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ABSTRACT. - A model hierarchy of hydrodynamic and quasi-hydro-
dynamic equations for plasmas consisting of electrons and ions is

presented. The various model equations are obtained from the transient
Euler-Poisson system for electrons and ions in the zero-electron-mass
limit and/or in the zero-relaxation-time limit. A rigorous proof of the
zero-electron-mass limit in the quasi-hydrodynamic equations is given.
This model consists of two parabolic equations for the electrons and
ions and the Poisson equation for the electric potential, subject to initial
and mixed boundary conditions. The remaining asymptotic limits will be
proved in forthcoming publications.
Furthermore, the existence of solutions to the limit problem which can

be of degenerate type is proved without the assumptions needed for the
zero-electron-mass limit (essentially, positivity of the particle densities).

~ E-mail: jungel@math.tu-berlin.de.
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Finally, the uniqueness of solutions to the limit problem is studied. © 2000
Editions scientifiques et médicales Elsevier SAS
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RESUME. - Une hiérarchie d’equations hydrodynamiques et quasi-
hydrodynamiques pour les plasmas constitues d’ électrons et ions est

presentee. Les equations des modeles resultent du systeme Euler-Poisson
non stationnaire pour les electrons et ions par une limite de masse

d’ electron ("zero-electron-mass-limit") et/ou par une limite de relaxation
("zero-relaxation-time-limit"). Une demonstration rigoureuse de la limite
de masse d’ électron dans les equations quasi-hydrodynamiques est

donnee. Ce modele consiste en deux equations paraboliques pour les
densites des electrons et ions et 1’ equation de Poisson pour le potentiel
electrique, completees par des conditions aux limites melees. Les autres
limites asymptotiques seront demontrees dans des publications a venir.
En outre, on montre 1’ existence de solutions du probleme limite qui

peut etre du type "degenere", sans les hypotheses utilisees pour la

limite de masse d’ électron (essentiellement, positivite des densites des
particules). Finalement, 1’ unicite de solutions du probleme limite est
etudiee. @ 2000 Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION

The mathematical study of Euler-Poisson systems for plasmas has
attracted a lot of attention in the mathematical literature since several

years (see, e.g., [4,5,20-25]). In order to perform numerical simulations
of the hyperbolic equations, a lot of computing power and special
algorithms are needed [9,12]. In some situations, however, the model

equations can be approximated by simpler equations, like drift-diffusion
models, in the sense that a small parameter appearing in the hyperbolic
equations is set equal to zero. Considering a plasma composed of
electrons and ions, the small parameters are, e.g., the electron mass

("zero-electron-mass limit") or the relaxation time ("zero-relaxation-time
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limit"). Therefore, letting the small parameters tend to zero we obtain a
hierarchy of hydrodynamic and quasi-hydrodynamic plasma models.
We want to present this model hierarchy, make precise the connections

between the corresponding systems, and prove rigorously the asymptotic
limits as the small parameters tend to zero. In this paper we are concerned
with the zero-electron-mass limit in the drift-diffusion equations and
with the existence and uniqueness of solutions of the limit equations.
The zero-relaxation-time limits and the zero-electron-mass limit in the

hydrodynamic equations will be proved in forthcoming publications [10,
17].
We consider an unmagnetized plasma consisting of electrons with

mass me and charge qe = -1 and of a single species of ions with
mass mi i and charge qi = +1. Denoting by n e = n e (x , t ) , u e = ue(x, t)
(respectively, n i , Ui) the scaled density and mean velocity of the electrons
(respectively, ions) and t) the scaled electric potential, these
variables satisfy the following scaled Euler-Poisson system (HD-EI):

where a = e, i and (x, t) E x (0, oo). This system is complemented
by initial conditions for na and ua and by a boundary condition for
~ . Here, Ua Q9 Ua denotes the tensor product with components 
for j, k = 1,..., > 0 is the scaled Debye length, and Te > 0 and
ri > 0 are the scaled relaxation time constants for electrons and ions,
respectively.
The pressure functions are usually of the form

where 03B303B1  1 and aa > 0. The fluid is called isothermal if ya = 1 (a = e
or a = i ) and adiabatic if ya > 1. In this paper we only assume that pa
is a strictly increasing function, which includes both cases. The system
( 1.1 )-( 1.3) is studied in [4,20,22,24] when d = 1.
The dimensionless parameters 8ex are given by
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where kB is the Boltzmann constant and vo and To are typical velocity and
temperature values for the plasma. We refer to Appendix A for details of
the scaling and the physical assumptions.

