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ABSTRACT. - The local boundedness of minimizers of functionals is

proved under growth conditions depending on the full gradient. @ 2000
Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION

We are concerned with the local boundedness of local minimizers of

integral functionals having the form

where Q is an open subset of R" (n > 2) and f : Q x R x -~ R is a

Carathéodory function.
In the classical theory of regularity (see e.g. [5,8,11,14]), as well

as in more recent developments (including [1-3,6,7,10,12,13,15,16,18-
25]), the integrand f is usually assumed to satisfy growth conditions

1 E-mail: cianchi@cesit1.unifi.it.
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depending on the gradient D u only through its length or through
the sum of functions of the single partial derivatives ux, , i = 1,..., n.
The main novelty in the present paper is that bounds on f are

allowed involving functions (not necessarily of polynomial type) of the
whole D u . An example of the functionals, not falling within the classes
considered in the papers mentioned above, which we are able to deal with
is

where Q C R~, PI, 7~2 ~ 1 and g is any bounded continuous function.
The local boundedness of (possible) local minimizers of J can be

discussed via Theorem 1, Section 2-see Example 3. Theorem 1 is

a special case of the main result of this paper, which is contained

in Theorem 2 of the same section. Let us point out that, even in

standard situations, Theorem 2 slightly refines some of the results already
available in the literature, in that it enables to include also certain

borderline cases (Examples 1, 2, 4).

2. MAIN RESULTS

Our assumption on the integrand f in (1.1) reads as follows:

for s E I~, ~ E and a.e. x E Q . Here, A : R" -~ [0, +00) is a convex
function such that

and

B : [0, -f-oo) - [0, is an increasing function; a and b are locally
integrable nonnegative functions on Q ; c is a constant § 1. Both A and
B are required to satisfy the so-called A2-condition; namely, we assume
that
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and

for some positive constant k.
A precise definition of a local minimizer of the functional J in (1.1)

involves the function AM: [0, +00) -~ [0, +00) associated with A by

In other words, is the smallest radial function which dominates

A(~). It is easily verified that AM is a Young function, i.e., a convex
function vanishing at zero. Notice also that AM satisfies the A2-condition
whenever A does.
A weakly differentiable function u : S2 --~ R will be called a local

minimizer of J if

for every open set Q’ (c Q and

for every weakly differentiable function c~ such that supp(Ø) C Q and
fsz + dx  ~.

As shown by the counterexamples of [9,17] and [12], regularity of
minimizers of J cannot be expected, -even in the simplest situation where
f is independent of x and s, if A is subject to the sole assumptions
(2.2)-(2.4). Those counterexamples and the results of [7] suggest that
a suitable additional assumption for minimizers to be locally bounded
should amount to a bound for A in terms of its Sobolev conjugate. An
optimal Sobolev conjugate of A is the function An defined as follows
(see [4]). Let A* : [0, +00) -~ [0, +00) be the increasing continuous
function such that

where [ . stands for Lebesgue measure; namely,
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where Cn is the measure of the n-dimensional unit ball. Then An :.
[0, -I-oo) 2014~ [0, is defined as

n’ = nj(n - 1) and is the left-continuous inverse of H. Note that,
by the Brunn-Minkowski inequality, f ~ E A (~ )  t } ~ is a concave

function of t. Thus A* is a Young function and, since H is concave and
vanishes only at 0, An is a Young function as well.

In what follows we may always assume, without loss of generality, that
the integral in the definition of H in (2.10) is convergent-see Remark 2
below. Moreover, we shall suppose that

Indeed, if the integral in (2.11 ) converges, then any function u satisfying
(2.7) is automatically locally bounded-see Lemma 2, Section 2.
We are now in a position to state our regularity result. Because of its

transparency, we give a separate statement in the basic case where the
estimates in (2.1) are independent of x and s, i.e., when

for s E E Rn and a.e. x E Q .

THEOREM 1. -Assume that condition (2.12) is fulfilled for some A
satisfying the above hypotheses. If a constant k > 0 exists such that

then any local minimizer of J is locally bounded in Q.

