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ABSTRACT. — Let 2 be an annulus. We prove that the mean field equation

in Q

-By
—Ay = €
€

f —B
Q
=0 on 9}
admits a solution for 3 € (—16m, —8). This is a supercritical case for the
Moser-Trudinger inequality. © Elsevier, Paris

RESUME. — On montre que 1’équation de champ moyen
o—BY

fQ e—B¥
P =0 sur 02,

—Ay = dans 2

pour 2 étant un anneau, admet une solution pour 3 € (—16m, —8m).

Cela represente un cas supercritique pour I’inegalité de Moser-Trudinger.
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654 W. DING et al.
1. INTRODUCTION

Let €2 be a smooth bounded domain in R%. In this paper, we consider
the following mean field equation

e~ BY .
—AI,/) = —.—_—ﬂw—, mn Q,
Joe

P =0, on 012,

(1.1)

for 5 € (—oo, +oc). (1.1) is the Euler-Lagrange equation of the following
functional

o) =1 24 Liog [ o=B
(12) To(w) = 5 [ V0 + Glog [ ¢

in Hy?(2). This variational problem arises from Onsager’s vortex model
for turbulent Euler flows. In that interpretation, 1/ is the stream function
in the infinite vortex limit, see [12,p256ff]. The corresponding canonical
Gibbs measure and partition function are finite precisely if 3 > —8x. In
that situation, Caglioti et al. [4] and Kiessling [9] showed the existence of
a minimizer of J. This is based on the Moser-Trudinger inequality

1/ 1 ' ,
(1.3) —/ V|2 > —log/ e”®™ . for any ¢ € Hy%(9),
2 Ja 8 Ja

which implies the relevant compactness and coercivity condition for .J; in
case 3 > —8n. For § < —8m, the situation becomes different as described
in [4]. On the unit disk, solutions blow up if one approaches 8 = —8r
-the critical case for (1.3)-(see also [5] and [19]), and more generally, on
starshaped domains, the Pohozaev identity yields a lower bound on the
possible values of § for which solutions exist. On the other hand, for
an annulus, [4] constructed radially symmetric solutions for any (3, and
the construction of Bahri-Coron [2] makes it plausible that solutions on
domains with non-trivial topology exist below —8. Thus, for 8 < —8r,
Js is no longer compact and coercive in general, and the existence of
solution depends on the geometry of the domain.

In the present paper, we thus consider the supercritical case 3 < —8r
on domains with non-trivial topology.

THEOREM 1.1. — Let Q C R? be a smooth, bounded domain whose
complement contains a bounded region, e.g. 0 an annulus. Then (1.1) has
a solution for all § € (—16m, —8m).
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MEAN FIELD EQUATIONS 655

The solutions we find, however, are not minimizers of Jg-thOSC do not
exist in case 8 < 8, since Js has no lower bound-but unstable critical
points. Thus, these solutions might not be relevant to the turbulence problem
that was at the basis of [4] and [9].

Certainly we can generalize Theorem 1.1 to the following equation

—pBy
Ay = fKe in Q,

——
o Ke= o

P =0, on 012,

which was studied in [5]. Here K is a positive function on §.
With the same method, we may also handle the equation

(1.4) Au—c+cKe* =0, for0<c< o0

on a compact Riemann surface ¥ of genus at least 1, where K is a positive
function. (1.4) can also be considered as a mean field equation because it
is the Euler-Lagrange equation of the functional

(1.5) T.(u) = 1/ |Vu|2+c/u—clog/Ke".
2 b)) b )

Because of the term ¢ fz u, J. remains invariant under adding a constant
to u, and therefore we may normalize u by the condition.

/Ke":l
o

which explains the absence of the factor ( f Ke*)~lin (1.4). ¢ < 87 again
is a subcritical case that can easily be handled with the Moser-Trudinger
inequality. The critical case ¢ = 8r yields the so-called Kazdan-Warner
equation [8] and was treated in [7] and [14] by giving sufficient conditions
for the existence of a minimizer of Jg,. Here, we construct again saddle
point type critical points to show

THEOREM 1.2. — Let ¥ be a compact Riemann surface of positive genus.
Then (1.4) admits a non-minimal solution for 8t < ¢ < 16m.

Now we give a outline of the proof of the Theorems. First from the
non-trivial topology of the domain, we can define a minimax value ag,
which is bounded below by an improved Moser-Trudinger inequality, for
B € (—16m, —8). Using a trick introduced by Struwe in [16] and [17], for
a certain dense subset A C (—167, —87) we can overcome the lack of a
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656 W. DING et al.

coercivity condition and show that «g is achieved by some ug for 8 € A.
Next, for any fixed 3 € (—16m, —87), considering a sequence 3, C A
tending to B, with the help of results in [3] and [11] we show that ug,
subconverges strongly to some uz which achieves aj.

