , ... , tN E ] -t*, t* [
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VI) for every closed neighborhood Q c Q c L of q and t* > 0 small
we have that:

(a) there is NQ E N such that ftl o ... o C L for all

ti , ... , ti E] - t *, t * [ and i = 1, ... , N Q ;
(b) in the neighborhood R = of r = (0, I)-we

may suppose R c L by making Q and t* smaller, keeping
(a) by increasing NQ-the map ft = cpt-l o it o ~pt has the
form

where a . f3 . y ; 0, Hi is of order 2 or higher and H2 is of
order 3 or higher in y and order 2 or higher in x, t and y . t ;

(c) for all It [  t* we make 1) E int(Q) by taking t*
smaller if needed and keeping Q and NQ unchanged
satisfying (a) and (re)defining R as in (b);

(d) for any given 80 > 0 and all sufficiently small Q and t*,
we may keep everything up until now increasing NQ and
imposing |D3Hi|  80, i = 1, 2;

VII) since all of the above holds for every small (compact) neigh-
borhood Q c Q of q and t* > 0, except that NQ increases, we
may suppose Q is so small that NQ > N* and then make t* so
small that item V) holds with Q in the place of Q for some inte-
ger N > N*. Furthermore writing Qt for this new neighborhood
we may suppose that At still is the maximal invariant set inside

B(U, p) = UZEU B(z, p) for It (  t* and B(U, p) n B ( Q’ , p) =
0 for some small p > 0;

VIII) we may suppose the extended foliations which are

defined in a neighborhood of po (since po E Ao), were extended
by positive and negative iterations of fo to cover all of L.

Moreover we may assume also that there are extended foliations

~-~Ct defined all over L with respect to ft for every It [  t* ;
IX) in a small neighborhood A of R given by A = B (z , ~)) B

7Z, ~ > 0 small (we may think of it as a small annulus around
R), every point is sent by fi outside of U U Q’, for every t E T,
because U and Q’ are separated according to item VII. A is open
and will be called the nonreturn annulus.

We note that Fig. 6 was made having these items already in mind.
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11.4. Another tour of another proof

To begin with, pick a V -recurrent point z E ~ and deal with its generic
w-limit points w, which are always regular by the following
PROPOSITION 11.1. - There exists J such that if z ~  is V -

recurrent for some V = 4£ (to) with v°’° (V ) > 0, then the first return
times of w E w(z, t ), for all V -generic t, do not depend on s E d and
are bounded by J :

DEFINITION 11.3. - The points w E M2 which satisfy the conclusion
of the proposition above will be called regular points (with respect to
Jflo,s).

Taking advantage of the regularity of w, the expression (21 ) for ft|R
and condition l, we will derive versions of hypothesis A) and B) of
Theorem l:

PROPOSITION 11.2. - Let w E M2 be a regular point. Writing rn =
r ( w , n ) , n > l, the following holds.

1. For every s E ] to - ~, to -~- ~ [ there is a ~o = ~o (s ) > 0 such that for
alln>2

In other words, we get conditions A) and B) of Theorem 1 for the

return times of w, which do not depend on the perturbation chosen, since
w is regular. Behind Proposition 11.2 is the geometrically intuitive idea of
mixing expanding and contracting directions near q due to the homoclinic
tangency, together with condition 1 that keeps the orbits of regular points
confined in a neighborhood of Ao U 0 (v. Section 12).

This is enough to prove Theorem 2.
Indeed, setting K = 2 ( J + 1) then R2 = for every regu-

lar point wand for k > K there are n > 2 and 1 ~ J

(by Proposition 11.1) such that k = Rn + i . After item 1 of Proposi-
tion 11.2 we have fk (w, o) _ , o), fto (B (.f’to n (w), ~o))
and since 0 ~ J there is some ~o > 0 such that fto ( w ) , ~o)) D
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~o) = B( f k(w), 0 ~o) because ft is a diffeomorphism. We
have hypothesis A).

