
ANNALES DE L’I. H. P., SECTION C

JEFF HOGAN

CHUN LI

ALAN MCINTOSH

KEWEI ZHANG
Global higher integrability of jacobians on
bounded domains
Annales de l’I. H. P., section C, tome 17, no 2 (2000), p. 193-217
<http://www.numdam.org/item?id=AIHPC_2000__17_2_193_0>

© Gauthier-Villars, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section C »
(http://www.elsevier.com/locate/anihpc) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPC_2000__17_2_193_0
http://www.elsevier.com/locate/anihpc
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Global higher integrability of Jacobians
on bounded domains *

Jeff HOGAN1, Chun LI2, Alan McINTOSH3, Kewei ZHANG4
School of Mathematics, Physics, Computing and Electronics, Macquarie University,

Sydney, NSW 2109, Australia

Manuscript received 8 September 1998

Ann. Inst. Henri Poincaré, Analyse non linéaire 17, 2 (2000) 193-217
© 2000 Editions scientifiques et médicales Elsevier SAS. All rights reserved

ABSTRACT. - We give conditions for a vector-valued function u E
satisfying det D u (x ) > 0 on a bounded domain Q , which

imply that det Du (x) is globally higher integrable on Q . We also give
conditions for u E such that det Du belongs to the Hardy
space h Z ( S2 ) and exhibit some examples which show that our conditions
are in some sense optimal. Applications to the weak convergence of
Jacobians follow. Div-curl type extensions of these results to forms are
also considered. @ 2000 Editions scientifiques et médicales Elsevier SAS

AMS classification : 42B20, 42B30, 49K99

RESUME. - Pour une fonction a valeurs vectorielles u E 
telle que det Du (x) > 0 dans un ouvert borne Q, nous donnons des
conditions conduisant à une amelioration de 1’ integrabilite globale de
det Du (x) dans un ouvert borne Q . Nous donnons aussi des conditions
sur u E pour que det Du appartienne à l’espace de Hardy
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h z ( SZ ) . Quelques exemples démontrent que ces conditions sont dans un
certain sens optimales. Ces résultats sont appliques à la convergence
faible des jacobiens. Nous examinons aussi l’extension de ces résultats
du type div-curl aux formes différentielles. @ 2000 Editions scientifiques
et médicales Elsevier SAS

1. INTRODUCTION

The work of S. Muller [17] has led to many interesting new results
regarding important nonlinear quantities such as Jacobians and some
quadratic forms in compensated compactness [12,4]. However, the results
found there are local or interior in nature. For example, Muller’s result
states that if u is an element of the Sobolev space (Q c 
and det D u (x ) = 0 in Q almost everywhere, then for every
compact subset K of SZ, /

sz

We are interested in finding additional conditions on u under which
det D u (x ) log (e + det D u (x ) ) is globally integrable on a bounded do-
main Q.

Higher integrability results are partly motivated by applications of
Jacobians to nonlinear elasticity. A model problem in [7] is that of

determining the infimum

where F : Q x (0, oo ) -~ [0, oo ) is continuous, F (x , t ) = 
= and id is the identity mapping. Let f : S2 --~

(0, oo ) be a measurable function such that F (x , f (x ) ) = min { F (x , t ) ,
t > 0} for every fixed x E S2. Then the minimizing problem is reduced to
solving
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This problem is studied in [8] under the condition that f is Holder

continuous, in [24] for f in Sobolev spaces, but has not yet been solved
in the case of f E LP(Q). Our global integrability result (Theorem 3.1 )
gives a necessary condition for the solvability of the above problem
for u E The necessary condition is that f log (e + E

L 1 ( SZ ) which we abbreviate by writing f ~ L log L (Q ) .
If v E W II~) , we denote by Vv the vector-valued function

Vv = ( axl , ... , It was established in [6] that if u = (u 1, ... , un ) E

then det D u belongs to the Hardy space and

(For relevant details pertaining to
the Hardy space the reader is referred to Appendix A. Further
details can be found in [21].) In [5], Hardy spaces defined on bounded
domains Q are studied. One such space is

where fz is the zero extension of f to Every function f E

HZ (SZ) satisfies f~ f (x) dx = 0. The space obtained by removing this
cancellation condition is

Norms on these spaces are defined in the obvious way:

A natural question to ask is: under what conditions on u E 
does it follow that det Du E 

In order to solve these problems, in Section 2 we introduce a subspace
of which contains for all p > n

and which gives better integrability of gradients. We establish our main
results under this extra condition. We also discuss the weak continuity of
Jacobians on S2. A crucial element in the proofs is a version of Holder’s
inequality adapted to L log L (Q) .