Usually, the ions are heavy compared to the electrons, i.e., mi » ~ne.
Therefore, if vo is equal to kB To / m i , we get

Letting (formally) 8e 2014~ 0 in Eq. (1.2), we obtain

where hex (a = e, i ) are the enthalpy functions defined by

Hence, if n e > 0, we conclude that he(ne) == ~ or, introducing the
function fe = = f e (~) . The integration constant can be set equal
to zero by choosing a reference point for the applied potential. Therefore,
the system (HD-EI) reduces in the limit 8e -~ 0 to the model (HD-1):

This zero-electron-mass limit will be proved rigorously in [10]. The
existence of global weak entropy solutions to (1.5)-(1.7) is shown in [5,
23] when d = 1.

Another set of equations is obtained in the zero-relaxation-time limit
of the model (HD-EI). Indeed, introduce a scaling of time s = rt and
define

where r = Te = il (for simplicity). Then Eq. (1.2) becomes, for a = e, i ,

Letting (formally) T -~ 0 and setting again t = s, n a = Na , Ma = Ua and
Q~ == j~ we obtain the system (DD-EI):
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Equations of this type are studied in [13,16]. Furthermore, using the
relaxation-time scaling (1.8) for a = i and r in Eq. (1.6) and letting
r - 0, we get the model (DD-I):

The rigorous proofs of these zero-relaxation-time limits will be presented
in [17].

This paper is devoted to the asymptotic limits 03B4e ~ 0 and Di - 0 in the
models (DD-EI) and (DD-I). The plasma is considered to be in a bounded
domain S2 C IRd (d > 1) whose boundary ~03A9 consists of two disjoint sets
hD and The model (DD-EI) is complemented by mixed Dirichlet-
Neumann boundary conditions and initial conditions, i.e., we assume that
the densities and the electric potential are given on the part r D of the
boundary and that the remaining part = a S2 B r D is insulating:

The vector v(x) is the exterior unit normal which is assumed to exist a.e.
Performing the zero-electron-mass limit 8e --~ 0 in Eq. (1.9) gives

The constant vanishes if we prescribe boundary conditions being in
thermal equilibrium (see Section 2). Then, he (ne) - ~ is constant (in time
and space). The integration constant can be chosen to be zero by defining
a reference point for the electric potential. Hence

and we get the system (DD-I) (see ( 1.11 )-( 1.12)) with boundary and
initial conditions (1.13)-(1.15) for ni, In particular, the limits ze =
Ti --~ 0, De --~ 0 and the limits Se ~~ 0, ri --~ 0 are commutative (see
Fig. 1).

Finally, let us consider the limits De --~ 0 and ~i --~ 0 in the system
(DD-EI). Under the condition that the boundary conditions are in thermal
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Fig. 1. A hierarchy of plasma models.

equilibrium and choosing a reference point for the electric potential, these
limits in (1.9) imply

where c E R is a constant. Therefore, the system (DD-EI) reduces to the

following nonlinear Poisson equation (NPE):

This equation can also be obtained from the system (DD-I) by letting
(formally) Di -~ 0 in Eq. (1.11). We observe that the one-dimensional
equation (NPE) is studied in [25]. In particular, the existence and

uniqueness of solutions have been shown. A summary of the above
models and limits is presented in Fig. 1.
The plan of this paper is as follows. In Section 2 we make precise

the zero-electron-mass limits and present the main results. We need three
main assumptions to make the limits rigorously: the strict monotonicity
of the pressure functions, a positivity condition for the boundary and
initial densities, and the compatibility conditions (1.16) or (1.17) on
the Dirichlet boundary part. The first assumption is necessary to define
the inverse function fa . From the positivity condition follows, by the
maximum principle, that the electron and ion densities are strictly
positive in Q x (0, T). Notice that for adiabatic plasmas, the parabolic
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equations (1.9) are of degenerate type and in general, solutions may exist
which vanish locally.
The main results are proved in Section 3. The proofs are based on two

ideas. Let us consider a solution (n e , nf, ~ s ) to (1.9)-(1.10) subject to the
boundary and initial conditions (1.13)-(1.15). First, we derive an a priori
estimate independent of D from the entropy inequality. From this estimate
we get the strong convergence of h e (n e ) - ~a in L2(0, T ; The