For hypothesis B) we let w and k  K be as above. Then k = R + i
with i  0 and R = R2 = R2 (w) . We suppose i  1 for otherwise item
2 of Proposition 11.2 does the job. We take a measurable set E C M2
such that m ( E ) = 0 and observe that voo)E = vk(F) where
F = {(tl,..., tk) E Tk: 

Defining for every (tR+ 1, ... , tk ) E T i the section F (tR+ 1, ... , tk ) =
{ (s 1, ... , sR ) G T R : (s 1, ... , sR , tR+ 1, ... , tk ) G F} we have by Fubini’s
theorem

However

and each ft is a diffeomorphism, so the inverse image of a set of
measure zero is a set of measure zero. Hence 
is given by fR(w, = 0 since Voo) « m
by Proposition 11.2(2). We deduce from (22) that f R+i (w, v°’°) E =

voo)(E) = vk (F) = 0 whenever m (E) = 0, i.e., fk(w, Voo) « m
for every k > K.

It is clear that Theorem 2 holds by considering (D, ~ ) as the set of s-
invariant domains D = (Uo, ..., with respect to whose points
Uo U ... U 1 are regular points, with the same relation -~ as before,
and using Theorem 1.
We should explain how to get the decomposition of item 3 of

Theorem 2 for V-recurrent point z G Q. We use two previous ideas:
(1) Going back to Section 9, taking a generic w G w (z, t ) (i.e., t is

V-generic) provides a stationary probability p, as in Sections 7
and 8, which decomposes as in (17) and we get the sets Vi = {~ E
L1: ~k > 1 such that E as in item 3 of Theorem 1.

(2) The previous item together with Proposition 11.1 just says that a
V-recurrent point z G Q satisfies Lemma 5.8, i.e., there are W c V
with Voo(W) > 0 and mEN such that Jem(z) E M for every
~ E W, where is some minimal of (D, -~ ) . We know there is
just a finite number M 1, ... , of minimals in (D, ~ ) and define
Vi = Vi(z) = { s E V : ~k > 1 such that E 1 l.
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Repeating the arguments of Proposition 9.1 with /1 replaced by V
throughout gives item 3 of Theorem 2 and completes the proof.

12. PHYSICAL PARAMETRIC NOISE WITH A SINGLE
PARAMETER

We start the proof of Proposition 11.2 deducing the following conse-
quence of condition 1 in Section 1 l.l and items V and VI.

LEMMA 12.1. - For every small t* > 0 and Q and every Z G Q
recurrent under some vector t = (t~ ) J° 1 with (  t*, j > l, i. e., such
that w(z, t ) 0, the following holds

Proof - We let z E Q c U U Q* C M2 n Mf be a recurrent point under
t as stated, and suppose that U U Q* for some j > N*. Then
by item Vb it must hold

Since z E U U Q* C M2 we have by item Vc that fi (z, t) E M2
for every i  0. Hence only the right hand side alternative above can
hold, otherwise we would have for some N* - 1 that ftj o
... o ftl (z) E ftj o ... o (M) and so o ... o ftl (z) E M2 with
j - i - 1 > 0 because we took j > N*, a contradiction. But then we get
fr; o ... o ftl (z) E o ... o (MI ), i.e., (z, t ) E M1, and item
Vc says t ) E Ml for all k > 0 with Q c U U Q* c Ml . That is,
c~ (.z , t ) n ~ = Q~, contradicting the choice of z and t.
We have show (23) to hold for j > N*, since Q* c L. However, by

item VIa, we know for 1  j  NQ, where NQ > N* by
item VII. a

Remark 12.1. - The arguments above show that if we replace N*
by N and assume Q = Q as in item VII, then writing Q’ for this new
neighborhood of the portion of 0 outside U, we may ensure under the
same conditions of Lemma 12.1 that f i (z, t ) E U U Q’ for all j > N.
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This confinement property in turn implies
LEMMA 12.2. - For every given bo > 0, co > 0 and a > 1 there are
~ a sufficiently small compact neighborhood Q c Q* C L of q, and
~ a small enough t* > 0

such that NQ of item VIa be big enough in order that whenever
. vo E Tz0 M2 with zo E Q;
. t = (t~ )~°_ is a sequence satisfying  t*, j > 1, and
~ there is such that NQ fi k  oo is the first integer satisfying

then we have

where ~) ~ (~, the maximum norm on L C II~2, and the slope are to be
measured in the linearizing coordinates given by L ~ M2.

