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ABSTRACT. - We study the structure of extremals of a class of second
order variational problems without convexity, on intervals in R+. The
problems are related to a model in thermodynamics introduced in [7]. We
are interested in properties of the extremals which are independent of the
length of the interval, for all sufficiently large intervals. As in [12, 13] the
study of these properties is based on the relation between the variational
problem on bounded, large intervals and a limiting problem on R+. Our
investigation employs techniques developed in [10, 12, 13] along with

. turnpike techniques developed in [16, 17]. @ Elsevier, Paris

Key words: Turnpike properties, ( f )-good functions, periodic minimizers.

RESUME. - On etudie la structure des extrêmales d’une classe de

problèmes variationnels non convexes du deuxième ordre, sur des intervalles
de R+. Ces problèmes sont relies à un modèle thérmodynamique introduit
dans [7]. Nous nous intéressons aux propriétés des extrêmales qui ne
dependent pas de la longeur des intervalles, pourvu que ceux-ci soient
assez grands. Comme dans [12,13] l’etude de ces propriétés s’ appuie sur la:
relation entre le problème variationnel sur de grands intervalles homes et un
problème limite sur R+. Notre travail emploie des techniques développées
dans [10,12,13] ainsi que dans [16,17]. © Elsevier, Paris .
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594 M. MARCUS AND A. J. ZASLAVSKI

1. INTRODUCTION

In this paper we investigate the structure of optimal solutions of
variational problems associated with the functional

where D is a bounded interval on the real line and f E C(R3) belongs to
a space of functions to be described below. Specifically we shall consider
the problems,

and, for D = (Tl , T2 ),

In connection with these we shall also study the following problem on
the half line:

where

This can be seen as a limiting problem for (PD) as IDI --~ oo . Variational
problems of this type were considered by Leizarowitz and Mizel [10].
Similar constrained problems (involving a mass constraint), were studied
by Coleman, Marcus and Mizel [7] and by Marcus [ 12,13] . The constrained
problems were conceived as models for determining the thermodynamical
equilibrium states of unidimensional bodies involving ’second order’
materials (see [7]).

Let G = G ( p, r ) be a function in C4 ( R2 ) such that

where bi, bo are positive constants, 1  /3  ~y and "y > 1. In addition
assume that, 

’

where M : [0, oo ) -~ [0, oo) is a continuous function. A typical example
is G(p, ~’) _ r2 - bp2.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



595STRUCTURE OF EXTREMALS

Let a, b2, b3 be positive numbers, with a > ,~, and let

The space ,~ will be equipped with the standard topology of C2. Finally
denote, .

where,

The relation between the minimizers of (PD) (for large and those

of ( P~ ) plays a crucial role in our study of their structure. This relation
was first investigated by Marcus [12, 13] where it was used in order to

derive structural properties of minimizers of problem (PD) and of related
constrained problems, in the case ~ = r2 - bp2 ~ ~ (w ) . In the present
paper we pursue this investigation combining techniques of [12, 13] with

turnpike techniques as in Zaslavski [16, 17].
One of our main results is the uniqueness of periodic minimizers of (P~ )

which is generically valid in a very precise sense.

For every potehtial 03C6 E (03B1, b2, b3) there exists a family of arbitrarily
small perturbations {03C6s = 03C6 -I- so : 0  s  1}, such that problem 
with f = possesses a unique (up to translation) periodic minimizer.

, 

The function 0 can be explicitly constructed in terms of the extremal
values of periodic minimizers of with f = Combining this

result with a recent result of Zaslavski [18], we show that for each

potential ~s in this family, the corresponding integrand possesses
an asymptotic turnpike property, which involves the behaviour of the limit
set of minimizers of (P~ ) . Finally, we show that this asymptotic property ,
can be used in order to derive detailed information on the structure of

minimizers of problem (PD) for all sufficiently large intervals D. In this
last part the results are valid not only in the generic sense, but apply to
every f E ,~G .
A brief comparison of the present results with those of [13]: In the

present work, as in [13], the structure of minimizers of (PD) is described
by observing their behaviour in a ’window’ of fixed length (independent of

which can be placed anywhere in D. The results of [13] apply to every
integrand of the form f = r2 - bp2 + ~(w), for a class of potentials § which

Vol. 16, n° 5-1999.