In Section 3, we discuss the higher integrability of Jacobians in

L log L (Q) by applying the Hardy space result obtained in Section 2. It
might be tempting to try to prove this higher integrability by extending u
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to a larger domain Q ’ so that the extension is bounded from R")
to and the positivity of det Du is preserved, thus enabling
us to use Muller’s result to obtain higher integrability on S2. We show by
an example that in general this is not possible.

It is known that questions about Jacobians are special cases of the div-
curl problem. In Section 4, we discuss the corresponding Hardy space
result, weak continuity and higher integrability for this problem. For
the sake of simple notation in describing the extension property, we
use the language of differential forms. However, the results obtained on
differential forms are interesting in themselves. Many people such as
Robbin, Rogers and Temple [19,20] and Iwaniec [11] have considered
differential forms in this context.

The authors wish to thank Stephen Montgomery-Smith and Richard
O’ Neil for several helpful suggestions and references regarding the proof
of Proposition 2.2.

2. HARDY SPACES ON BOUNDED DOMAINS AND WEAK

CONTINUITY

In [6] it is shown that if u = (Mi,..., un) E JR.n), then the
Jacobian det Du E and

Suppose Q is a bounded open domain in R". We are interested in

the following question: If u E (Q, is det Du ~ hz (Q) with a
similar estimate to that above? The following example from [2] shows
that without extra conditions, the answer is negative, even when Q is a
rectangle in I1~2.

Example. - Let n = 2 and Q = (0, x (-1, 1 ) . Define a sequence
u~:SZ-~II~2, j=1,2,...,by

Then det Du~ (x, y) _ - jy2~-1. Thus f~ det Du~ (x, y) = 0. Notice also
that the norms are bounded. Suppose the estimate holds. Then
det Duj is bounded in HZ (SZ), and we can extract a subsequence which
converges weak-* in Hz1(Q). On the other hand, det Duj converges
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pointwise . to zero. Therefore according to [13], the weak-* limit of the
subsequence is also zero. However, for ~ E cgo (JR.2) 1) 
~ (x, -1 ),

which is a contradiction.

In the sequel, Q will denote a bounded open domain in with

strongly Lipschitz boundary ~03A92014an assumption which is enough to
ensure

(i) the existence of a bounded extension map from to

(ii) the boundedness of the extension by zero of to 

where is the closure of Co (S2) in 
For details, the reader is referred to [1, Section 4]. Although many of the
results generalise to non-Lipschitz domains for which these extensions
are bounded, we will restrict ourselves to considering domains with
strongly Lipschitz boundaries, so that we have concrete realisations of
the trace spaces.

In Theorem 2.5 below, we give a sufficient condition under which a
modified version of the estimate holds. Before we state the theorem,
we introduce some relevant function spaces and state some technical

lemmas.

DEFINITION 2.1. - Let A : [0, 00) -~ [0, 00) be a monotone increas-
ing function. Under certain technical conditions on A (see [ 1 ] and [3])
which are satisfied by all the examples we shall consider in this pa-
pex we consider the Orlicz space L A(Q) consisting of (equivalence
classes modulo equality a. e. of) measurable functions f on S2 for which
f ~  oo. The functional

_

is then a norm (the Luxemburg norm) on LA(Q) under which it becomes
a rearrangement-invariant Banach space.
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When A(t) = tP(log(e + t))03B1 (1  p  ~, 03B1  0) LA (Q) is referred
to as and the associated norm is 
The spaces and are usually referred to as
LP (Q) and L log L (Q) respectively.

Since Q is bounded, an argument based on rearrangements, maximal
functions and Hardy inequalities can be used to prove the equivalence

Hence the quantity on the left-hand-side of (1.1) (Muller’s result)is equivalent to The following generalised Holder
inequality, the proof of which is deferred to Appendix A, will be a crucial
element in the proofs of many of our results.