In other words, every vector sufficiently away from the tangent
directions of HS at Q will keep pointing away from HS when it first
arrives at R, i.e., there are no folds in between by the action of ft .

Proof - By items I through VII of Section 11.3 there is an expanding
cone field CU defined over U U Q* U L respected by all f’t with I  t*
outside of R. It may be seen as a cone field centered around the tangent
vectors to and we may assume that vectors in Cu at points of L
have slope § bo, since is given by x = cont. in the domain L of
the coordinate chart 
We let vo E TzoM2, Zo E Q, t and  oo be as in the

statement of the lemma. If slope ( vo ) > co, then by VIa it holds that

ZNQ = (zo) ELand vN = DfNQt (zo)vo E Cu Indeed by (20)
we have slope(vNQ)  CNQ . slope(vo), where C ~ 03C3003BB-10 > 1, and NQ
may be taken sufficiently big according to item VI, by shrinking Q and t*.
Likewise we may arrange to hold.

If k = NQ , then the lemma is proved. Otherwise we can write zk =
= E R where s and vk = =

Moreover, Lemma 12.1, the construction of CU and
the definition of k > 1 as the first iterate to arrive at R together imply
that the iterates vNQ , ... , vk-1, vk are all in the respective cones of Cu ,
and therefore slope(vk)  bo and ( . 0

Now for the effect of the tangency in Q, recalling that the slope and
norm are measured in the ~po coordinates.
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LEMMA 12.3. - Given ~’ > 0 there is bo > 0 such that for all

sufficiently small compact neighborhoods Q of q and small t* > 0 it holds
for every It  t* that

Proof - We take z E R, v G Tz M2 and § > 0. By the differentiability
of 03C6t with respect to t we know that f = CPo 1 o ft o 03C60 has the same

local expression (21) as ft . We may suppose CPo(z) = (z, y + 1) and
Dcpo(v) = v2 ) and derive from (21 ) that

If slope(v1, v2 ) > bo then we can write

We easily see that if bo is big enough and 80 > 0 in item VI is
small enough, then since a . y ~ 0 the last quotient approximates
1213yl/lal ( _ ~ ~2~cf’~ ’ which can be made smaller then any positive
~ > 0 by shrinking R via taking Q and t* > 0 smaller. Moreover making
the compact neighborhood Q of q and t* > 0 smaller just enables 80 to
be smaller, so we are safe.
The denominator in the last quotient has a modulus bigger than

since a ~ 0 and ( and bo 
1 

may be made very small.

Also v2 ~ = ( v2 I ~ because we may take 1. This

provides the result on the norm. D
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We let > 0 be such that It  t* and 8  t* - to ~ ~ as in the
statement of Theorems 1 and 2 and observe the following.

Remark 12.2. - Expression (21) for t|R implies there are lo, ~ > 0
such that the smooth curve cz : T = [to - ~, to + 8] -~ M2, t ’~~ f (z , t)
has slope  ~ and velocity ) lo at every point cz(t) independently of
z ~ R and t ~ T.

If we make ç = we get, by Lemma 12.3, a bo > 0 such that
this lemma holds for all sufficiently small Q and t*. Setting co = r~
and using the bo just obtained, Lemma 12.2 holds for every sufficiently
small t* and Q. We note that (23) of Lemma 12.1, on which both
Lemmas 12.2 and 12.3 rest, still holds if we shrink Q and t* and,
moreover, Lemmas 12.2 and 12.3 are independent of each other.
Hence there are a compact neighborhood Q of q and t* > 0 such that

both Lemmas 12.2 and 12.3 hold with some bo > 0 and co = r~, ~ = r~/3 >
0.