main difficulty then consists in showing the strong convergence of ne
in in order to identify the nonlinear function. Usually, this is
done by applying Aubin’s lemma which requires an estimate for the
time derivative of ne. However, such an estimate is not available. To
overcome this difficulty, we employ the monotonicity of the limiting
Poisson equation (1.12) to get the strong convergence of ~s, from which
we can conclude the strong convergence of ne. This result is related to a
compactness-by-convexity argument [3,29] (see Section 3).
The zero-electron-mass limit De - 0 in the system (DD-EI) provides

an existence result for the model (DD-I) under the condition that positive
boundary and initial conditions are prescribed. We prove in Section 4 the
existence of solutions to the model (DD-I) under general assumptions on
the boundary and initial conditions. The proof is based on appropriate
L °’° estimates for ni i and ~ by using Stampacchia’s truncation method.
Section 5 is devoted to the proof of the uniqueness of solutions to (DD-
I) for isothermal pressure functions pi (s) or for general pressure
functions, but assuming positive boundary and initial densities. In the
last case, the parabolic equation (1.11) is quasilinear and we employ a
dual method in the uniqueness proof. Finally, in Appendix A we give the
details of the scaling for the system (HD-EI).

2. ASSUMPTIONS AND MAIN RESULTS

This section is devoted to the study of the limits De --~ 0 and Di - 0
in the drift-diffusion models (DD-EI) and (DD-I). We recall the model
(DD-EI):
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For convenience, we introduce the abbreviations

[28, p. 67] and

if X is a Banach space. The norm of is denoted by ]] 
We write VM E LP (Q ) instead of Vu E LP (Q ; Il~d ) , etc. Furthermore, we
set

We say that (ne, ni, ~) is a weak solution to (2.1)-(2.6) if E

Eqs. (2.1 )-(2.3) are satisfied in the usual variational formulation, and the
initial condition is satisfied in the sense of V*.

In [13,16] the existence of global weak solutions to (2.1)-(2.6) is

shown under the following assumptions:

(Al) Domain: Q C (d > 1 ) is a bounded domain with Lipschitzian
boundary ~03A9 = FD FD n rN = 0, measd-1(0393D) > 0, and
rN is open in 

(A2) Pressure functions: pe, pi E are non-decreasing
functions.

(A3) Initial and boundary data:

where

THEOREM 2.1. - Let the assumptions (Al)-(A3) hold and let T > 0.
Then there exists a weak solution (ne, ni, ~) to (2.1 )-(2.6).

If additionally, ~03A9 = hD E (E > 0), 03C6D E for some
q > d, pe and pi are strictly increasing, and either
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(ii) nD,a > n > 0 on hD x (0, T ), > n > 0 in Q, a = e, i,
holds, then there exists a unique solution to (2.1 )-(2.6) in the class of
weak solutions satisfying ~ E Furthermore, it holds n

a. e. in QT, a = e, i .

For the main results of this section, we need the following additional
assumptions:

(A4) Positivity assumption: n D,a > n > 0 on FD x (0, T ), > n >

OinS2,a=e,i.
Strictly increasing pressure: pa (s) > ~B > 0 for all s E [n, oo).

(A6)e Compatibility condition: n D,e = he 1 (~D ) .
(A6)i Compatibility condition: nD,i = ~D) and

The assumption (A4) is necessary to show that the electron and ion
densities are strictly positive. From (A5)a follows that ha is strictly
positive on [n, oo) and hence, ha is a C1-diffeomorphism on [ll., (0).
The condition (A6)a means that the boundary density is in thermal

equilibrium. Indeed, in thermal equilibrium it holds

recalling that = pa (s) /s (see (1.4)) and (see Theorem 2.1 ).
Therefore, + = const. in QT. By choosing a reference point
for ~, we get

or ne = he 1 (~) and ni = ~). Adding Eq. (2.7), we see that it
must hold he(ne) + hi (ni ) = c = const.
Now we can state the main theorems.

THEOREM 2.2 ((DD-EI)~ (DD-I)). - Let the hypotheses (Al )-(A6)
for a = e hold. Let (ne, ns, ~s) be a solution to (2.1)-(2.6). Then there
exists a subsequence (ne~, ~s~) of (ne, ns, ~s) such that, as ~’ ~ 0,
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where (ni, ~) E L °° ( Q T ) 2 solves the initial-boundary value problem
( 1.11 )-( 1.12), (2.4)-(2.6) , for n i and 03C6.