596 M. MARCUS AND A. J. ZASLAVSKI

includes the standard two-well potentials. The behaviour of minimizers of
( PD ) in a ’window’ is described by integral estimates, involving ’mass’
and ’energy’. The present results are in part generic, but they deal with
a very large class of integrands and the behaviour of minimizers in a

’window’ is described by pointwise estimates which provide considerably
more detailed information.

For a precise statement of the results mentioned above we need some
additional notation and definitions.

Let denote the infimum in with f E ,~G . Leizarowitz

and Mizel [10] proved that, if  f (w, 0, s), then (P~)
possesses a periodic minimizer. Zaslavski [15] showed that the result

remains valid for all f E ,~G .
For w E W2,1loc(0, ~) put,

Then, either I  o0 or -f-oo.

Furthermore, if r~f (~, w) is bounded then wand w’ are bounded [15,
Prop. 3.1].

Let w be an ( f )-minimizer of We shall say that w is ( f )-good
if r~f (~, w) is bounded. Equivalently, w is ( f )-good if and only if there

exists a constant c(w) such that,

for every bounded interval D.

We shall say that w is optimal on compacts, or briefly c-optimal, if

w E n and, for every bounded interval D, the
restriction wiD is a minimizer of (PD’y ), where x, y are the values of (w, w‘ )
at the end points of the interval. By a result of Marcus [13, Th. 4.2(vi)],
if the integrand f is of the form f (w, p, r) = r2 - bp2 + ~(~). then every
c-optimal minimizer of (P~) is ( f )-good. In fact the result remains valid
for the more general class of integrands studied here, (see Proposition 2.3
below).

For w e W o~ ( 0, oo ) n W 1 ~ °° ( 0, oo ) let denote the set of limiting
points of (w, w’) as t ~ ~.

DEFINITION 1.1. - Let f E .~G . We say that f has the asymptotic turnpike
property, or briefly (ATP), if there exists a compact set H ( f ) C R2 such
that = H ( f ) for every ( f ) -good minimizer w.

Clearly, if f has (ATP) and v is a periodic ( f )-minimizer of then,

H(f ) = ~(~, v‘)(t) : ~  t  

Annales de l’Institut Henri Poincaré - Analyse non linéaire



597STRUCTURE OF EXTREMALS

The asymptotic turnpike property for optimal control problems was
studied in [4, 5]. The more standard turnpike property (for problems on
finite intervals) is well known in mathematical economics and several

variants of it have been studied (see, e.g. [11] and [6, Ch.4 and 6]). Here
we shall consider, besides (ATP), the strong turnpike property, or briefly

~ 

(STP), which is defined as follows.

DEFINITION 1.2. - Let f E ,~G and let w be a periodic (f)-minimizer of
with period Tw > 0. We say that f has the strong turnpike property

if, for every E > 0 and every bounded set K C R2, there exists L > 0
such that every minimizer v of (P(o;T~ ), with x, y E K and T > T~, + 2L,
satisfies the following: 

’

For every a E [L, T - L - Tw] there exists a e [0, Tw) such that,

Note that (STP) implies uniqueness up to translation for periodic
minimizers of ( P~ ) . Furthermore, if f has (STP), the structural information
contained in (1.8) extends to arbitrary minimizers of the unconstrained
problem (P(o,T~ ). More precisely we have,

PROPOSITION l.l. - Suppose that f E .~G possesses (STP). Let w be the
(unique) periodic minimizer of (P~) whose period will be denoted by Tw.
Then, given E > 0, there exists L > 0 such that every minimizer v 
with T > Tw + 2L satisfies (1.8) for every a E [L, T - L - Tw] and some
a E ~0, Tw) depending on v and a.

This is a consequence of the fact that the set of minimizers of is

bounded in Cl [0, T] by a constant A independent of T, (see [12, Lemma
2.2]).

_ 

Our main results are the following.

THEOREM 1.1. - For f E ,~G, (STP) holds if and only if (ATP) holds.

THEOREM 1.2. - For every ~ E .~ there exists a non-negative function
e E C°° (I~1 ) with 8~"2~ E m = 0,1, ..., such that for every
s E (0, 1 ~, problem with f = possesses a unique (up to

translation) periodic minimizer.