We are now ready for the

Proof of 11.2. - We let w E Q be a regular point with respect to 
according to Definition 11.3 and pick some t G L1 = 4£ (to) and n > 1.
Then wn = fRn and z = fRn-1 ( w , t ) E R. Moreover since w
is regular, its perturbed orbits C~ ( w , s ) have the same return times to Q
independently of s E o, and so cZ is a smooth curve in Q with slope
~ co = 17 and speed ~ lo.

Setting x then
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is a curve in R with slope ) bo and speed ) aolo by Lemma 12.2,
whereas, by Lemma 12.3, fu o c is a curve in Q with slope ~ ~ = r~ / 3
and speed ) fiaolo for all u E T = [to - + E].
The regularity of w = f (c (t ) , u ) to be such that

~(t, u) E (w , Q) C Q for every (t, u) E T x T. In short we have

Noting that D W is the derivative of ( w ~ . ) with respect to the Rn th
and Rn+1th coordinates at t, we have = (w, t ) ; R2 ~

M2 is a surjection for every t E d . We conclude that fw n+1 : d -~
M2, t ~~ fRn+1 (w, t ) is a submersion. This immediately gives 11.2(2) by
definition of fRn+1 (w, because the inverse image by a submersion
preserves sets of measure zero.

Making t = (s, s, s, ...) E d for some sET, since the bounds in (24)
do not depend on t, we deduce from x T) that
there is ~o = ~o (s ) > 0 such that d ) contains a ball of radius
~o around ~(s, s) = (w) as stated in 11.2(1). 0

13. REGULARITY OF LIMIT POINTS

Let z E Q be V -recurrent with Voo(V) > 0 and let t be a V-generic
vector and w G (V(z, D-

CLAIM 13.1. - If some 8 E d takes w to Q after k > 1 iterates, then
every other ~p E d must do the same.

Indeed, if k > 1 and 03B8 ~ 0394 are such that fk (w, _8 ) E Q and there is
03C6 E zl such that fk (w, 03C6) ~ Q, then we must have 03B8) ~ R and

By connectedness of and continuity of f k (v. Property 2.1)
there must be lfr E zl such that G A. Since A is open and
w E c~ (z, t ) with t V-generic, we may find for small 8 > 0 a n E N
(according to Lemma 5.2) such that for every s G V satisfying d( s, t ) 
~, w)  ~ and  ~ it holds that (z, s ) E

A, and so f n+k (z, s ) G (U U ~’)~. Moreover, these points form a set of
positive v°°-measure.

According to Remark 12.1 (the n above can be made arbitrarily
big, bigger than N in particular), those s cannot define a perturbed
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orbit C~(z, s ) with infinitely many returns to Q, which contradicts the
assumptions on z and V.
The previous arguments readily prove

CLAIM 13.2. - The orbit of w under any 03B8 E a cannot fall outside of
U U Q’.

CLAIM 13.3. - If some 03B8 G 24 keeps the orbit O(w,03B8) inside U for
all kth iterates with k > ko, then every other ~p E 4 must do likewise.

In fact, if 03B8 E L1 is such that E U for all k > ko for some
ko G N and there are ko and 03C6 G A such that f k 1 ( w , 03C6) ~ U, then by
the connectedness of Tkl , Property 2.1 and the separation between U and
Q’ given by item VII, there is _~ G A satisfying f kl (w, _~r ) E (U U 
We may now repeat the arguments proving the preceding claim.

For w E c~ (z, t ) with t a V-generic vector we have the following
alternatives :

1. w returns to Q a finite number of times only under every ~ E L1;
2. w never passes through Q under every 03B8 ~ L1;
3. w returns to Q infinitely often and r(w,, n) = r(w, n),  E

L1, 
Since w cannot get out from U n Q’ by Claim 13.2, alternatives 1 and 2

imply that the orbits of w stay forever in U after some finite number of
iterates or never leave U, respectively. For our purposes it is enough to
suppose w G Q.

13.1. Finite number of returns .

First we eliminate alternative 1. By Claims 13.1 and 13.3 the return
times to Q and the iterate after which the orbits remain forever in U do
not depend on the perturbation vector.

