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ABSTRACT. - We consider the problem

where S2 is a bounded smooth domain in /?~, ~ > 0 is a small

parameter and f is a superlinear, subcritical nonlinearity. It is known
that this equation possesses boundary spike solutions such that the spike
concentrates, as £ approaches zero, at a critical point of the mean .
curvature function also known that this equation
has multiple boundary spike solutions at multiple nondegenerate critical
points of H ( P ) or multiple local maximum points of H ( P ) .
In this paper, we prove that for any fixed positive integer K there

exist boundary K-peak solutions at a local minimum point of H(P).
This implies that for any smooth and bounded domain there always exist
boundary K-peak solutions.
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We first use the Liapunov-Schmidt method to reduce the problem
to finite dimensions. Then we use a maximizing procedure to obtain
multiple boundary spikes. © 2000 Editions scientifiques et médicales

Elsevier SAS

Key words: Multiple boundary spikes, nonlinear elliptic equations

RESUME. - Nous considerons le probleme

ou Q est une domaine bomée avec frontiére lisse en /?~, ~ > 0 est un
parametre petit, et f est surlinéaire et souscritique. Il est bien connu que
cette equation possede des solutions avec pointe sur la frontiére telle que
la pointe se concentre (quand ~ tend vers zero) a une pointe critique
de la courbure moyenne H ( P ) , Il est aussi connu que cette

equation possede pleusieurs solutions avec pointes qui se concentrent
sur pleusieurs points critiques nondégénerés de H ( P ), ou sur pleusieurs
maxima locaux de H ( P ) .
Dans ce papier, nous prouvons que, pour chaque entier positif K donné,

il existe solutions avec K pointes la frontiére, situees sur un minimum
relatif de H ( P ) . Ceci implique que pour chaque domaine qui est lisse et
bomee il existe toujours des solutions avec K pointes a la frontiére.
Nous utilisons la methode de Liapunov-Schmidt pour reduire le

probleme dans une espace de dimension finie. Ensuite, nous utilisons une
procédé de maximization pour obtenir les pointes sur la frontiére. © 2000
Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION

The aim of this paper is to construct a family of multiple boundary
peak solutions to the following singularly perturbed elliptic problem
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where A = ~ N 1 ( a 2 / ~ x 2 ) is the Laplace operator, SZ is a bounded

smooth domain in 7?~, ~ > 0 is a constant, the exponent p satisfies

1  p  (N + 2)/(N - 2) for N  3 and 1  p  ~ for N = 2 and
v (x ) denotes the normal derivative at x E 

Eq. (1.1) is known as the stationary equation of the Keller-Segal
system in chemotaxis. It can also be seen as the limiting stationary
equation of the so-called Gierer-Meinhardt system in biological pattern
formation, see [35] for more details.

In the pioneering papers of [18,21] and [22], Lin, Ni and Takagi
established the existence of least-energy solutions and showed that

for £ sufficiently small the least-energy solution has only one local
maximum point P£ and P£ E Moreover, H(P~) ~ maxP~~03A9 H(P)
as £ 2014~ 0, where H (P) is the mean curvature of P at In [23], Ni
and Takagi constructed boundary spike solutions for axially symmetric
domains. The second author in [35] studied the general domain case
and showed that for single boundary spike solutions, the boundary spike
must approach a critical point of the mean curvature; on the other
hand, for any nondegenerate critical point of H ( P ), one can construct
boundary spike solutions whose spike approaches that point. The first
author in [11] constructed multiple boundary spike layer solutions at

multiple local maximum points of H ( P ) . Later the second and third
authors in [38] constructed multiple boundary spike layer solutions at
multiple nondegenerate critical points of H ( P ) . Related results were
obtained independently by Y.Y. Li in [ 17] . When p = (N + 2) / (N - 2),
similar results for the boundary spike layer solutions have been obtained
in [ 1-3,12,20,27-29,31 ] , etc. We also note that multiple interior peak
solutions in general domain are obtained in [13].