In the general case, a balance has to be imposed between the degrees
of summability of a and b, and the growths of A, B and An. Such
a balance involves the lower index at infinity of the functions A* and
AM + B. Recall that such an index is defined for an increasing function
~ : (0, --~ (0, +oo) as
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THEOREM 2. - Assume that condition (2.1 ) is fulfilled for some A and
B satisfying the above hypotheses. Suppose that:

(i) b E for some ~ E (1, oo] such that ,B > + B)
and

for some positive constant k ;
(ii) 

Then any local minimizer of J is locally bounded in Q .

Remark 1. - Assumption (2.11 ) implies, in particular, that (A* )  n
(see Proposition 1, Section 3).

Remark 2. - Given any radial convex function A vanishing at 0 and
satisfying the A2-condition, we may assume, without loss of generality,
that A(~) = A (~ ) if r ~ ~ [ is small enough. Actually, it is not difficult to
see that there exist positive constants ci, c2, so and to such that, if A (~ ) is
the function which equals A (~ ) for ~ ~ ~  so, agrees with cl A (~ ) - c2 in
{~ E A(~) > and is extended by convexity otherwise, then A is a
convex function fulfilling (2.2)-(2.4) and

Thus, f satisfies (2.1) with A(~) replaced by and with a(x)
replaced by a(x) = a(x) + to + moreover, conditions (i)-(ii) of
Theorem 2 with A and a replaced by A/ci and a, respectively, are

equivalent to the original ones.

Example 1. - Consider the classical case where A (~ ) - ~ ~ ( p and

B(s) = sq. In this case, An(s) is equivalent to sP* , where p* = npj(n -
p), if 1  p  n, and is equivalent near infinity to 1 if

p = n. Recall that two functions ~2 : [0, +00) -~ [0, +00) are called
equivalent if there exist positive constants ci and c2 such that 

(c2s) , for s > 0, and are called equivalent near infinity if the
same inequalities hold for large s. Thus, when 1 ~ p  n, Theorem 2
tells us that any local minimizer of J is locally bounded, provided that
0  q C p * , b E with ~8 = p * / ( p * - q) or ~8 > n / p according to
whether p  q or p > q, and a E for some a > n / p . If p = n,
the same conclusion is true for every q > 0, provided that b E 
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and a E for some a > 1. This reproduces the result of [ 10] and
shows that the limiting values q = p * and ~8 = p * / ( p * - q) are allowed.
Example 2. - Assume, more generally, that A is just radial, so that

A(~) = A* ( ( ~ ~ ) = Since H -1 grows more than linearly at infin-
ity, condition (2.13) is always fulfilled; thus, the results on boundedness
contained in [21,22] are recovered by Theorem 1 and extended by Theo-
rem 2. The latter also improves a result from [16].

Example 3. - Let us take into account the functional J defined by
(1.2). An estimate of type (2.12) obviously holds with

where $ = (~1, ~2) E JR.2. The straight lines ~1 = and ~2 
are tangent to the (convex) level set {~ E II82: A(~)  t} for every ~ ~ 0.
Consequently,

Thus, A*(s) is equivalent to so that An (s ) is equivalent
to if pi p2  pi + p2 , and is equivalent near infinity
to exp(s2) - 1 if pi p2 = pi 1 + p2 . Theorem 1 (and the remark about
condition (2.11 )) tell us that the local minimizers of J are locally bounded
either if p1p2  pi 1 + p2 or if pi p2  pi 1 + p2 and min{p1, p2 { >
max{p1, p2{/(1 + max{p1, p2{).

Consider now the special case where A has the form

where $ = (~l , ... , ~n ) and Ai are Young functions. In this case, A*
is equivalent to the function A : [0, +00) ~ [0, +00) whose (right-
continuous) inverse is defined by

Indeed, since ($ E A (~ )  t } is a convex set containing the
points (0,..., 0, =L~’ 1 (t ) , 0, ... , 0) and contained in the parallelepiped
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bounded by the hyperplanes i = ±A; ~ 1 (t ) , then

Hence the equivalence of A* and A follows. Moreover, the function An
is easily seen to be equivalent to the function An defined as in (2.10), but
with A* replaced by A. Notice also that A M (s ) is equivalent to maxi Ai (s )
(and to ~n 1 A i (s ) ) . Theorem 2, combined with these considerations,
yields the following corollary.