After completing our paper, we were informed that Struwe and
Tarantello [18] obtained a non-constant solution of (1.4), when ¥ is a
flat torus with fundamental cell domain [—3,3] X [-3,3], K = 1 and
c € (8m,47?). In this case, it is easy to check that our solution obtained
in Theorem 1.2 is non-constant.

Our research was carried out at the Max-Planck-Institute for Mathematics
in the Sciences in Leipzig. The first author thanks the Max-Planck-Institute
for the hospitality and good working conditions. The third author was
supported by a fellowship of the Humboldt foundation, whereas the fourth

author was supported by the DFG through the Leibniz award of the second
author.

2. MINIMAX VALUES

Let p = —(3 and u = —(y. We rewrite (1.1) as

eu

—Au=p , in Q,
(2.1) Joe
u =0, on 01,
and (1.2) as
1
(2.2) Jo(u) = —/ |Vu|? —plog/ e
2 Jao Q

for u € Hy?(Q).

It is easy to see that J, has no lower bound for p € (8m,167). Hence,
to get a solution of (1.1) for p € (8w,167), we have to use a minimax
method. First, we define a center of mass of u by

Let B be the bounded component of R? \ 2. For simplicity, we assume
that B is the unit disk centered at the origin. Then we define a family
of functions

h:D — Hy?(Q)
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MEAN FIELD EQUATIONS 657

satisfying

(2.3) l:n} J,(h(r,0)) — —o0

and

(2.4) lm me(h(r, 9)) is a continuous curve enclosing B.

Here D = {(r,6)|0 <7 < 1,0 € [0,27)} is the open unit disk. We denote
the set of all such families by D,,. It is easy to check that D, # (. Now
we can define a minimax value

a,:= inf sup J,(u).
o= 0 S p(w)

The following lemma will make crucial use of the non-trivial topology
of €, more precisely of the fact that the complement of €2 has a bounded
component.

LEMMA 2.1. — For any p € (87,167) o, > —o0.

Remark. — It is an interesting question weather a6, = —o00.

To prove Lemma 2.1, we use the improved Moser-Trudinger inequality
of [6] (see also [1]). Here we have to modify a little bit.

LEMMA 2.2. —Let Sy and S, be two subsets of §) satisfying dist(Sy, Sz) >
do > 0 and vy € (0,1/2). For any ¢ > 0, there exists a constant
¢ = c(€ 60,7) > 0 such that

1 :
u < v 2
/Qe _cexp{327r_€/9| ul® + ¢}

holds for all w € Hy*(Q) satisfying

fsl e
fn et

Proof. — The Lemma follows from the argument in [6] and the following
Moser-Trudinger inequality

1
(%) —/ |Vu|2—87r10g/e“26
2 Ja Q

for any u € Hy?(€2), where ¢ is a constant independent of u € Hy?(€).00

(2.5) > and

Vol. 16, n® 5-1999.



658 W. DING et al.

We will discuss the inequality (x) and its application in another paper.

Proof of Lemma 2.1. — For fixed p € (87, 167) we claim that there exists
a constant ¢, such that

(2.6) sup J,(u) > c,, for any h € D,,.
ueh(D)

Clearly (2.6) implies the Lemma. By the definition of h, for any h € D,,,
there exists w € h(D) such that

me(u) = 0.

We choose ¢ > 0 so small that p < 167 — 2¢. Assume (2.6) does not

hold. Then we have sequences {h;} C D, and {u;} C Hy*() such that
u; € h;(D) and

(2.7) me(u;) =0
(2.8) lim J(u;) = —o0.

We have the following Lemma.

LEMMA 2.3. —There exists o € § such that

(2.9) i P2zt

oo Jo e
Proof. — Set

A(z) := lim BaE@ng -

1—00 ]Q el
Assume that the Lemma were false, then there exists zg € Q such that
A(xg) <1 and A(xg) > A(z) forany z € Q.

It is easy to check A(zg) > 0, since {2 can be covered by finite many balls

of radius 1/4. Let v9 = A(x0)/2. Recalling (2.8) and applying lemma 2.2,
we obtain

g

fQ\Bl/z(fr,o) €
Jo e

as 7 — 00, which implies (2.9). O

(2.10)

Annales de I’Institut Henri Poincaré - Analyse non linéaire



MEAN FIELD EQUATIONS 659

Now we continue to prove Lemma 2.1. (2.9) implies

Joze® _ Jola = o)e
fn et ’ fQ et

I5. - a (@ = 20)e™
— 31/2( 0 + 0(1)

Joen '

which, in turn, implies that |m.(u;) — zo| < 2/3. This contradicts (2.7). O

LEMMA 2.4. — «,/p is non-increasing in (87,16).
Proof. — We first observe that if J(u) < 0, then log [, e* > 0 which
implies that

Jp(u) > Jp(u) for p" > p.