PROPOSITION 2.2. - Let I  p, q  ~, 03B1, 03B2 > 0, 1/r
+ = and f ~ Lp(log L)03B1(03A9), g e Then

Remark. - The case a = y is presented in Lemma 4.2 of [10].
In the proof of our main result, we need the following lemma, the first

part of which is a consequence of [23, Chapter I, Section 5.2] (a statement
of which appears in Appendix A as Lemma A.3) while the second part is
an immediate corollary of the first.

LEMMA 2.3. - (i) Suppose f E L(logL)(Q), and f f = 0. Then

(ii) L(log L)(S2) c with 

By the Trace Theorem, Tr - W 1- n ~ n ( ~ ~ ) , For a > 0, we
define a subspace of as follows.

DEFINITION 2.4. - Let a > 0. For 03C6 E W1-1 n,n(~03A9), we say that
03C6 E if 03C6 can be extended into Q as v E so that

~x , J E 1 n.
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Remark. - Clearly,
_ ,

for all p > n. Moreover, in [ 14], is realised as the class of those

u E L’~ (log for which .

where P(~) = + t))a. It follows that 
when a > 0. Actually, we shall not make use of this realisation. Instead,
we define the following semi-norm on 

We come now to the main theorem of this section.

THEOREM 2.5. - Suppose u E E =

1 , 2, ... , n, for 0 and ~~-1 a j = n. Then det Du E and

Remark. - In the case when al = n, a j = 0 for j > 2, we have
det D u E h Z ( S2 ) under the single restriction u1|~03A9 G In the case

when a j = 1 for all j, we have det D u E h Z (Q) and

Remark. - Clearly the boundary condition is satisfied in the important
special case u(x) =x on aS2, mentioned in the introduction.

Proof of Theorem 2.5. - Assume without loss of generality that

~~ My = 0 for each j. Since Q has a strongly Lipschitz boundary, we
can extend My to so that

(The last inequality comes from an application of the Poincaré inequality
and the assumption that f~ u j = 0 for each j . For details on Poincaré and
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the extension result which provides the second inequality, the reader is
referred to [1].) Since E we can choose v j E 
with

and v j = u ~ on R" B Q . (We have used the fact that (v j - E 

since ( v~ - = 0.) Note that

If we now put

then E W 1’’~ (~n , II~n ) , and

det D u = det D --~ det D w ~2~ -~- ~ ~ ~ -~ det D -~ det D v . (2. 2)

On applying (2.1 ) we see that det E H 1 (II~n ) and

Since uk - vk = 0 outside Q, the support of DW(k) is contained in S2.
Thus det D03C9(k) E H1(03A9) and

Now consider the final term in (2.2). As a consequence of Proposition 2.2
and Lemma 2.3, we have
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j

Combining (2.2), (2.3) and (2.4) completes the proof of Theorem 2.5. 0

Now we discuss the weak convergence of Jacobians. Suppose f u ~k~ } C
is a bounded sequence whose components ( j =

1, 2, ... , n ) are bounded in with a j as in Theorem 2.5. Then
we have 

’

Let

Then since = there exists g E such that for

all b E VMO(Q) ,

up to a subsequence. We can suppose that for such a subsequence,

Therefore, since b E VMO(Q ) C we have

thus up to a subsequence,

for all b ~ VMO(Q ) , where g + ~ = /:~(~2).
The following theorem shows that if furthermore, u(k) 2014~ u weakly in

then g -I- ~ = det D u .
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THEOREM 2.6. - Suppose E (Q , is a bounded sequence
for which E ( j = 1, 2 ... , n ) is also bounded, a~ > 0

and aJ = n. Suppose further that ~ u weakly in (Q , 
Then up to a subsequence,

for all b E VMO(Q).

Proof - As discussed before, we can suppose that for any b E

VMO(Q),

for some g E We first prove that g = det D u - f ~ det D u . As
in the proof of Theorem 2.5, extend uCk) to all of and let vCk) be
the chosen function corresponding to Then up to a subsequence, we
can suppose u(k) -~ u weakly in and --~ v weakly in

for some u and v. By uniqueness, u = u on Q . Let 
and be the functions corresponding to and u as in the proof of
Theorem 2.5. Then

and

It is easy to see that -~ weakly in Since

supp w ~~ ~ , supp C Q , by Corollary IV. 1 of [6], for any b E 
then up to a subsequence,

As for det we can assume that the v(k) we choose are supported
in a compact set and Dv(k) E are uniformly
bounded. Then det Dv(k) are uniformly bounded in L logL(Q). By
the criteria of de La Vallée Poussin [9], there is a subsequence of
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detDv(k) which converges weakly in Suppose detDv(k) is such
a convergent sequence (otherwise replace it by a subsequence).