COROLLARY. -Assume that condition (2.1) is fulfilled for some A
having the form (2.16) and that the Young funtions Ai and the function B
satisfy the 02-condition. Suppose that: .

(i) b E for some ~B E ( 1, oo] such that ~8 > +

maxi Ai ) and

for some positive constant k;
(ii) a E for some a > 

Then any local minimizer of J is locally bounded in Q .

Obviously, maxi Ai can be replaced by ~=1 Ai in assumption (i) of
the Corollary.

Let us mention that a result in the same direction as the Corollary is
contained in [13].

Example 4. - Let Ai (s) = spi for some pi  1, i = 1, ..., n, and

B(s) =sq. Then A(s) =sP, where 1/p = (1/n) ~n 1(1/pi), so that
An (s) is equivalent to sp* if p  n, and is equivalent near infinity to

1 if p = n. Set m = max{pi,..., pn, q}. When p  n, the

Corollary yields the local boundedness of local minimizers of J if m x
p*, b E with ~8 = - m ) or ~8 > n /p according to whether
p  m or p > m, and a E for some a > nip. When p = n,
the same conclusion holds for every q > 0, provided that b E 
and a E for some f3, a > 1. This example includes Theorem 3.1
of [7], where b(x) was taken = 1.
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3. SOBOLEV AND CACCIOPPOLI INEQUALITIES

Basic tools in the proof of Theorem 2 are a general anisotropic version
of the Sobolev inequality and a Caccioppoli type inequality for local
minimizers of J.

The Sobolev inequality we allude to is stated in the following theorem.

THEOREM. - Let A be any convex function satisfying (2.2)-(2.3) and
making the integral in (2.10) converge. Then there exists a constant c(n),
depending only upon n, such that

for every real-valued weakly differentiable function u on decaying
to 0 at infinity, in the sense that {x E > t}|  +~ for every
t > 0. The function An is optimal, in the sense that if (3.1) holds with An
replaced by any Young function Ao for every A satisfying (2.2)-(2.3) and
with prescribed A*, then the integral in (2.10) must converge and there
exists c > 0 such that Ao(s)  An (cs) for s ~ 0.

A proof of this theorem can be found in [4]. We shall need the

consequences contained in Lemmas 1 and 2 below.

LEMMA 1. - Let A be any convex function satisfying (2.2)-(2.3) and
making the integral in (2.10) converge. Let ~, ~ [0, -~ [0, 
be increasing functions such that

Assume that

Then

for every k > 0 and every real-valued weakly differentiable function u on
decaying to 0 at infinity. Here, c(n) is the constant appearing in (3.1 ).

The derivation of Lemma 1 from inequality (3.1 ) is straightforward.
Let us notice that the existence of a function ~ rendering (3.2) true
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is equivalent to the A2-condition for @. This is a consequence of

Proposition 1 below containing standard results relating the growth
of an increasing function @ : (0, +oo) -~ (0, -I-oo) with its indices

i ( ~ ) , I ( ~ ) , and Here, is the number defined by
(2.14); is defined similarly, but with lim infs~+~ replaced by

i (~) and I (~) are defined as and save

that and are replaced by infs>0 and 

respectively. Obviously, 0 ~ i (~)  i~(~) C ~oo(~) ~ I (~)  in

_ 
particular, if ~ is a Young function, then 0 can be replaced by 1 in these

inequalities.
PROPOSITION 1. = Let ~ : (o, -~-oo) ~ (0, be any increasing

function.
(i) 03A6 satisfies the 02 -condition if and only if 1 (03A6)  ~. In this case,

for every 8 > 0 there exists a constant C > 0 such that

(ii) If I~(03A6)  ~, then for every B > 0 there exist positive constants
C and s~ such that

In what follows, BR will denote a ball of radius R in 

LEMMA 2. - Let A be any convex function fulfilling (2.2)-(2.4) and
let u be any weakly differentiable function on S2 such that +

A(Du) dx  oo for every open set Q’ C Q.
(i) If (s / A * (s ) ) n~ -1 ds  then u is locally bounded.
(ii) If ds = then

for every k > 0 and every ball B (c S2.