In the case, where this limit problem is uniquely solvable for instance,
if pi (s) = s; see Section 5), the above convergence results hold for the
whole sequence (n e , n s , ~s ) .
THEOREM 2.3 ((DD-EI)-~ (NPE)). - Let the hypotheses (Al)-(A6)

for a = e, i hold and let for simplicity) ~ _ ~e = Let (ne, ~s) be a
solution to (2.1 )-(2.6). Then, as 03B4 ~ 0,

where ~ is a solution of the nonlinear Poisson equation ( 1.18)-( 1.19).
THEOREM 2.4 ((DD-I)~ (NPE)). - Let the hypotheses (A l )-(A6) for

a = i hold and let (n s , ~~ ) be a solution to ( 1.11 )-( 1.12), (2.4)-(2.6).
Then, as 03B4 ~ 0,

where ~ is a solution of the nonlinear Poisson equation ( 1.18)-( 1.19).

3. PROOFS OF THE MAIN RESULTS

We prove first Theorem 2.2. The proofs of Theorems 2.3 and 2.4 are
very similar. To simplify the presentation, we set 03B4 = 03B4i = 1 and 03BB = 1.
The following lemma provides uniform a priori estimates for the solution
of (DD-EI).

LEMMA 3.1. - Assume (A l )-(A4). Then there exist positive constants
n, ~ and K, which are independent of ~, such that
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where!l> 0 is defined in (A4) (see Section 2).

Proof - It is shown in [16] that the condition (A4) implies the

positivity of ne and n i in Q T . Therefore, ne, n e L 2 ( H 1 ) , and we can use
(ne - M)+ = max(0, ne - M), (ni - M)+ as test functions in Eqs. (2.1)
and (2.2), respectively, with

Then we get, using (2.3),

Therefore, we get the upper bound for ne and ni with n = M. Using
(na - ~)" = min(0, ~~ 2014 ~) for a = e, i as test functions in (2.1 )-(2.2),
respectively, we get similar as above the inequality

from which we conclude the lower bound. This estimate follows from
the monotonicity of the function s H 2 (s - !!)-2 + n (s - n ) - - 2 (s -
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n ) - (s + n ) , s > 0. The L °° bounds on n a immediately provide bounds
on ~, i.e., there exist ~ > 0 and K > 0, independent of 8, such that

To derive the remaining bounds, we use n e - n D,e as test function
in (2.1):

To estimate the last integral on the right-hand side, we use Eq. (2.3):

Using the L °° bounds on i and the bound for ~ and
employing Young’s inequality, we obtain from (3.1 ) the bound

where K > 0 is independent of 8. We get an analogous bound for n i in
the space L 2 { H 1 ) . Finally, we have
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which proves the lemma. D .

Now, we define the entropy (or free energy) of the system (2.1 )-(2.6):

The enthalpy functions ha are defined in ( 1.4). It holds L (t) > 0. The key
estimate for the zero-electron-mass limit is contained in the following
lemma.

LEMMA 3.2. - There exists a constant cl > 0, independent of 8, such
that for all t > 0

Proof - It can be shown that (see, e.g., [15, p. 513])

Using

we get
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Employing Eqs. (2.1) and (2.2) and the condition (A6)e, the first two
integrals on the right-hand side of (3.2) are equal to

where c > 0 denotes a constant independent of 3. Using the uniform
L °° bounds on n e and n i , the remaining integrals on the right-hand side
of (3.2) are bounded by a constant independent of 8. Therefore, we obtain
from (3.2)

The lemma follows. D

We are now able to prove Theorem 2.2.

Proof of Theorem 2.2. - First step: Let ns, ~s) be a solution
to (2.1)-(2.6). Thanks to the uniform bounds on ne, ns and ~~ of
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Lemma 3.1, the following convergence results are valid, after passing
to a subsequence:

weakly in and in 

~ ~ ~ weakly in L 2(Hl) and in L 2(QT) as 8’ - 0.
The boundedness of nf in n implies, by Aubin’s lemma
[26, p. 85, Corollary 4], the compactness of the sequence nf in the space
L2 ( QT ), i.e., there exists a subsequence (not relabeled) such that

We use the uniform L °° bound on n03B4’i to conclude that

The uniform lower bound on n03B4e from Lemma 3.1 and the entropy
inequality from Lemma 3.2 imply

Here we have used the compatibility condition (A6)e . The main difficulty
is to show that ne = 

Second step: We claim that

Recall that fe is the inverse function of he. Indeed, there exists )6 between
~s and ~s -+- ~s (for fixed (x, t) E Qr) such that

Since he is a c1-diffeomorphism on and the sequences (~s +
= and (~s)s are bounded in LOO(QT), there is a constant

c > 0 independent of 3 > 0 (and independent of (x, t ) ) such that

Hence
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This proves (3.5).
In order to identify ne and we need the strong convergence in

L 2 ( Q T) of one of the sequences or ~~‘ . However, since we do not
have an appropriate bound for the time derivative in some space,
we do not get the strong convergence of n e’ , like for by application of
Aubin’s lemma. We prove instead the strong convergence of ~s’ by using
the Poisson equation (2.3).