In this paper, we study the existence of multiple boundary peak
solutions at a local minimum point of H ( P ) .
More precisely, we consider the problem

We will assume that f : R+ ~ R is of class C 1+~ and satisfies the
following conditions
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(f2) There exist some constants 1  p 1, p2, p3  ( (N + 4) / (N -
4))+(= oo if N  4; = (N + 4)/(N - 4) if N > 4) such that
f (o) = 0, f ~ (o) = 0 and

(f3) The equation

has a unique solution w (y) (by the results of [9], w is radial, i.e.,
w = w (r) and w’  0 for r = ~ y ~ ~ 0) and w is nondegenerate.
Namely the operator

is invertible in the space :_ {u = E 

Two important examples of f are the following.

Example 1 (Chemotaxis and pattern formation). - feu) = uP where
1  p  ((N + 2)/(N - 2))+(= oo if N = 2; = (N + 2)/(N - 2) if N >
2). It is easy to see that f satisfies (fl), (f2) and (f3). This problem arises
from the Keller-Segal model in chemotaxis and the Gierer-Meinhardt
system in pattern formation (see [21,22] and the references therein).

Example 2 (Population dynamics and chemical reaction theory). -

where 0  a  1 /2. This is a famous model from population dynamics
and chemical reaction theory (see [5,15,30]). If N  8 then by the result
of [8], f satisfies (f 1 )-(f3).

Other nonlinearities satisfying (fl), (f2) and (f3) can be found in [6].
Let A ~~03A9 be an open set such that
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We now state the main result in this paper.

THEOREM 1. I . - Assume that condition ( 1.5) holds. Let f satis, fy as-
sumptions (fl )-(f3). Then for e suficiently small problem ( 1.2) has a so-
lution u~ which possesses exactly K local maximum points Q 1, ..., QK
with ( Q 1, ..., Q x ) E F x ~ . ~ x h. Moreover

i, k, l = 1, ... , K, k ; l, as e --~ 0. Furthermore, we have

for certain positive constants a, b.

Theorem 1.1 can be derived from a more general theorem as follows.
THEOREM 1.2. - Let r , i = 1, ..., K, be open sets in ~03A9 such that

Let f satisfy assumptions (f 1 )-(f3). Then for e sufficiently small problem
( 1.2) has a solution u£ which possesses exactly K local maximum points
Q 1, ..., Q x with ( Q 1, ..., Q x ) E hl x ... x rK . Moreover

i , k, l = 1,..., K, k ~ l, as E ~ 0. Furthermore, we have

for certain positive constants a, b.

More details about the asymptotic behavior of uE can be found in the
proof of Theorem 1.2.
We have the following interesting corollary.
COROLLARY 1.3. - For any smooth and bounded domain and any

fixed positive integer K E Z, there always exists a boundary K-peaked
solution of ( 1.2) if e is small enough.



52 C. GUI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 47-82

Theorem 1.1 is the first result in proving the existence of multiple
boundary spike solutions for problem (1.2) in any smooth bounded

domain. Note that the boundary spikes can approach the same point on
the boundary when A has a strictly local minimum point of H (P) . This
is new and interesting in its own right.
We shall only prove Theorem 1.2. To introduce the main idea of the

proof of Theorem 1.2, we need to give some necessary notations and
definitions first.