Moreover, again by Corollary IV. 1 of [6], det Dv(k) has a subsequence
which converges to det D v weak-* in H Again replace det Dv(k)

by such a convergent subsequence. Then we have that det con-

verges weakly in to some function hand det Dv(k) converges
weak-* in to det D v . Since both convergences imply the con-

vergence in the distributional sense on by uniqueness of the limit we
have h = det D v (taking h a function on R" with compact support in 

Thus, we have shown that det Dv(k) converges to det D v weakly in
and thus also weakly in Combining the above results we

get, for b E C (Q ) C L°’°(SZ) n VMO(Q) ,

Therefore, for b E C (S2 ),

which implies g = det D u - f ~ det D u .
Thus, for any b E VMO(Q),

and the proof is completed. D

As a corollary of this theorem, we have the following result.

COROLLARY 2.7. - Suppose E is a bounded sequence,
-~ u weakly in and E is also

bounded. Then up to a subsequence,

for all b E VMO(Q).
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Remark. - In [II], Iwaniec proves the same result under the stronger
assumptions that (u~k~ - = 0 and that S2 has a smooth boundary.

Proof of Corollary 2.7. - For each k, write

where

Apply Theorem 2.6 with a j = n and ai = 0 for i ~ j to see that, up to a
subsequence,

for all b E VMO(Q). Therefore,

3. GLOBAL HIGHER INTEGRABILITY OF JACOBIANS ON Q

As seen in [ 17], for u E with det Du > 0 on Q , we have
the interior estimate det Du ~ L log L ( K ) for compact subsets K C Q .
One may think that given some control on the boundary value of u, it
should be possible to obtain global higher integrability. In this section we
show that this is indeed the case, and also show that in some sense the

boundary condition we give is optimal.

THEOREM 3.1. - Suppose u E and det Du(x) > 0 on
Q. If furthermore E = 1 , 2, ... , n, for a~ > 0 and

a~ = n, then det D u e L log L(Q) and

This is an immediate consequence of Theorem 2.5 and the following
result, which is a partial converse to Lemma 2.3.
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PROPOSITION 3.2. - Suppose f E hZ (Q) and f > 0 on Q. Then
f E L log L(Q) and

The proof of Proposition 3.2 relies on a few well-known properties of
maximal functions and Hardy spaces. We defer the proof to Appendix A.
The next result demonstrates that in certain circumstances, the bound-

ary condition of Theorem 3.1 is necessary.

THEOREM 3.3. - Let Q C R2 be a bounded open domain with

Lipschitz boundary and U = (u 1, u2) E W 1’2 (Sl ) with h (z) = u + i u2
analytic on Q . Then det D U E L log L ( Q ) if and only if E

Kl 

Proof - Since u and u2 satisfy the Cauchy-Riemannn equations, we
have det DU = Ih’(z)12 = = ~~u2~2 > 0. If det DU E L log L(Q),
then ~uj E so E The converse is an

immediate consequence of Theorem 3.1 with n = 2 and a = a2 = 1. D

As mentioned in the introduction, Muller’s result (1.1) is interior in
nature. One might hope that by extending u to a larger domain Q’ in such
a way that the extension u satisfies det Du  0 on Q’ and ~ u II W1,2(03A9’) 

one might obtain a global result on Q by applying (1.1) on
Q’. The following example shows that in general this is not possible.

Example. - We specialise the situation in Theorem 3.3 to the case
where Q = D = {z E C;  1 } is the unit disc in C and ~03A9 = T =

{z E = 1 } is its boundary, the unit circle.
Choose cp E W 1 ~2, 2 (~) ~ real-valued. (This choice is possible by

the remark after Definition 2.4.) Then cp admits the Fourier series expan-
sion cp(eiB) = ~n°__~ with c_n = cn for all n and +

 oo . Define h ( z ) = Then h = u + i u 2 is an analytic
function on D, U = (Mi, U2) E ,1I~2 ) , and = cpo Moreover,

as in the proof of Theorem 3.3. Suppose now that we could extend U
to U on D, an open set in JR.2 in such a way that det DU  0 on
Q . Then by Muller’s result, det D U E However (3.1 ) then
implies Vu 1 E and hence cp E thus contradicting the
choice of cpo We conclude that extensions such as 8 are in general not
possible.
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A simple application. The motivation of the following problem is
from [8].