Third step: We use ~s‘ - ~ as test function for the Poisson equa-
tion (2.3) to obtain

where we have employed the monotonicity of fe. Hence

Observing that the last two terms tend to zero as 8’ --~ 0, thanks to (3.3),
(3.5) and the weak convergence of ~~~ to ~ in L2(QT), we get

Since the weak convergence of ~~~’ gives
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we obtain, together with (3.6),

The convergence of the L 2 norms and the weak convergence imply the
strong convergence of the sequence ~~s :

Note that this result is related to a compactness-by-convexity argument;
indeed, the weak convergence of and the inequality (3.6) imply the
strong convergence of ~~s~ in L 1 ( QT), since the function j (w) = ~ w ~ 2,
w E JRd, is strictly convex (see [29, Theorem 3] or [3, Theorem 1]).
By Poincare’s inequality, we get ~~~ --~ ~ in Therefore, in

view of the L °° bounds for ~s , ,

Thus

as D’ --~ 0. We conclude that ne = 

Fourth step : The above convergence results are sufficient to perform
the limit D’ - 0 in Eqs. (2.2) and (2.3). Uniqueness of solutions to
the limiting problem implies, as usual, the convergence of the whole
sequence (n e , nf, ~~a ) . a

Proof of Theorem 2.3. - Let 03B4 = 03B4e = 8i . Since we are looking for
estimates independent of De and 3i we only obtain uniform bounds for
n in L °’° ( Q T ) and L 2 ( H 1 ) . Furthermore, the entropy estimate in Lemma
3.2 has to be replaced by
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As in the proof of Theorem 2.2 we show that

employing the assumption (A6)i . Therefore, using ~~ - ~ as test function
in the Poisson equation (2.3) we obtain

Using the monotonicity of fe and fi and the weak convergences of ne, nf
and ~s , we obtain as in the proof of Theorem 2.2 the inequality

from which we conclude that ~~s -~ ~~ in L2 ( Q T ) . The remaining part
is analogous to the proof of Theorem 2.2. D

Proof of Theorem 2.4. - This proof is very similar to the proofs of
Theorems 2.2 and 2.3. We get uniform bounds for ni i in LOO(QT) and
L 2 ( H 1 ) . Furthermore,

Thus ns - fi (c - ~~ ) - 0 in L2(QT). The monotonicity of fi implies
the inequality (3.7) and the rest is as in the proof of Theorem 2.2. a
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4. EXISTENCE OF SOLUTIONS

In this section we prove the existence of solutions to the problem

Here, n denotes the ion density, ~ the electric potential, p (n ) the pressure
function for the ions, and f (~) is the inverse of the enthalpy function for
the electrons.
We impose the following assumptions:
(A2’) p E CI([O, oo)) is non-decreasing on [0, oo).
(A3’) f E is increasing on R and f(s) - oo as s - oo.
(A4’) nD E n ~D E n nr E

The notion of weak solution is as in Section 2, i.e., (n, ~) is a weak
solution to (4.1)-(4.5) if n E H1 (V *) n 

Eqs. (4.1 ) and (4.2) are satisfied in the usual variational formulation, and
the initial condition is satisfied in the sense of V * .

THEOREM 4.1. - Let T > 0. Under the assumptions (A 1 ), (A2’)-
(A4’) there exists a weak solution (n, 03C6) of (4.1 )-(4.5) satisfying the
bounds

whe re ~ def - MT -- c ( S2 ) max(O, f (0) ), c ( S2 ) > 0 only depends on S2,
and MT is defined by

Furthermore, if T = oo in (A4’) there exists a weak solution for all t > 0
and the above bounds hold uniformly in t provided that T = oo in the
definition of MT.
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Proof. - First step: An approximate problem. Let T > 0, set M = MT,
let K > = max(0, mines, K)), sM = max(0, min(s, M)) and

First we solve the approximate problem

subject to the initial and boundary conditions (4.3)-(4.5). To solve this

uniformly parabolic initial-boundary value problem we use Schauder’s
fixed point theorem. For this, let u ~ L2(QT) and let ~ (t ) E H 1 ( SZ ) for
a.e. t E (0, T ) be the unique solution of