THEOREM 1.3. - (i) For every ~ E ,~ there exists a function o as in
Theorem 1.2 such that,

possesses (ATP), Vs E (0, 1 ) .
Vol. 16, nO 5-1999.



598 M. MARCUS AND A. J. ZASLAVSKI

(ii) (ATP) holds generically in ,~G, in the following sense as well: there
exists a countable intersection of open everywhere dense sets in ,~, say ~’G,
such that

~ E ~G ==~ F~ possesses (ATP).

A result related to the second part of Theorem 1.3 was obtained by
Zaslavski [16], who established the generic validity of (ATP) in a larger
space, in a weaker sense.

The proofs of these theorems, in a slightly more general form, are

presented in sections 2 (Theorem 1.1) and 3 (Theorems 1.2, 1.3). In addition,
in section 3, we establish a number of properties of periodic minimizers of
(P~ ) which apply to every f E .~G and may be of independent interest.

2. EQUIVALENCE OF (ATP) AND (STP)

In this section we shall establish Theorem 1.1 for problems involving a
larger family of integrands f. Put,

uniformly with respect to compact sets}.
~t will be equiped with the uniformity determined by the base,

where N and E are positive numbers. It is easy to verify that the uniform
space 2t is metrizable and complete [8].

Let a = (a1, a2, a3, a4) ~ R4, ai > 0, i = 1, 2, 3, 4 and let be

real numbers such that and q > 1. Denote by
the family of functions {/} such that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



599STRUCTURE OF EXTREMALS

where Mf : ~0, oc) -~ ~0, oo) is a continuous function depending on f.
Finally, let M denote the closure of 3K in 2L. The notations and definitions
presented in the introduction with respect to f E ,~~ apply equally well
to f E 9~ and the various statements quoted there remain valid in this
context. Put,

where - oo  Ti  T2 e W 2 ~ ~ (Tl , T2 ) and f e a~.
For T > 0, x, y e R2, f e ~2, put

Let v e W 2 ~ 1 ( D ) where D = (Tl , T2 ) is a bounded interval. Given
8 > 0, we shall say that v is an ( f , 03B4)-approximate minimizer in D if,

For x B ~ Rn put d(x, B) := y e B} (where ] . is
the Euclidean norm) and denote by dist(A, B) the distance in the Hausdorff
metric between two subsets A, B of 
We claim that:

LEMMA 2.1. - Suppose that f E ~ and that v is an ( f ) -good function.
Then, given b > 0 there exists Ts > 0 such that, for every bounded interval
(T, T’) with T > Ts,

i.e. v is an (f, 03B4)-approximate minimizer in (T, T’).
Proof. - If the claim is not valid there exists a sequence of disjoint

intervals Dn = (Tn, T~ ), n = 1, 2, ... with Tn ~ oo such that,

where Xn == Xv(Tn) and yn = Let hn denote a minimizer of
problem and let v be the function on ~0, oo) defined as follows,

Vol. 16, n° 5-1999.



600 M. MARCUS AND A. J. ZASLAVSKI

Then ?) e and

Since r~f (~, v) is bounded, say by M, it follows that,

This inequality and (2.5) imply that ~f (Tn , v )  -00 as n - oo . However
this is impossible because r~f (~, w) is bounded from below for every
w E (0, oc). D

For the next lemma we need the following interpolation inequality (see
e.g. Adams [1]):
Assume that p > 1 and E > 0. Then there exists a constant CE(p) such

that, for every T > 1,

LEMMA 2.2. -(i) For every T > 0 there exist positive constants bo, bl, b2
(depending on T) such that, for every T > T,

for every v E W2~1 (0, T) and every f E In particular, for every M > 0
and T > T there exists a constant br ( M, T) > 0 (depending continuously
on M, T) such that, for every f E ~,

(ii) For every f E if v E ~ o~ (0, oo) is an ( f )-good function then,

Consequently, v and v’ are uniformly continuous on ~0, oo).
Proof. - (i) In the proof we shall assume that T = l. For arbitrary T > 0

the result can be obtained by rescaling. By (2.2), every f E ~ satisfies,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Clearly this remains valid for every f E Note that if ~3 = 1 then