Consider the following boundary value problem:

where SZ is a smooth domain in ?" and f > 0 is a measurable function
satisfying f~ f(x) dx = 0. We seek a necessary condition on f to ensure
that the problem is solvable for u E 

COROLLARY 3.4. - Suppose u E solution 

lem M. Then f E 

This is a direct consequence of Theorem 3.1. It leads to the following
question.

Question. - Given f E does (~) have a solution u E

Remark. - Theorems 2.5 and 3.1 can be easily generalized to the
cases when u = (ul, u2, ..., un) E is replaced by 

02, I~n), p~ > = l, 2, ... , n, with ~~=1 p , = 1.

4. DIV-CURL RESULTS FOR FORMS

The setting of this section is that of forms on open domains SZ C 
We give a brief outline of the basic formalism.
The space of /-linear, alternating functions ~ : denoted by

or just lll when there is no possibility of confusion. In particular
the dual to and = R. The exterior algebra of

forms is denoted

l=U

and the wedge product of § E 11l and r~ E ~k is the (k + l)-form  n r~
given by

where the sum is taken over all permutations o- = f i 1, ... , il, ji,..., jk }
of {1,... k + l } satisfying i 1  ...  i and j1  ...  jk is the
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signature of the permutation a. The exterior product is alternating, i.e.,
~ _ -r~ ~ ~ . Fix a basis f el , ... , for An r-form is defined to

be a function u : ~ Ar of the form

where the sum is taken over subsets { i 1, ... , i,. } of { 1, ... , n } and r

are (real-valued) functions We denote by LP(Q, Ar) the space of

p-integrable r-forms on S2.
The Hodge-deRham operator d acts on smooth forms defined on Q by

and satisfies d (d u ) = 0.
In [6], it is proved that if u E div u = 0, v E 

curl v = 0, where 1 / p -+- 1 /q = 1, then u. v E N~ This is equivalent
to the statement that, if u E d u = 0, v E L q 
d v = 0, then u n v E H More generally, the following is true.

PROPOSITION 4.1. - If 1  p  00, 1 /p + 1 /q = 1, u E 
An-k), d u = 0, d v = 0 on then u n v E H and

Suppose Q is a bounded open domain in with strongly Lipschitz
boundary. In this section, we provide the extra conditions on u and v
which, together with u E d u = 0, v E and

~~ = 0, imply that u e ~~(~2, 
To state and prove the theorem, we first introduce some notation and

state several known results.

Stokes’ theorem in this context is as follows: if u E and

~p E then

Here n v (n A u A cp) is the tangential component of the (n - 1) form
u A cp on while the final expression is the natural pairing between
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(k + 1 ) forms and (n - k - 1 ) forms on the boundary. This provides a
natural meaning for the statement d u = 0:

DEFINITION 4.2. - Let be the space ofn - k - 1 forms
on Rn whose support is contained in Q. If u ~ LP(Q, we say that

du = 0 on Q if ~03A9 u n d~ = 0 for all ~ E D(SZ, 
DEFINITION 4.3. - For those u E with du = 0 on Q,

define n n E by

where ~ E and ~p = ~ (~~.

It is a simple matter to show that the definition of (n n u ~~ is

independent of the choice of the extension @ . Note that

for all u E LP(Q, Ak) such that d u = 0.
LEMMA 4.4. - Suppose G E Wo’p(S2, Then dG|~03A9 = 0.

Proof - By the density of Ak) in Ak) and the pre-
ceding estimate, it is enough to consider Then if ~ E

since d2CP = 0 and = 0. D

We need several extension results. The first of these is as follows:

LEMMA 4.5. - Suppose u E du = 0 on Q and n n 

0. Let u z be the zero extension of u to Then d u z = 0 on 

Proof - If cp E by Stokes’ theorem we have
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Hence duz = 0 on R". D

DEFINITION 4.6. - Let 1 ~ p ~ 00 and 0. Define

and give it the seminorm

When a = 0, this is written ~~ f ~~ 

DEFINITION 4.7. - Let p, a be as above. Then is the

class of k-forms f each of whose components lies in (Q).