The existence and uniqueness of the solution follow from the monotonic-

ity of f (cf. [19, Lemma 3.2.1, p. 36]). Then ~ is (Bochner-)measurable
in (0, T) and $ E The maximum principle implies $ E LOO(QT).
Now we solve the linear problem

Since E L 2 ( V * ) there exists a unique solution n E n

of this problem [30, Theorem 23.A, p. 424]. Therefore, the fixed

point operator S : L 2 ( Q ~ ) ~ t-+ n, is well defined. Taking
~ - as test function in (4.10) and using Young’s inequality and the

monotonicity of f, we get

which implies

Using n - n D as test function in (4.11) gives after standard manipulations
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Therefore, n = S (u ) lies in a bounded subset of n and

at n lies in a bounded subset of L 2 ( V * ) . Hence

In view of standard compactness results [30, p. 450], this implies that
is precompact in L2(QT). Standard arguments show the

continuity of S (see, e.g., [13]). The existence of a solution (nS, 
to (4.8)-(4.9), (4.3)-(4.5) is a consequence of Schauder’s fixed point
theorem.

Second step: ~, °° estimates. This is the main step of the proof. For
convenience, we omit the index 8 in (nS, We show first that

where k E R is such that f (k) = M. The existence of k follows from
(A3’). Use (~ (t) - k)+ = k) as test function in (4.9) to
get, for a.e. t E (0, T ),

This implies (4.12). In particular, we get

To find a lower bound for let /n ~ and use

m)+ in (4.9):
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employing Holder’s inequality. Let r > 2 be such that the embedding
~ is continuous. It is well known that for all ~c > m

holds [27, Chapter 4]. Therefore we get from (4.14) and Poincare’s

inequality, for > m,

Since r/2 > 1, we can apply Stampacchia’s Lemma (see [28, Chapter
2.3] or [27, Chapter 4]) to get

Next we claim that

The lower bound is easily obtained by using n - = min(0, n ) as test

function in (4.8). To obtain the upper bound use (nK - M)+ E L2(V)
as test function in (4.8). Since

we get for a.e. t E (0, T) [16, p. 91]
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and therefore,

Now use Eq. (4.9) for 03C6 and the estimate (4.13):

since M - nM = 0 in {n > M} for all K > M. Thus, the estimate (4.15)
is proved.

With these L°° bounds for n and ~ independent of K (and 8), we can
remove the cut-off functions, and (nê, solves

with the initial-boundary conditions (4.3)-(4.5), where pS(s) = pes) +
ss.

Third step : Further a priori estimates independent of ~. Taking n£ - nD
as test function in (4.16) gives
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Since the last integral is equal to

and since the L°°-bounds for n£ and ~£ imply, by using (4.17),

for some ci > 0 independent of c, we get the ~-independent estimate

Here and in the following, c denotes a positive constant independent of
c, with values varying from occurrence to occurrence. Therefore, we get
from (4.18)

and, employing Gronwall’s lemma, we conclude
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where c (T ) > 0 depends on T, but not on £. The Lipschitz continuity of
p in [0, M] implies

Furthermore,

Fourth step: The limit 8 - 0. From the estimates (4.19)-(4.21 ) and the
second step follows the existence of a subsequence (not relabeled) such
that

for some functions n E n H 1 ( V * ) , p E L2(H1), and ~ E
L 2 ( H 1 ) . The identification p = p (n ) follows from the usual monotonic-
ity argument. Indeed, setting pM (s ) = min ( p ( M) , max(0, pes))), the op-
erator P : L2(QT) -+ (L2(QT))*, ~P(u), v~ = fQT PM(U)V, is monotone
(thanks to (A2’)) and hemicontinuous (since pM is continuous and

bounded), hence maximal monotone. Since (nS) is bounded in 
and in H 1 ( V * ) and the embedding ~~ V* is compact, we infer
from Aubin’s lemma [26] that

The strong convergence of nS to n in L 2 ( V * ) and the weak convergence
of pS(nS) to p in L 2 ( V ) together with the monotonicity of pS applied to
the inequality
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give

Since P is maximal monotone, we conclude p = p (n ) .
Next we show that

We proceed similarly as in the proof of Theorem 2.2. We use as

test function in Eq. (4.17) and use the monotonicity of f to obtain

The strong convergence of n~ in L 2 ( V * ) and the weak convergence of 03C6~
in L 2 ( V ) give