-y’ = > 1 and therefore, if ~3’ E ( 1, ~’ ) we have,

Therefore, without loss of generality, we may assume that ,~ > 1. Hence,
by (2.6) with p = ,C3 and E = 2 , we find that, for f e and T > 1

where

(In fact, v E Ol[O,T]. Therefore, by (2.2), is finite if
v" E L’~(0, T) and otherwise.) This proves the first inequality in

(2.7). In order to obtain the second inequality in (2.7) observe that,

for every s E [0, T - I], where co is a constant which depends only on
Y = min(a, -y). Combining this with the first inequality in (2.7) we obtain,

where ci is a constant which depends only on al, a3. This completes the
proof of (2.7). Finally (2.8) follows from (2.7):

for every v as in (2.8).
(ii) Since v is ( f )-good, (v, v’) is bounded in ~0, oo). Clearly, 
is bounded for (x, y) in a compact set. Therefore Lemma 2.1 implies that

Vol. 16, n° 5-1999.



602 M. MARCUS AND A. J. ZASLAVSKI

If (T, T + 1, v) is bounded by a bound independent of T > 0. Hence (2.9)
follows from (2.7). D

Using these lemmas it is easy to verify that,

LEMMA 2.3. -For f E 9Jl, (STP) implies (ATP).

Proof - Assume that f has (STP) and let v be an ( f )-good function.
Pick ~ E n( v) and let ~ t ~ ~ be a sequence tending to +00 such that

(v, v’ ) (t~ ) -~ ~. Put = v (t + tk), t > -tk. By Lemma 2.2, for every
bounded interval D,

Therefore there exists a subsequence Vkn which converges weakly, say to
u, in (Rl )- In particular {(vkn, v’kn)} converges uniformly on compact
sets. Applying inequality (2.4) to Vkn and taking the limit, we find that
(for every bounded interval D = (0, T ) ) ulD is a minimizer of problem

where x, y are the values of (u, u’) at the endpoints of D. This is
a consequence of the continuity of UT ( ~ , ~ ) in R~ and of the weak lower
semicontinuity of the functional If (0, T,.) in W2~~’(D), (see [3]). Since f
has (STP) it follows that, for every E > 0, (1.8) holds with v replaced by
an arbitrary translate of u, i.e. u( ~ + T), T E Rl . Consequently, if w is a
periodic minimizer of then, E : _ ~ ( u, u’ ) ( t ) : t E = 

In particular, ~ == (u, u’)(0) E SZ(w) and we conclude that SZ(v) C SZ(w).
On the other hand E c so that = Thus f possesses
(ATP). D

The fact that (ATP) implies (STP) requires a more delicate argument.
Actually we shall prove a more comprehensive result, which will also be
used in the proof of Theorem 1.3. Roughly this result states that if f E 9K
has (ATP) then, for every 6 > 0 there exists 6 > 0 such that, if v is an

(f, 03B4)-approximate minimizer in (0, T) and T is sufficiently large, then v
satisfies (1.8), which is the condition required for (STP). Furthermore this
property persists in a neighborhood of f im M. The precise formulation
follows.

THEOREM 2.1. - Assume that g E ~ satisfies (ATP). Let w be a periodic
minimizer of (P~ ) with integrand g and let > 0 be a period of w.

Given E, M > 0 there exists a neighbourhood of g in say and

positive numbers b, .~ such that the following statement holds :

Let f E .~t.9 and let T > Tw + 2.~. If v E W 2 ~ 1 ( 0, T) satisfies,

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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then, for each s E ~.~, T - Tw - .~~ there exists ~ E ~0, such that,

Remark. - The conclusion of the theorem can be slightly strengthened
as follows:

There exist Tl E ~0, .~~ and T2 E ~T - .~, T ~ such that, for every
s E there exists ~ E ~0, such that (2.14) holds. Furthermore,

if

the statement holds with Tl = 0, (respectively T2 = T).
The proof of the theorem will be based on several lemmas. One of the

key ingredients in this proof is provided by the following result due to
Leizarowitz and Mizel [10, Sec. 4]. (See also Leizarowitz [9] for a similar
result in the context of a discrete model.)