Hence D, C D, for any 167 > p’ > p > 8w. On the other hand, it
is clear that

1,1 1
e R
PP 2°p 0 g

if p’ > p. Hence we have

for 16w > p’ > p > 8. O

3. EXISTENCE FOR A DENSE SET

In this section we show that «, is achieved if p belongs to a certain -
dense subset of (8, 167) defined below.

The crucial problem for our functional is the lack of a coercivity
condition, ie. for a Palais-Smale sequence w; for J,, we do not know
whether [, [Vu;|? is bounded.

We first have the following lemma.
LemMMA 3.1. —Let u; be a Palais-Smale sequence for J,, i.e. u; satisfies

(3.1) [, (uw;)] < e < o0

Vol. 16, n® 5-1999.
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and

(3.2) dJ,(u;) — 0 strongly in H™**(0Q).
If, in addition, we have
(33) [ el <o, ori=12.
Q
for a constant cy independent of i, then w; subconverges to a critical point u
for J, strongly in Hy?*().

Proof. — The proof is standard, but we provide it here for convenience
of the reader.

Since [, |Vu;|? is bounded, there exists uo € Hy'?(€2) such that
(1) wu; converges to uy weakly in Hé’z(ﬂ),

(ii) u; converges to ug strongly in LP(f2) for any p > 1 and almost
everywhere,

(iii) e** converges to e“° strongly in L?(2) for any p > 1.
From (i)-(iii), we can show that dJ(ug) = 0, i.e. up satisfies

evo

_A’LLO = pf o .
Testing dJ, with u; — up, we obtain

o(1) = u;) — dJp(u), u; — uo)

/w ; = o) —%Uf%—ﬁ%mww@
= [ 196 = ua)P +o(0),

by (i)-(iii). Hence u; converges to ug strongly in Hé’2(Q). O
Since by Lemma 2.4 p — «,/p is non-increasing in (8, 167), p — «,/p

~ is a.e. differentiable. Set
(3.4) A = {p € (87, 16m)|a,/p is differentiable at p}.
A = [87,16m7], see [16]. Let p € A and choose py, /" p such that

(3.5) 0< lim ——— (%2 _ %oy <

for some constant c¢; independent of k.
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LEMMA 3.2. — «, is achieved by a critical point u, for J, provided that
p €A

Proof. — Assume, by contradiction, that the Lemma were false. From
Lemma 3.1, there exists 6 > 0 such that

(3.6) ldJ, (u)llg-12() > 26

mn .
Ny = {ue Hg»2(9)|/ IVal? < ea, |, (u) — o] < 6.
Q

Here, c; is any fixed constant such that Ns # 0. Let X, : N5 — H3’2(Q)
be a pseudo-gradient vector field for J, in Ns, ie. a locally Lipschitz
vector field of norm ||X,,HH;,2 < 1 with

(3.7) (dJy(u), X, (u)) < —6.
See [15] for the construction of X o
Since
P 4
ldJp(u) — dJp, (w)]| = [|dJ, - p—depk(U)II + (1 - p—k)dek ol

<50-2) [1vap+ea- pﬁk)/ﬂwul? ~0
uniformly in {u| [, [Vu|? < ¢2}, X, is also a pseudo-gradient vector field
for J,, in Ns with
(3.8) {dJp (u), X, () < =-6/2,
for u € N, provided that & is sufficiently large.
For any sequence {h;}, hy € D,, C D, such that

(3.9) sup J,, (u) < ap +p— pr

and all w € hi(D) such that
(3.10) Jo(u) > a, = (p— pr),
we have the following estimate

JPk (u) _ Jp(u)

1
Q p—

Pk
(3.11) Sep _ %
<p-pptt =+ (p+ pi)
P — Pk
<C

by (3.5), (3.9) and (3.10), where C' = (167)%c; + 32.

Vol. 16, n°® 5-1999.



662 W. DING et al.

Now we consider in N the following pseudo-gradient flow for J,. First
choose a Lipschitz continuous cut-off function 7 such that 0 < n < 1,
n = 0 outside Ns, n = 1 in Ns/5. Then consider the following flow in
Hy? () generated by nX,

20 1) = (0, )X, (1)
¢(u,0) = u.

By (3.7) and (3.8), for u € Ns/3, we have

d
3 Bl < -6
(3.12) 779w, 1)y < =6
and
) d
(3.13) g7l (Bl )iy < —6/2
for large k.