Proof - Let k be any positive number. Fix any ball BR (c Q and
let Bli be a ball, concentric with BR, such that BR (c Bx E Q. Let 1]
be any real-valued smooth function on such that 0 ~ r~ (x )  1 for
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every x E = 1 in BR, 1] = 0 outside BR and D ~ ~ ~ 2/ ( R - R )
everywhere. Given any t > 0, we have

since An is convex. The convexity of A, our assumptions on 1] and
Proposition 1 applied to AM easily imply that there exists a positive
constant C (independent of u and t ), such that

By (2.7), the right-hand side of the last inequality is finite. Thus, t can be
chosen so large that

where c (n ) is the constant of inequality (3.1). Since An is a Young
function, for 0  ~,  1 and s > 0. Thus, inequalities
(3.1) and (3.9) imply that
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Now, if

then there exists 0 such that An (s ) = +00 for s  so . Hence,
inequality (3.10) tells us that (so/2k) + t in BR.

If, on the contrary,

then An is everywhere finite, so that the last two integrals in (3.8) are
finite. Thus, inequality (3.7) follows from (3.8) and (3.10). 0

The Caccioppoli inequality for a local minimizer u of J is contained
in the next lemma. In the statement, given any ball BR C Q and any
t E R, Et,R will denote the set defined by

LEMMA 3. - Let A and B satisfy assumptions (2.2)-(2.5). Let F :
[0, ~ [0, be an increasing function satisfying the OZ-
condition. Suppose that a number s0  0 exists such that

Let u be any local minimizer of J. Then, given any positive numbers
3, Ro and tl, there exists a constant C > 0, depending only on
I ( F) , ~ , Ro, so and tl, such that

for every 0  p  R  Ro and every t > tl.
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Proof - All the balls considered throughout the proof will be centered
at a fixed point of Q. Moreover, all the constants will be allowed to

depend on the same quantities as the constant C in (3.13).
Let and let ~ be any real-valued smooth function

on such that 0 ~ 1 for every x E I~n , r~ _--_ 1 in BT, rJ - 0
outside Ba and 2/ (a - r) everywhere. Fix any t and choose

in (2.8). Here, subscript + denotes positive part. Let us set v = u + cjJ.
Since ~ vanishes outside Et,(J, inequality (2.8) and assumption (2.1)
imply that

for a suitable constant c > 0. Consider the first integral on the right-hand
side of (3.14). We have

By the convexity of A, by our assumptions on rJ and by Proposition 1

applied to AM, there exists a constant c2 > 0 such that

On the other hand, assumption (3.12) and Proposition 1 ensure that
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for some positive constant c3. Combining (3.15) and (3.16) yields

Let us now take into account the second integral on the right-hand side of

have by (3.12) 
’

Hence, a constant c4 > 0 exists such that
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From (3.14), (3.17) and (3.19) we deduce that

for some cs > 0. Summing up the quantity c5 T A(Du) d x to both sides
of (3.20), dividing through by ( 1 + cs) and applying a standard iteration
argument (see, e.g., Lemma 3.1, Chapter 5 of [8]) yield (3.13). Q

4. PROOF OF THEOREM 2

Our approach is related to that of [5,7,10]. By Remark 1 we may

assume, without loss of generality, that

Here, r~ = E or r~ = 0 according to whether > 1 or = 1,
and £ is a positive number to be chosen later. To begin with, we require
that £ is so small that

and

Set

and let F : [0, +00) -~ [0, +00) be any increasing function such that
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Let us fix a ball BR (c Q with which every ball considered throughout the
proof will be concentric. For every nonnegative integer h we set

and, given t > 1,

Clearly, ph decreases to R/2 and th increases to t as h goes to +00.
Let u be any local minimizer of J. We set

where is defined as in (3.11 ). We claim that Jh  +oo for every h.