We are now in a position to prove analogues of Proposition 4.1 on
bounded domains. Let us first consider the case where certain boundary
conditions are zero.

PROPOSITION 4.8. - Suppose 1  p  ~, 1 / p + 1 /q = l, u = d F E

LP(Q, for some F E v E Lq (Q, with d v = 0

Then u  v ~ H1z(03A9, n) and

Proof - Without loss of generality, we may assume that each compo-
nent Fj of F satisfies JQ Fj = 0. Since F E it may be

extended to R" with

Let u = d F on R". Then d u = 0. By Lemma 4.5, the zero extension vz
of v to R" satisfies duz = 0. By Proposition 4.1, the extensions of u and
v satisfy u vz E H1(Rn, ^n) and since u ̂  vz = 0 outside Q we have

where in the last step we have used the Poincare inequality. D

In the special case k = 1, this can be written in more classical notation
as follows.
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COROLLARY 4.9. - Suppose 1  p  ~, 1/p + 1/q - l, F E

W 1 ~ p ( ~2 ), E divv = 0 on Q and n . = 0.

We turn now to general boundary conditions.

DEFINITION 4.10.-Let p, a be as above. Then is

the class of those f ~ for which there exists F E
with = f. It is given the seminorm

Suppose f E Define (n n d) f E 
~k+2) by

where F E is an extension of f to Q, i.e., f.
That this definition is independent of the choice of extension F is a
consequence of Lemma 4.4.

DEFINITION 4.11. -Let p, a be as above. Define J« (aSZ, ~k) =
(n l~ l~k^2) with

A second extension result, this time for extensions from ~03A9 to Q,
follows.

PROPOSITION 4.12. - Let p, a be as above and let g E Ja (aSZ, 
Then there exists F E such that n n = g, E

and

Proof - The proof is simply a matter of checking definitions. Since
g E Ak), there exists f E Ak-2) with g = (n A d) f and
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Since f E there exists F E with =

f and

Without loss of generality, by adding a constant (k - 2)-form if necessary,
we may assume that f ~ F = 0. Also, g = (n A d ) f = n A dFlaQ by
the definition of (n A d) f and its independence from the choice of the
extension of f. Further, F E A k-2) and since ~03A9 is Lipschitz,
F can be extended to R" with

where the last step is a consequence of the Poincare inequality. D

The main result of this section is:

THEOREM 4.13. - Suppose 1  p  00, a, f3 ~ 0, a/ p + = 1,
u E LP(Q, v E du = 0, dv = 0 on Q. Suppose also
that n A E and n A E Then

Proof - By Proposition 4.12, since n n u|~03A9 E Ja (a SZ, and

n n v|~03A9 E there exist F E and G E

such that n n dF|~03A9 = n n u, n n dG|~03A9 = n n v,

F|03A9 E G|03A9 E and

II G II G~03A91,q(03A9.n-k-1)  c~n n v|~03A9

Alsod(u-dF) 
n n dF|~03A9 = O. Similarly, d(v - dG) = 0 on S2 and n n (v - dG) |~03A9 = 0.
So (u - d F) z , the zero extension of u - d F to satisfies d((u -dF)z) =
0 on Rn and
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Similarly, (v - dG)z satisfies d((v - dG)z) = 0 on and

Let U = d F on R" . Then U E Ak), and

Let V = dG on Then and

Now let u = u~03A9 + where ~03A9 is the characteristic function of Q
and = 1 - Then

Also, we may write u = U + (u - U ) z , from which we see easily that
JM = 0 on R". Similarly, let v = + V X~~ . Then

and d v = 0 on Now we write, on S~ ,

To deal with the first term on the right hand side of (4.1), notice that
u E (v - V)z E Lq (Rn, n-k), du = 0 on and d ((v _
V ) z ) = 0 on R". Hence, by an application of Proposition 4.1, we have
U A (u - V ) z E with the bound

Similarly for the second term on the right hand side of (4.1) we have
(u - U)z E V E Lq d ((u - U)z) = 0 on and
d V = 0 on so again by Proposition 4.1 we have (u - U)z A V E
H and .
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Finally, since U = d F E V = d G E Lq(log L)03B2
(Q, and f~ U n V = 0, we have U n V E L log L(Q, C

hz (Q, and 
’

Combining Eqs. (4.1 )-(4.4) now gives the result. D

Note that Proposition 4.8 can be obtained from this theorem on

choosing a = 0, ~B = q.
The discussion of weak continuity and higher integrability of this

bilinear differential form is very similar to that of Jacobians. We will

skip the details and only state the results.