Let w be the unique solution of (1.3). It is known (see [9]) that w is
radially symmetric, decreasing and

Associated with problem (1.2) is the following energy functional

where F(u) _ , J; (s) ds and u E 
For any smooth bounded domain U we set Puw to be the unique

solution of

Let ~ > 0 be a small number. Let 0393i be as in Theorem 1.2. Set

For we set
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where are the (N - 1) tangential derivatives at Pi (without loss of

generality we assume that the inward normal derivative at Pi is eN and
denote as in the rest of the paper.)
We first solve for in up to by using the Liapunov-

Schmidt reduction method. This method evolves from that of [7,25] and
[26] on the semi-classical (i.e., for small parameter h) solution of the
nonlinear Schrodinger equation

in R N where V is a potential function and E is a real constant. The
method of Liapunov-Schmidt reduction was used in [7,25] and [26] to
construct solutions of (1.9) close to nondegenerate critical points of V
for h sufficiently small.
Then we show that ~£,p is C~ in P. After that, we define a new function

We maximize Mg(P) over A. Condition (1.5) ensures that Ms(P)
attains its maximum inside A. We show that the resulting solution has
the properties of Theorem 1.2.
The paper is organized as follows. Notation, preliminaries and some

useful estimates are explained in Section 2. Section 3 contains the setup
of our problem and we solve (1.2) up to approximate kernel and cokernel,
respectively. We set up and solve a maximizing problem in Section 4.
Finally, in Section 5, we show that the solution to the maximizing
problem is indeed a solution of (1.2) and satisfies all the properties of
Theorem 1.2.

Throughout this paper, unless otherwise stated, the letter C will always
denote various generic constants which are independent of a, for 8
sufficiently small. 8 > 0 is a very small number. o ( 1 ) means ~o(l)~ ( -~ 0
as ~ 2014~ 0.
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2. TECHNICAL ANALYSIS

In this section we introduce a projection and derive some useful
estimates. Throughout the paper we shall use the letter C to denote a
generic positive constant which may vary from term to term. We denote

R+ _ ~ (x’, XN) xN > 0} . Let w be the unique solution of (1.3).
Set

Let P E a S2 . We can define a diffeomorphism straightening the

boundary in a neighborhood of P. After rotation of the coordinate system
we may assume that the inward normal to a S2 at P is pointing in the
direction of the positive xN-axis. Denote x’ _ (xl , ... , XN-l),

and

Then, since ~03A9 is smooth, we can find a constant Ro > 0 such that 8 Q n

SZo can be represented by the graph of a smooth function pp : B’ (Ro) ~
R where pp(0) = 0, Vpp(O) = 0.
From now on we omit the use of P in pp and write p instead if this

can be done without causing confusion. The mean curvatures of a S2 at P
is

where

and higher derivatives are defined in the same way. By Taylor expansion
we have .
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Recall that for a smooth bounded domain U the projection Pu of
H2(U) onto {v E H2(U) = 0 at aU} is defined as follows: For
v E let co = Puv be the unique solution of the boundary value
problem

Let

where

Then satisfies

We denote

For x E S2o set now

Furthermore, for x E Qo we introduce the transformation T by
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Note that then

Let ~i be the unique solution of

where w’ is the radial derivative of w, i.e., w’ = w,. (Y), and r = ( (x -

Note that v1 is an even functions in y’ = (yi,..., yN-1 ) . Moreover, it
is easy to see that ~ for some 0  ~c  1.

Let X(x) be a smooth cut-off function such that X(x) = 1, x E
B (0, 0.8Ro) and X (x ) = 0 for x E B(0, Ro)c.

In fact we set Ro be such that = 0 . 9 r~ ~ .
Note that this x is as good as the cut-off function in [35].
Set

Then we have

PROPOSITION 2.1. -

Proof - Proposition 2.1 was proved in [37] by Taylor expansion and
a rigorous estimate for the remainder using estimates for elliptic partial
differential equations. D

Similarly, we know from [37] that

PROPOSITION 2.2. -

where Ey = T (x) and w~ satisfies
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and ~~ w2 ~~~  C.

Note that for some IL  1 and wi 1 is an odd

function in y’ . Finally, let L o = A - 1 + f ’ ( w ) . We have

LEMMA 2.3. -

where = {u E = 0 

Proof. - See Lemma 4.2 in [22]. D

Next we state some useful lemmas about the interactions of two w’s.