Let ro E N be the last return iterate of w to Q under every 6 E L1. The
point w is like a regular point up to iterate ro and so the arguments in
Section 12 show that fro(w, L1) contains a curve c with slope ) r~ and

speed ~ lo at every point. So its length is ~ 2~ ~ lo = ao > 0 and since
w E w (z, t ), no orbit is allowed to leave U U Q’. Hence fk(c, a) C U
for all k > 1. In particular, ck = ftk(c) = fk(c, to ) C ~/, ~ ~ 1.

According to the previous section, after NQ iterates curve c will have
all its tangent vectors in CU and keep them this way for all iterates onward,
because ck C U for all k > 1. Since cu is a field of unstable cones, the

length of ck will grow without bound with ck being an unstable curve
always inside U.
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This is a contradiction, since U is a small neighborhood of a hyperbolic
set Ato of saddle type which is the maximal invariant set inside U.

13.2. No returns

Let w be as in alternative 2. Consequently f o ( w ) E U for all k > 1.
Since Ato is the maximal invariant set inside U, we deduce that if y ~‘
is a small segment of centered at w, then it is not possible
that c U for all k > 1. Likewise if we replace U by B ( U, p),
by item VII. Hence, writing y+, y u the two segments such that y+ U
y u = y~ and y+ n y u = f w }, there are k~ > 1 and nonempty intervals
I+ C y+, I_ C yu satisfying C B(U, p) for 1  i  k and

c (B(U, p) U B(Q’, p))C-because B(U, p) n p) _ ~
and by connectedness of y~ (v. Fig. 8).

Let x E I± and y E (x). Then we have

Geometrically this means that near w there are two strips B~ made of
-leaves with length C -1 ~, -k ~ p / 2 and whose intersection with y u is

I~ (cf. Fig. 8).
Making y u small and k big we can make the length of B~ big and the

distance to w small. The angle between leaves in B~ and y u is near a

straight angle in the 03C6t0-coordinates of L D 6 3 w, since the slope of 
is near 0.
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We define c~ : T -~ L, u H , fu (, f nJ -1 (z, t )), the perturbation curve
through .z~ and observe that either B+ or B- intersects in a segment
of positive length ~ ai 1 > 0, since and the length of Cj
is ao > 0, for all u E T and j  1.

This means there is a segment 5y of length ) a2 > 0 in T such that
C B~ and thus C (U U 

According to Lemma 5.3, for every 0  y, ~  1 we can find ko E N
such that for all j > ko we have v (Pn j n ~ - 1, s ) ) > 1 - ~ for

a positive measure set C V and a set of s G L1 with v~-measure
~ 1 - y. Hence, since k is fixed, we may find for j big a s G A very
close to to = (to, to,...) (taking y > 0 small) such that

We have shown that inside V there is a positive measure set whose
perturbation vectors send z into ( U U after n i + k + 1 iterates, where

j (and n j ) may be made arbitrarily big. This contradicts the assumption
of V -recurrence on z, since those perturbed orbits will never again return
to Q. Alternative 2 is thus impossible.

13.3. Bounded first return times

The points w E with t a V-generic vector satisfy
alternative 3. Going back to the arguments in Section 13.1, we have an
unstable curve c in fk(w, L1) whose length cannot grow unbounded.
Therefore it must leave U and go to Q (since w no orbit may leave
U U Q’) after a finite number or iterates bounded by some J E N. We
observe that since the length of c is ~ 2~ ~ lo and the diameter of R is
finite, we must have (2~10) ~ cr ~ ~ diam(R) .

This proves Proposition 11.1 and Theorem 2.

Remark 13.1. - We may drop the first tangency condition of Sec-
tion 11.1 if we strengthen Definition 11.2 of V -recurrent point by adding
the following item

3. for voo-a.e. t G V there is n = 1 such that fk(z, t) E U U Q
for all k > n,

where U is a fixed neighborhood of the basic set po belongs to and Q a
neighborhood of the piece of the orbit of tangency outside U.
Lemma 12.1 is now needless and the rest of the proof is unchanged.