THEOREM 4.14. - Let 1  p  ~, a, ,8 > 0, and a/ p + = 1.

Suppose u j E LP(Q, is a bounded sequence, du j = 0 and u ~ ~ u
weakly in LP(Q, vj E Lq (Q , is a bounded sequence, dvj = 0
and v~ -~ v weakly in If n n E and

n n E J~ ( a SZ , ll n -k+ 1 ) are bounded sequences, then up to a

subsequence,

for all b E VMO(Q, A °).

THEOREM 4.15. - Assume 1  p  ~, a, 03B2 > 0, a/ p + = 1,
u E LP(Q, v E du = 0, dv = 0 on S2 and u n

v > 0. Suppose also that E Ja ( a SZ , and E

Then u n v E L log L (Q , and
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A. APPENDIX

This section is devoted to the proof of a generalised Holder inequality,
of which Proposition 2.2 is a particular case, and to the proof of
Proposition 3.2. The proofs of Theorem A.1 and Lemma A.2 are an
amalgam of arguments found in [18], [15] and [16] and from private
correspondence between Stephen Montgomery-Smith, Richard O’Neil
and the authors.

THEOREM A. l. - Suppose A, B, C : [0, oo) -~ [0, oo) are continuous,
monotone increasing functions for which there exist positive constants c
and d such that

(i) B-1 (t)C-1 (t)  cA-1(t)forall t > 0, and
(ii) 

Suppose also that Q is an open subset of f E LB (Q) and g E
Lc(Q). Then f g E LA(Q) and

As a preliminary to the proof of the theorem, we have the following
lemma:

LEMMA A.2. - Let A, Band C be as above. Then, for all s, t > 0,

Proof - Let u = B(s) and v = C(t). Then

Dividing by c and applying A to both sides gives the result. D

Proof of Theorem A.l. - Note that if f E LA(Q), the monotonicity
of A and an application of the monotone convergence theorem gives
us that 1. Hence, from the definition of the
Luxemburg norm
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We therefore have

and, again by the definition of the Luxemburg norm, we have the
result. D

Proof of Proposition 2.2. - To prove the generalised Holder inequality
of Proposition 2.2, we need only show that if B(s) = sp log03B1 (e + s ) ,
then B -1 (t ) ~ + t ) ) -"~p . To see this, simply note that if

t = sP (log(e + s))a, there exist constants 0  cl(p, c2(p, a)  o0

such that for all s > 0,

Then t = sP(log(e + sP(log(e + t))a and solving for s gives
s ~ +t))-a~~’. This completes the proof. D

The proof of Proposition 3.2 relies on well-known facts about maximal
functions and Hardy space which we now collect.

LEMMA A.3. -Let f be supported in a ball B C and let Mf be
its Hardy-Littlewood maximal function. Then f E L log L (B) if and only
if Mf E LI(B). Furthermore, there exist constant cl and c2 independent
of f for which

For a proof of this result, the reader is referred to [22] or [23, Chapter 1,
Section 5.2, p. 23].
The space H is defined in terms of the so-called "grand maximal

function":

where T= {cp E supp 03C6 c B(0, 1) , 1 } and B (o, 1 ) =
. I y I C 1 { . For further information, the reader is referred to [21].

A distribution f on JRn lies in if f * and =

While it is always true that cM f , we also have M f 
c f * when f > 0.
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Proof of Proposition 3.2. - Let K = /! and /~ be the charac-
teristic function of a ball B containing ~2. Notice that by the normali-
sation on the test functions in T, is bounded, and hence that

If we put F == / 2014 ~ on Q and extend F by zero
off ~ then f = F + K and F e ~(~2). Also, F + 0 on B, so
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