Indeed, by Holder’s inequality,

with the usual modification if ~B = oo . Owing to (4.1) and (4.4), there
-exists a constant ci such that F(s)~’  ci An (s) if s is sufficiently small
and F(s)t3’ = (AM(s) + if s is sufficiently large. Hence, by (2.15),
there exists c2 > 0 such that

Thus, by Lemma 2 and assumption (i), the first integral on the right-hand
side of (4.5) is finite. As far as the second integral is concerned, if 8 is so
small that

then, by Holder’s inequality again, we have
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Observe now that a positive constant c3 exists such that

Inequality (4.10) follows from (4.1) and Proposition 1 if ioo(A*) > 1,
and from (4.1) and the convexity of A * if = 1. Inequality (4.10)
implies that a constant c4 > 0 exists such that

Thus, the first integral on the right-hand side of (4.9) is finite by Lemma
2. The second is also finite, provided that 8 is chosen so small that

Such a choice of £ is possible thanks to assumption (ii). The finiteness of
Jh is proved.

Inequalities (4.6) and (4.9) ensure that, if Ro is any positive number
and R fi Ro, then a constant c5 exists such that

for every h. Fix now any smooth function c~ : [0, +00) -~ [o, 1 ] such that
w(s) = 1 if s E [o, 1 /2], w(s) = 0 if s > 3/4 and 4 for every
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s E [0, +oo). On setting

one has wh = 1 in c~h = 0 outside Bph and 2h+3 ~ R
everywhere. Inequalities (4.13), (4.7), (4.11) and Lemma 1 yield

for some C6 > 0, where [0, +oo) -~ [0, +00) is any function such
that Since = = +

B), = and AM + B satisfies the A2-condition, Eq. (4.4)
and Proposition 2 below ensure that one can take

in (4.14), where c7 is a suitable positive number. Notice now that
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for some constant cg independent of h. One can make use of the
Caccioppoli inequality (3.13) to estimate the former integral on the right-
hand side of (4.16), and exploit the fact that F (s ) + c9 for s > 0
for some c9 > 0 and Proposition 1 to estimate the latter. So doing, we
deduce that, for every 8 > 0, a constant cio, independent of h, exists such
that

We have

Moreover,

for some 0. Similarly, since t > 1,
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From (4.17)-(4.20) we deduce that, if 8 is sufficiently large, then

where c12 is a positive constant independent of h. Owing to (4.14), (4.15)
and (4.21 ), one has

where c13, c14 are constants independent of h, and

Notice that in (4.22) we have made use of the fact that ioo(AM + B) =
i~(F)  I (F) and that Jo for every h. Assumption (i) ensures that

_ we can choose ~ so small that

Thus, if £ is chosen so small that inequalities (4.2), (4.3), (4.8), (4.12) and
(4.23) are satisfied, then (4.22) and the inequality Jh  Jo again imply
that

where C15 is a constant independent of h, and 9 is the (positive) number
defined by
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Now, if t is so large that Jo  c151~e2-d~e2, then, by Lemma 4.7, Chapter 2
of [14], = 0, whence

This proves that u is locally bounded from above. The local boundedness
from below follows from the fact that -u is a local minimizer of

the functional obtained on replacing f(x, s , ~ ) by f(x, - s , -~ ) , an
integrand still satisfying (2.1 ). D

PROPOSITION 2. - Let y and so be positive numbers and let ~ :

(0, -~ (0, be an increasing function such = sY for
s fi so. Assume that

for some 8 E (0, ( ~ ) ) . Then I ( ~ )  -t-oo and there exists a constant

~’ > 0 such that

Proof - By Proposition 1 there exist positive numbers Cl and sl such
c 1 ~ (s ) for s > On the other hand, ~ (2s ) = 2Y ~ (s ) for

s ~ so/2. (2/so)Y ~ (2sl ) ~ (s) if so/2  s  sl , then ø
satisfies the 02-condition, whence I (~)  +00.

Consider now inequality (4.24). Proposition 1 ensures that there exists
a constant ci > 0 such that

Thus, it suffices to show that

for some c2 > 0. By Proposition 1, there exists s2 > 0 such that (4.25)
is true for s > s2. Since y ? i~ (~) - 8, (4.25) is trivially true (with
c2 = 1) also for s  so. It is then easily verified that (4.25) holds for every
s > 0. 0
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