The scope of the theorem is enlarged and next section shows how this
extra condition on V -recurrence is not too restrictive.
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14. INFINITELY MANY ATTRACTORS

We start with the particular case of perturbations of sinks.

DEFINITION 14.1. - We say f E I > 1, has a perturbation
of a sink in a finite collection (Uo, ... , of pairwise disjoint open
sets of M if there exists a neighborhood V of f in such that, for
every continuous arc g = {gt }t~B C V with g0 ~ f, the following holds:

1. C mod r for every n > l, t E B~ and 0  i  r - l;
2. There is a constant ~8 > 0 such that for every point x E Ui , 0 C i 

r - l, every v E TxM B ~0~ and every t C B~ it holds that

3. With the notation introduced at Definition 5.2 we have

Next proposition characterizes this kind of invariant domains.

PROPOSITION 14.1. - Let f be a C~ diffeomorphism of M, I > 1.
Then f has a hyperbolic sink so with period k > 1 and only if, f has
a perturbation of a sink in a neighborhood (Uo, ..., Llr_ l ) of the orbit

1 = f (so ) ~ ... , sr _ ~ = f ~ -1 (so ) of so.

Proof - First some results that locate the limit points near a perturbed
sink.

If So E M is a hyperbolic sink for f with period r, then for some
0  hi  1 every eigenvalue ~, G C of Dfr(so) satisfies ~i.
Moreover, given some À i  v  1 there are 8 > 0 and a neighborhood
V of f in DifflM)2014both may be made arbitrarily small-such that
each eigenvalue ~, E C of Dgr (x ) satisfies v for every g E V and
x G B (so, ~ ) . Consequently

So, writing = /~ (so), we see that (Uo = B(so, 8), ... , Ur-i = 
8)) is a finite collection of pairwise disjoint (we may take 8  (1/2) x
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min{dM(si, 0  i r - 1 } ) open sets of M that satisfies
conditions 1 and 2 of Definition 14.1.
To get condition 3 we have the next

LEMMA 14.2. - Let g = {gt }tEl C V be some continuous arc in

Diffl (M) with g0 ~ f. Let Pi = {si (t) : t E B } be the set of analytic
continuations of the orbit O(so) of the sink so with respect to gt, t E B.

Ifwe fix x E Ui , 0  i  r - l, and t E a, then we have

Proof - This is an easy consequence of (25). 0

We now know that c~ (x , t ) c B ( P, y ) where y = max f diam ( Ph ) :
r - 1 } and, since so is an hyperbolic sink for / = go, we have

by the structural stability results for such attractor.
Therefore item 3 holds for (Uo, ..., constructed above and we

have shown that in a neighborhood of the orbit of every hyperbolic sink
there is a perturbation of sink.

Conversely, let us suppose f has a perturbation of a sink in some col-
lection (Uo, ..., l,l,. _ 1 ) of pairwise disjoint open sets and take g = {gt }t~I
as in Definition 14.1. Then we will have by definition d ~ 1 (o) ) c
w(Ui, o £2 (o) ) for every small 0 1  82 and every r - 1.

Property 3 of Definition 14.1 now ensures there is a point so such that
{so} = aE (o)) n Uo] since w (Uo, o£ (o)) is a closed set.

Writing 0 = (0,0,...) then 0 E and w(so, 0 ) C w (Uo, 
for every £ > 0. Thus = w(so, 0 ) n Uo = Uo. Considering
the dynamics induced in (Uo , ..., by the arc ~ we see that =

(so , ... , where si = fi (so), i = 0,..., r - 1.
Since the limit is f -invariant, we have = so and found a r-

periodic orbit of f. In addition, Property 2 of Definition 14.1 guarantees
that for each v E = {u E = 1 } such that v is an

eigenvector of D fr (so) corresponding to the eigenvalue ~, G C (using the
complexification of TsoM if need be) the following
holds 

~
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and so C {z E C: .z ~  1 } . Hence so, ..., sr- is the orbit of
an hyperbolic sink for f . D

14.1. Newhouse’s and Colli’s phenomena

Let us suppose the family f satisfying the conditions specified in
Section 11.1 is also in the conditions of Newhouse’s theorem (cf. [16,
17] and [22]) on the coexistence of infinitely many sinks, that is, po is a
dissipative  1) saddle point.
We may now choose a parameter a > 0 such that fa has infinitely many

hyperbolic sinks in Q. Moreover a > 0 may be taken arbitrarily close to
zero (see [22, Chapter 6]) and thus all the results of previous sections
apply to the present setting.