Therefore, together with the inequality

which follows from the weak convergence of in L2 ( QT), we get

The convergence of the norms and the weak convergence imply the strong
convergence, i.e., (4.22).
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Now we can pass to the limit £ -~ 0 in the weak formulation of (4.16),
using the weak convergences of nS to n and to pen) in 
and the strong convergence (4.22), to conclude that (n, 03C6) solves (4.1)-
(4.2). Furthermore, (n, 03C6) satisfies the boundary conditions (4.3)-(4.4) in
the sense of (4.6), and n (0) = n 1 since n E T ] ; V * ) . a

We end this section by proving some positivity results on n which are
needed for the uniqueness result. We call (n, 03C6) a limit solution of (4.1 )-
(4.5) if it is obtained as the (L2-weak) limit of approximate solutions

E of the problem (4.16)-(4.17)
subject to the initial-boundary conditions (4.3)-(4.5).
We show now that the ion density (of every limit solution) remains

positive (at least for finite time), if the initial and boundary densities are
positive, even in the adiabatic case. Let us suppose in the following that
the assumptions (Al), (A2’)-(A4’) hold.

PROPOSITION 4.2. - Suppose that there exist constants no > 0, 
0 such that

where T = oo is admissible. Then there exists a constant ~,~ > 0
such that for every limit solution it holds

Proof - Let (nS, 03C6~) be a solution to the approximate problem (4.16)-
(4.17), (4.3)-(4.5) such that n~ - n weakly in L2(QT). In the proof of
Theorem 4.1 we have shown that (see (4.7))

Let z = where ho will be specified later. Using
(nE - z)- E L2(V) as test function in (4.16) and employing (4.17), we
get
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if we take ~,1 > max(~,o, MT - f (_~)) . Now, Gronwall’s lemma implies
(nS - z)- (t) = 0 in SZ, for a.e. t E (0, T ) . Therefore, z in QT,
and the conclusion follows after letting £ ~ 0. D

The above proposition can be improved if the function f is uniformly
positive, including the case f = exp.

PROPOSITION 4.3. - Suppose that f (s) > 0 for all s E II~ and that

for some no > 0. Then there exists a constant n > 0 such that, for every
limit solution,

Proof. - Let (nE, be as in the proof of Proposition 4.2. From (4.23)
follows that f (_~) > 0 in QT. Set n = min(no, f (_~)) > 0. Using
(n £ - n ) - as test function in (4.16) and proceeding as in the proof of
Proposition 4.2, we obtain
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Therefore, in Q T , from which we conclude the assertion. a

5. UNIQUENESS OF SOLUTIONS

We present two results on the uniqueness of solutions to (4.1 )-(4.5).
For both results we need additional assumptions. First, we prove the
uniqueness of solutions in the class of weak solutions (as defined in
Section 4) if isothermal states are assumed, i.e., pen) = n.

For nonlinear pressure functions, the problem becomes quasilinear,
which is more delicate. We show the uniqueness of solutions in the class
of weak solutions satisfying ~ E where we have to exclude

mixed boundary conditions. Indeed, it is well known that in the case
of mixed Dirichlet-Neumann boundary conditions, we get, in general,
at most Q~ (t) E W2’4/3-E (~) for every e > 0 [2], even for smooth data.
For the second result, we also have to assume that either p’(s) is strictly
positive or the initial and boundary densities are strictly positive. This
condition implies that the problem (4.1 )-(4.5) is uniformly parabolic.
We cannot present a general uniqueness result for degenerate prob-

lems. The reason lies in the fact that we are not able to deal with both
the degeneracy of the function p and with the nonlocal drift term. It is
possible to prove uniqueness of solutions of the degenerate problem for
given ~ (see, e.g., [ 13] for a related result) or of the nondegenerate prob-
lem coupled self-consistently to the Poisson equation (Theorem 5.2). In
semiconductor modeling and in the hydrodynamics of immiscible flu-
ids through a porous medium, similar difficulties occur and no general
uniqueness results are available (see [1,7,8]). We refer to [7] for related
results for the degenerate case under special conditions (also see Remark
5.3).
We assume throughout this section that the conditions (Al), (A2’)-

(A4’ ) hold.

THEOREM 5.1. - Let pes) = s for s ) 0. Then there exists a unique
weak solution (n, ~~) of (4.1 )-(4.5).