It is clear that for any h € D,, h(r,0) ¢ Ns for r close to 1. Hence
¢(h,t) € D,, for any ¢ > 0. In particular, ¢(-,t) preserves the class of

hy € D,, with condition (3.9). On the other hand, for any h € D, by
definition

sup J,(u) > a.
u€h(D)

Hence for any hi € D,, with condition (3.9), Sup,esn(py,) Jp(u) is
achieved in N/, provided that k is large enough. Consequently, by (3.12),
we have

< sup{J,(wl € $((D). 1)} <~

for all ¢ > 0, which is a contradiction. O

4. PROOF OF THEOREM 1.1

From section 3, we know that for any p € (8w, 167) there exists a
sequence py /" p such that o, is achieved by uy. Consequently wuy, satisfies

Uk

_Auk: = Pk K]
(4.1) Jo e
Up = 0, on 0L.

in 2,

Annales de ’Institut Henri Poincaré - Analyse non linéaire
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From Lemma 2.4, we have
(42) Jﬁ(uk) = Qp, S Co,

for some constant cg > 0 which is independent of k. Let v, =
up — log [, e**. Then vy, satisfies

(4.3) ' —Avy = pre’*

with

(4.4) /Q e = 1.

By results of Brezis-Merle [3] and Li-Shafrir [11] we have

Lemma 4.1 ([3], [11]). —There exists a subsequence (also denoted by vy)
satisfying one of the following alternatives:

(i) {vk} is bounded in L{2 (S2);
(ii) vx — —oo uniformly on any compact subset of §2;
(iii) there exists a finite blow-up set ¥ = {ay,- -, a, } C S such that, for
any 1 < i < m, there exists {x} C Q, ), — a;, up(zr) — 00, and

vi(x) — —oo uniformly on any compact subset of Q \ X. Moreover,

(4.5) Pk/ eV — 8mn;

where n; is positive integer.

For our special functions vy, we can improve Lemma 4.1 as follows

LeEMMA 4.2. —There exists a subsequence (also denoted by vy) satisfying
one of the following alternatives: -

(i) {vw} is bounded in L7 (),
(ii) vy — —oo uniformly on Q;

(iii) there exists a finite blow-up set ¥ = {ay, -+, a,,} C S such that, for
any 1 < i < m, there exists {x;} C Q, x — a;, ug(x) — 00, and
vi(z) — —oo uniformly on any compact subset of \ . Moreover,
(4.5) holds.

Proof. — From Lemma 4.1, we only have to consider one more case in
which blow-up points are in the boundary of €. There are two possibilities:
One is bubbling too fast such that after rescaling we obtain a solution of
—Au = €* in a half plane; Another is bubbling slow such that after

Vol. 16, n® 5-1999.



664 W. DING et al.

rescaling we obtain a solution of —Awu = e* in R%. One can exclude the
first case. In the second case, one can follow the idea in [11] to show that
(4.5) holds. See also [10]. O

Proof of Theorem 1.1. — (4.4), (4.5) and p € (87, 167) imply that cases
(ii) and (iii) in Lemma 4.2 does not occur. Consequently {v} is bounded
in L7.(€2). Now we can again apply Lemma 2.2 as follows.

Let S; and S, be two disjoint compact subdomains of 2. Since {v} is
bounded in L2 (£2), we have

loc
Js. €™ '
iu :/ ekaCOa Z:]-y2
er * Si

for a constant ¢ = ¢o(S1,S2,§) > 0 independent of k. Choosing € such
that 16w —p > 2¢ and applying Lemma 2.2, with the help of (4.2), we obtain

|
02 Jp () = 5 [ [Fusl = pulog [ e
Q Q
1 Pk 2
> (1- P
- 2( 167r—€/2)/9|vu|

1 p
250~ T =) /Q [Vul*

which implies that [, |Vug|? is bounded. Now by the same argument in
the proof of Lemma 3.1, u; subconverges to u; strongly in H})*(Q) and

u; is a critical point of J;. Clearly, u; achieves . This finishes the proof
of Theorem 1.1. |

Proof of Theorem 1.2. — Since the proof is very similar to one presented
above, we only give a sketch of the proof of Theorem 1.2. Let ¥ be a
Riemann surface of positive genus. We embed X : ¥ — RY for some
N > 3 and define the center of mass for a function u € H'*(X) by

- =fEXe“
) Jyer

Since ¥ is of positive genus, we can choose a Jordan curve I' on ¥
and a closed curve I'? in RN \ ¥ such that I'* links I'>. We know that
inf,ep2(s) Jo(uw) is finite if and only if ¢ € [0,8n] (see [7]). Now define
a family of functions h : D — H'2(X) (as in section 2) satisfying

lirr} J,(h(r,8)) — —o0

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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and
lim1 me(h(r,0)) as a map from S* — I'! is of degree 1.

Let D, denote the set of all such families. It is also easy to check that
D. # 0. Set

a.:= inf sup J.(u).
h€De yeh(D) )

We first have
Qe > —00,

using the fact that I'* links I'? and Lemma 2.2. Then by the same method as
presented above, we can prove that «, is achieved by some u. € HY2(%),
which is a solution of (1.4), for ¢ € (87, 167). O
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