Let N be some positive integer and let us pick N distinct orbits
of hyperbolic sinks for fa in Q : C~ (s ~l ~ ), i = 1, ... , N . Since they
are hyperbolic attractors, they are isolated: there exist pairwise disjoint
- even separated - open neighborhoods Vi of (9(~), ~ i = 1,..., N.
Moreover, by the previous subsection, we may construct a perturbation
of a sink inside each Vi associated to with respect to an arc 
for some £ > 0, and every 1 N.

We now observe that a perturbation of a sink obviously is, in particular,
a completely and symmetrically invariant domain. Specifically, each
perturbation of a sink constructed in Vi is a completely and symmetrically
invariant domain with respect to the arc i = 1,..., N.

Hence, setting so = min { ~ l , ... , ~N } , we have so > 0 and the former
invariant domains are also completely and symmetrically invariant with
respect to the arc for every 0  ~  £0. Then, by Section 6.1, there
is a minimal domain inside each perturbation of a sink Vi , for every
1 ~ i ~ N and noise level 0  ~  so.
We have thus constructed N distinct minimal invariant domains in Q

for the arc for every 0  ~  so and proved

PROPOSITION 14.3. - Given an arc .~ as in Section 11.1 where po is
a dissipative saddle point, for every parameter a > 0 sufficiently close to
zero such that fa has infinitely many sinks in Q, we have the following.

For every N E N there exists ~o > 0 such that, for every 0  ~  ~o,
the number of minimal invariant domains in Q for the arc is no less
than N.

We now remark that what enables us to build an invariant domain
in a neighborhood of a sink is the fact that it is attractive: given any
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neighborhood U of the orbit of a sink so,..., Sr-1 there is another

neighborhood V C V C U of the same orbit such that f ( V ) c V (a
trapping region). By continuity, this persists for any diffeomorphism g
close to f and hence we get an invariant domain.

In [7] E. Colli shows how to have infinitely many Hénon-like attractors
when generically unfolding an homoclinic tangency under the same
conditions of Newhouse’s theorem. These attractors are separated like
the infinity of sinks in the Newhouse phenomenon and each one admits a
trapping region according to [2] and [30]. Specifically, the constructions
described in [7] can be carried out verbatim within a restricted set of
parameter values having this property, without altering the statements of
any theorem in that paper.

Consequently we may state and prove a proposition analogous to 14.3
replacing sink by Hénon-like attractor in the paragraphs above.

15. SOME CONJECTURES

The methods used in this paper are prone to generalization. We propose
some here.

(1) Is there some similar result to Theorem 1 for flows? The kind of

perturbation to perform is part of the question.
(2) In Section 14 a characterization is given for invariant domains

originating from a perturbation of a sink. Is there some similar
characterization of an invariant domain obtained by a perturbation
of an Hénon-like strange attractor?

(3) The same question regarding perturbations of elliptic islands. This
is more subtle: we may ask whether there is some invariant domain
near an elliptic island.

(4) We did not look at what happens to the physical probabilities when
the noise level £ > 0 tends to zero. Does the limit exist? If it does
then it must be an f -invariant probability measure. Is it an SRB-
measure ?

(5) Globally what can we say about the stochastic stability of the
infinitely many Dirac (in Newhouse’s phenomemon) or SRB (in
Colli’s phenomenon) measures in a neighborhood of a homoclinic
tangency point? Here a global notion of stochastic stability is

required, see, e.g., [31]: if p; are the SRB measures of f (i =
1, 2, ...), time averages of each continuous along almost all
random orbits should be closed to the convex hull of the  03C6 d JLi
for small £ > 0.
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