LEMMA 2.4. - Let P = (Pi,..., PK ) E A. Then we have

where yk~ E ~ and ~’ is defined as follows

Furthermore, = we have yk~ E ~~ where

Proof. - Note that as -~ oo we have
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Hence if we straighten the boundary at Pk we have

for some

Note that if = we have Pk -~ P~ and bN = 0 where
bN is the Nth component of b. D

Note. - yki = 

Next we are going to show three technical lemmas.
The first lemma is about some relations of several integrals associated

with w in RN-l.
Let

We have

LEMMA 2.5. -
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Proof - Let y = (y’, Y N ). The operators 0 and ~ below are with
respect to y E RN, and the integrations are with respect to y’ - (y’, 0) E

We will also use r for 

By straightforward computations we have

and

and

Since w satisfies

by multiplying (2.17) by y’ ~ 2 (~ w ~ y) and integrating it with respect to
y’ in we obtain (2.12).
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Multiply (2.17) by and integrate it in Then (2.13 ) is derived.
This proves Lemma 2.5. D

LEMMA 2.6. - For any function G(t) in ([0, oo)) with G(o) _
G’ (0) = 0, we have

Proof - Since w decays exponentially in y at infinity, we have
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where

Hence Lemma 2.6 is proven. D

LEMMA 2.7. -

Proof - Using (2.5), (2.17) and the exponential decay of wand VI, we
have
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In view of Proposition 2.1, Lemma 2.7 follows immediately. D

The next lemma is the key result in this section.

LEMMA 2.8. - For any P = (Pi, ..., PK ) e A and ~ suficiently small

where yl is defined in (2.1 I ) yki = 03B3lk ~ 03A3 and 03A3 is defined by (2.8) and
yl is defined in (2.1 1 ).

Furthermore, = we have yk~ E ~i where ~~ is

defined by (2.9).
Proof - We shall prove the case when K = 2. The other cases are

similar.
Since P = PZ) E A , we have that w(~ Pz~/~)  r~e.
First we look at the case K = 1. Note that by Proposition 2.1,

Lemmas 2.6 and 2.7 we have
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Similarly we have

Then

For the case K = 2, we can write

where Ii , i = 1, 2, 3, are defined at the last equality and

For /3, we have
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For Il, using P2~/e) =O(£) we have

Similarly,

Hence
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Here we have used Lemma 2.4

and similarly

3. LIAPUNOV-SCHMIDT REDUCTION

In this section, we reduce problem (1.2) to finite dimensions by the
Liapunov-Schmidt method. We first introduce some notations.

Let be the Hilbert space defined by



66 C. GUI ET AL. / Ann. Inst. Henri Poincare 17 (2000) 47-82

Define

for u E HN (S2£ ) . Then solving Eq. (1.2) is equivalent to

Fix P = ( Pl , ... , Px ) E A. To study (1.2) we first consider the

linearized operator

It is easy to see (integration by parts) that the cokernel of is coincides
with its kernel. Choose approximate cokernel and kernel as

Let denote the projection from L 2 ( SZ£ ) onto Cflp. Our goal in this
section is to show that the equation 

’

has a unique solution E k|~,P if E is small enough and P =

(Pl, ..., PK) E A .
As a preparation in the following two propositions we show the

invertibility of the corresponding linearized operator.
PROPOSITION 3.1. - Let = o LE. There exist positive con-

stants ~, 03BB, such that for all ~ E (0, ~) and P = ( Pl , ..., PK ) E A

for all 03A6 E 

PROPOSITION 3.2. - For any ~ E (0, E) and P = ( Pl , ..., PK ) E A the
map
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is surjective.