Proof - Let (n 1, and (n2, ~2) be two solutions to (4.1 )-(4.5). Then
nl, n2 E -. T]; Using n1 - n2 as test
function in the difference of Eqs. (4.1), satisfied by (n 1, ~~ ), (n2, ~2),
respectively, we obtain
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for every t E (0, T). Here, we have used Eq. (4.2) and Young’s inequality.
Observing that, thanks to the monotonicity of f,

and taking into account the L°° bounds (4.7), we get

~t

We conclude from Gronwall’s lemma that (n 1 - n 2 ) (t ) = 0 a. e. in Q , for

every t E (0, T). D

THEOREM 5.2. - Let ~03A9 = FD E (~ > 0), 03C6D E for
q > d (d being the space dimension), p is strictly increasing, f is locally
Lipschitz continuous in and either

(i) p’(s) > po > 0 for all s > 0, or
(ii) nD > no > 0 on FD x (0, T ), no > 0 in Q.

Then there exists a unique weak solution of (4.1)-(4.5) satisfying ~ E
L°° ( W2~q ). .

Proof - Let (n 1, ~l ) be a limit solution to (4.1 )-(4.5) (see the defini-
tion before Proposition 4.2) and let (n2, ~2) be another weak solution. Us-
ing elliptic regularity theory [28], we conclude that ~i (t) E (SZ) and

E LOO(QT) for i = 1, 2, since q > d. Set n = nl - n2, ~ _ ~l - ~2.
and let r > 0. We get for every test function ~ E cOO(QT) satisfying
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Now set

If the condition (5.2) is satisfied then it holds A > po > 0 in QT. In
the case of condition (5.2) we get the existence of n > 0 such that

t ) > n in Q T , by Proposition 4.2, and therefore,

Furthermore, we get the regularity E C° ( [0, T ] ; 
There exist sequences E such that

We rewrite Eq. (5.1):

Let 0/ E COO(QT) be the unique solution of the retrograde
uniformly parabolic problem

where g~ E satisfies gq - n in The existence of 03C8~
follows from standard parabolic theory [18]. Multiplying the differential
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equation (5.3) by we easily get the following estimate (see, e.g.,
[13] for details):

where co > 0 depends on po in case (i) or on u in case (ii). Observing that

we get from Eq. (5.2)

Performing the limit 1] -~ 0 yields

where M = The difference ~ _ ~1 - ~2 satisfies, since f is
monotone, the equation

which implies, together with (5.4),

Choosing r  1 /(c0c1 M)2, we conclude that n 1 - n2 = 0 a.e. in Q03C4. In

particular, (n 1 - n 2 ) ( z ) = 0 in the sense of V*. Thanks to (5.5) we infer
that (~i - ~2 = 0 a.e. in Qr . Applying the above method to the problem
(4.1)-(4.5) in Q x (r, 2r), we get nl - n2 = 0 and ~l - ~2 = 0 a.e. in
Q x (r, 2r) with (u 1 - u2) (2i) = 0 in the sense of V*, etc. Finally, after
a finite number of steps we arrive to n = n 2 and ~i = ~2 a.e. in Q T . D

Remark 5.3. - It is possible to prove the uniqueness of solutions of the
mixed boundary-value problem in one or two space dimensions, provided
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that the boundary 8Q is Lipschitzian and that n I E and n D,
E for some p > 2. This result can be proved as in [11].

Furthermore, it is possible to relax the hypothesis that p (s) is strictly
increasing. Indeed, we get uniqueness of solutions, provided that pes) is
only non-decreasing and that the inequality

is satisfied for some solution (n, ~). This inequality can be interpreted
as an entropy-type condition, since Eq. (4.1) becomes hyperbolic if

pes) = const. The proof of this result is analogous to the corresponding
proof in [6].
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APPENDIX A

The hydrodynamic plasma equations including the physical parameters
read as follows:

where Qe = -q, Qi = +q, q is the elementary charge, and so is the
permittivity constant. For the scaling, we assume that the electron mass
me, the ion mass mi and the relaxation times Te, Ti are constant. Let
L denote the diameter of the domain, let Na and va be typical density
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and velocity values for the electrons and ions, respectively (a = e, i ).
Furthermore, we set

where vo is a velocity constant, and we define the scaled Debye length

where To is a temperature constant. Then, performing the scaling

in the system (A.1 )-(A.3), we get the equations for the dimensionless
variables and parameters

Here, qe = -1, qi = +1, Ya = Na/max(Ne, Ni ) , and

In order to obtain the model (HD-EI) of Section 1, set vo = ve = vi and
Ne = Ni such that ye = Yi = 1.
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