PROPOSITION 2.1. - Let f E Then there exist a continuous function
03C0f : R2 ~ R1 given by,

and a continuous nonnegative function (T, x, y) ---~ of (x, y) defined for
T > 0 and x, y E R2 such that,

for all x, y, T as above. Furthermore, for every T > 0 and every x E R2
there is y E R2 such that y) = 0.

Let f E For D = ( Tl , T2) and v E W 2 ~ 1 ( D ) put,

From (2.15) and Proposition 2.1 it follows that

Clearly, if v is a minimizer of = Xv(Ti), y = Xv (T2 ) then
= Of (D; v). However rf (D; w) may be positive even in this

Vol. ]6, nO 5-1999.



604 M. MARCUS AND A. J..ZASLAVSKI

case. Note that, in the present notation, a function v E W2~1(D) is an

( f, 6)-approximate minimizer in D (see (2.3b)), iff

In this context we introduce the following additional terminology: Let v be
a minimizer of (P 00). We shall say that v is (f)-perfect if

If v E n and v satisfies (2.15b), then v is a minimizer
of and hence it is ( f )-perfect. This is an immediate consequence of
the definition of Tf and the fact that ~rf is continuous.

Obviously every ( f )-perfect minimizer is c-optimal. Using this fact, it can
be shown that every ( f )-perfect minimizer is ( f )-good (see Proposition 2.3
below). Clearly the converse does not hold, but a partial converse is

provided by the following result.

LEMMA 2.4. -Let f E 9K and suppose that v is ( f)-good. Then, for every
8 > 0 there exists T( 8) such that, for D = 

In particular every periodic minimizer of (P~ ) is ( f ) perf’ect.

Proof. - Since Jrf is continuous, if v is an ( f )-good function then
rf(D;v) is bounded. Furthermore, since D --~ rf(D;v) is an additive,
non-negative set function, it follows that for every b > 0 there exists

T( 8) > 0 such that (2.16) holds. The last statement of the lemma is a
consequence of this inequality. D

The next result shows that every ( f )-good function generates a family
of perfect minimizers.

LEMMA 2.5. -Let f E 9~ and let v E W o~ ( 0, oo ) be an (f)-good function.
Then, given ç E there exists u E ~o~ such that

and u is an ( f ) perf ’ect minimizer.

Proof. - Let u be constructed as in Lemma 2.3. Then, u satisfies (*)
and, in the notation of that lemma,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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This follows from the growth conditions on f (see (2.2)), and the
fact that Vnk ~ u weakly in W 2 ~ ~’ ( D ) . However, by Lemma 2.4,
rf (D+T, v) -~ 0 as T --~ oo. Therefore u satisfies (2.15b) and consequently,
since u e it follows that it is ( f )-perfect. ~ . D

Another useful ingredient in our proof is the following result for which
we refer the reader to [10] (proof of Proposition 4.4) and [16].

PROPOSITION 2.2. - Let f E For every Ml, M2, c > 0 there exists
a positive number A = A f (Ml , M2 , c~ such that the following statement
holds for every T > c. If

and if v is an ( f , M2 )-approximate minimizer in (0, T) (see (2.3b)) then,

Furthermore, for every g E ~ there is a neighbourhood in ~2 such that

A f (Ml, M2, c) can be chosen uniformly with respect to f in 
We also need the following lemma.

LEMMA 2.6. -Let f E ~. Then, for every compact set E there exists a
constant M = M(E) > 0 such that, for every T > 1,

Proof. - Let w be a periodic minimizer of with period Tw > 0.
Clearly, for every A > 0,

Therefore, it is sufficient to show that there exists M such that (2.17) holds
for T > 4Tw . Put D = (0, T). Let T be the largest integer which does
not exceed T /Tw and put l = 2 -1 (T - (T - Let D’ = (I, T - 
so that (T - 
Given x, y e E let vl (resp. v2) be a minimizer of problem with

z = (w, w’)(l) (resp. with ( = (w, w’)(T - l)). Let v E 
be the function given by,

Vol. 16, n° 5-1999.



606 M. MARCUS AND A. J. ZASLAVSKI

Since w and w’ are bounded and T~,, /2  l  Tw it follows that there exists
a constant Mi (independent of x, ~, T ) such that,

Since = (T - 2l)u( f’) it follows that,

which implies (2.17). D

Using these results we can establish the following relation between

approximate minimizers and ( f )-good functions.