Proof of Proposition 3. l. - We will follow the method used in [7,25,
26], and [37]. Suppose that (3.1 ) is false. Then there exist sequences
{Ek}, {Pk} _ {(Pl,k_, ... , and {~k} (i = 1, 2, ... , K, k = 1, 2,...)
with Ek > 0, Pk e 7l, ~k such that

For j = 1, 2, ... , N - 1 denote

where

Note that

by Proposition 2.2, the symmetry of the function wand the fact that
P E A (recall that Here is the Kronecker

symbol. Furthermore, because of (3.4),

as k - oo. Let and T be as defined in Section 2. (Note that we
allow Ro - 0 but -~ oo.) Then T has an inverse such that

Recall that ~y = T (x ) . We use the notation if P is replaced by Pi.
We introduce new sequences by
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for y E Since and ( T ~i ~ ) -1 have bounded derivatives it follows
from (3.5) and the smoothness of X that

for all k sufficiently large. Since also

uniformly in k for all k large enough there exists a subsequence, again
denoted by which converges weakly in to a limit as

k - oo. We are now going to show that - 0. As a first step we
deduce

This statement is shown as follows (note that det D T = det = 1 )
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where S2o is as defined in Section 2. In the last expression the first two
terms tend to zero as k -~ oo since is bounded in L 2 (S2 ) and
the term in the square bracket converges to 0 strongly in L 2 (SZ ) . The last
two terms tend to zero as k -~ oo because of the exponential decay of

at infinity.
We conclude

This implies (3.8).
Let ICo and Co be the kernel and cokernel, respectively, of the linear

operator which is the Frechet derivative at w of

where

Note that

Eq. (3.8) implies that E By the exponential decay of wand by
(3.4) we have after possibly taking a further subsequence that

i.e., lCo . Therefore = 0.
Hence
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By the definition of wi,k we get 0 in H2 and

Furthermore,

and therefore

Since

we have that

In summary:

From (3.11) and the following elliptic regularity estimate (for a proof see
Appendix B in [37])

for ~k E we deduce that

This contradicts the assumption

and the proof of Proposition 3.1 is completed. D

Proof of Proposition 3.2. - We define a linear operator T from 
to itself by
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Its domain of definition is By the theory of elliptic equations
and by integration by parts it is easy to see that T is a (unbounded) self-
adjoint operator on and a closed operator. The L 2 estimates of
elliptic equations imply that the range of T is closed in Then by
the Closed Range Theorem ([39], p. 205), we know that the range of T
is the orthogonal complement of its kemal which is, by Proposition 3.1,

This leads to Proposition 3.2. D

We are now in a position to solve the equation

Since is invertible (call the inverse L£,P) we can rewrite

where

and the operator Gs,p is defined by the last equation for 03A6 E H2N (03A9~).
We are going to show that the operator is a contraction on

if 8 is small enough.
In fact we have the following lemma

LEMMA 3.3. - For a sufficiently small, we have

Proof. - (3.16) follows from the mean value theorem.
To prove (3.17), we divide the domain into ( I~ -f- 1 ) parts: let SZ =

U K 1’ S2i where
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Note that

We now estimate Pwi) in each domain.
In S2K+l, we have

Hence, using also the fact that w (y) decays exponentially in I y we obtain

In S2i , i = 1, ... , K , we have

Using Proposition 2.1 and the facts that P w , w and vi 1 decay exponen-
tially, we obtain

Thus
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where À > 0 is independent of 8 > 0 and c(8) - 0 as 8 - 0. Similarly
we show

where c (~ ) - 0 as 3 - 0. Therefore Ms,p is a contraction on B8.
The existence of a fixed point now follows from the Contraction

Mapping Principle and is a solution of (3.14).
Because of

we have

We have proved
LEMMA 3.4. - There exists E > 0 such that for every (N + I)-tuple

E, Pl , ..., PK with 0  E  ~ and P = ( Pl , ..., PK ) E A there is a unique
E K|~,P satisfying P03C9i + E Cs,p and

The next lemma is our main estimate.

LEMMA 3.5. - Let be defined by Lemma 3.4. Then we have
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where yl and yk~ are defined in Lemma 2.5.

Proof - In fact for any P E A , we have

where

by Lemmas 3.3 and 3.4.
Estimate (3.19) now follows from Lemmas 2.6 and 3.4. D

Finally, we show that is actually smooth in P.

LEMMA 3.6. - Let be defined by Lemma 3.4. Then E C 1

in P.

Proof - Recall that is a solution of the equation

such that

By differentiating Eq. (3.19) twice we easily conclude that the functions
P wi and are C 1 in P. This implies that the

projection 03C0~,P is C1 in P. Applying ~/~03C4Pi,j gives



75C. GUI ET AL. / Ann. Inst. Henri Poincare 17 (2000) 47-82

where

We decompose into two parts:

where (a~£,P/~tPl,~ )1 E and (a~~,P/a~Pl,~ )2 E 
We can easily show that (~03A6~,P/~03C4Pi,j)1 is continuous in P since

and

We can write Eq. (3.23) as
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As in the proof of Propositions 3.1 and 3.2, we can show that the
operator

is invertible from to Then we can take inverse of o

+ in the above equation and the inverse is continu-
ous in P.

Since 1 E K~,P are continuous in P and so
is we conclude that )2 is also continuous in
P. This is the same as the C~ 1 dependence of in P. The proof is
finished. D

4. THE REDUCED PROBLEM: A MAXIMIZING PROCEDURE

In this section, we study a maximizing problem.
Fix P E 11. Let be the solution given by Lemma 3.4. We define a

new functional

We shall prove

PROPOSITION 4.1. - For £ small, the following maximizing problem

has a solution P£ E A.

Proof - Since + ~£,P) is continuous in P, the max-
imizing problem has a solution. Let be the maximum where

We claim that P~ 
In fact for any P E 11, by Lemma 3.5, we have
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Since is the maximum, we have

for any P = (Pi,..., PK ) E ~l .
Choose Pi such that H ( Pi ) - minP~0393i H ( P ) and Pl|/~)/~ ~

0. This implies that

for any 03B4 > 0.
Note that 9~ G {P, e 9f; or P/!/~) = ~}. Hence ifPe 97l,

we have that either

for some i = 1, ... , K and r~o > 0 (by condition (1.5)), or

for some k ~ l.
Hence if P E a ~l we have

Note that
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since for any we have

A contradiction to (4.3) if we choose 3 small enough.
It follows that P~ E ll.
This completes the proof of Proposition 4.1. D

5. PROOF OF THEOREM 1.2

In this section section, we apply results in Sections 3 and 4 to prove
Theorems 1.1, 1.2 and Corollary 1.3.

Proofs of Theorems l. l, 1.2 and Corollary 1.3. - By Lemmas 3.4
and 3.6, there exists so such that for ~  so we have a C1 

map which,
to any P E A , associates E such that

for some constants c~/ e 

By Proposition 4.1, we have P~ e A, achieving the maximum of the
maximization problem in Proposition 4.1. Let ~ = and Mg =

+ Then we have

Hence we have

Thus
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Therefore we have

Since E we have that

Note that

where

Thus Eq. (5.2) becomes a system of homogeneous equations for
03B1kl and the matrix of the system is nonsingular since it is diagonally
dominant. So akl - 0, k = 1,..., K, I = 1,... N - 1.

Hence u~ = 03A3ki=1 P03A9~,P~ w + is a solution of (1.2).
By our construction, it is easy to see that by the maximum principle

u ~ > 0 in Moreover -~ ( K / 2) I ( w ) and Us has only K local
maximum points Q 1, ... , Q K and By the structure of u ~ we
see that (up to a permutation) Qf - Pis = o( 1 ) . This proves Theorem 1.2.
Theorem 1.1 follows from Theorem 1.2 by taking I i = = 1

..., K.
Finally, we prove Corollary 1.3. 0

If SZ is not a ball, then H ( P ) has a local minimum on some open set
7~, Theorem 1.1 can be applied.
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If Q is a ball, Corollary 1.3 follows by minimizing energy in

symmetric spaces. See [21] and [23].
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