PROPOSITION 2.3. - Let f E ~ and M > 0. Denote by A( f , M) the family
of minimizers v of (.P~ ) such that v is an ( f , M)-approximate minimizer in
every bounded interval D c R+ such that D ~ > l. Then

In particular, every c-optimal function is (f)-good. Furthermore, the

family of periodic minimizers is uniformly bounded in the . -

supR+ I Xv I.

Proof - Let v be a minimizer of ( P~ ) . Then, for every T > 0,
T’, v) _ Hence there exists To > T such that

Consequently there exists a monotone sequence tending to -E-oo such
that,

By Lemma 2.2 there exists a constant Mi (independent of v) such that,

Now suppose that, v E A( f , M). Then inequality (*) and Proposition 2.2
imply that there exists a constant M2 (independent of v) such that,

Thus ] E L°° ( R+ ) . (Note that in general Ti depends on v so that
supR+ I may not be uniformly bounded relative to v E A( f, M).)

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



607STRUCTURE OF EXTREMALS

Further, inequality (2.3b), the boundedness of Xv and Lemma 2.6 imply
that,

where M’ = M(E) is as in (2.17) with E = cl~Xv(t) : t e R+}. Thus
r~f ( ~, v) is bounded on (l,oo) and hence on R+, i.e. v is (f)-good.

If v is a c-optimal function then, by definition, Xv is bounded and

therefore, by the previous part of the proof, v is (f)-good.
Finally, if v is a periodic minimizer then inequality (**) implies that

]  M2, which proves the last assertion of the proposition. D

The next lemma will be needed in order to establish the stability of (ATP).

LEMMA 2.7. -Let g e a~ and let D = (0, T). For M > 0 put,

Then for every E, M > 0 there exists a neighbourhood ng of g in m such
that, for every f E 

and

The neighborhood ng can be chosen independently of T for T in compact
sets of (0, oo).

Proof. - Put Mo (T ) = By Lemma 2.2,
if T e (Tl, T2), with 0  Tl  T2  ~, then Ml = 

Mo(T)  oo . For every > 0 let _ ~ f E M : ( f , g ) E
E(N, ~)~ (see (2.1)). Now, given 6 > 0 choose N > 2Mi sufficiently large
so that, for every f E B9 ( N, b ) , 

’

Assume that f e and v E Then,

Vol . 16, n° 5-1999.



608 M. MARCUS AND A. J. ZASLAVSKI

where E~v, N~ = ft E D: ]  N} and = D ~ E(v,N).
The first term on the right is bounded by T 8 and the second by
28 JD v~, v~~)~_ The last integral is uniformly bounded for v 
This follows from the inequality,

which, by (2.2), holds for f e 9K and remains valid also for f e ~.
Therefore, choosing 8 sufficiently small so that the right hand side of (2.21 )
is smaller than E and then choosing N sufficiently large as indicated before,
we obtain (2.18).

Finally, (2.19) is a consequence of (2.18) and the fact that (by
Proposition 2.2) the family of minimizers of (  M is
bounded by a bound independent of f for f in a neighbourhood of g. D
The next lemma plays an important role in the proof of Theorem 2.1

and the results following it.

LEMMA 2.8. -Let f E a~ and let D. _ (Tl, T2) be a bounded interval.
Suppose that w1, w2 E W2,1(D) and that = = 0.

If there exists T E (Tl , T2) such that (wl, wi)(T) _ (w2, w2)(T) then
wl = w2 everywhere in D.

Proof - Put

Evidently u e W 2~ 1 (D) and Ff(D, u) = 0. Since u, w2 satisfy the
Euler-Lagrange equation we conclude that u = w2 everywhere in D. D
To complete the proof of Theorem 2.1 we need two more auxilliary

results, stated below as Lemmas A and B. The proofs of these lemmas,
which are more technical than the previous ones, will be given in

Appendixes A and B respectively. In both of these lemmas we consider
an integrand f possessing (ATP) and study the relation between a fixed
periodic minimizer of say w, and approximate minimizers of

(P(o,T)). In Lemma A it is shown that (given E, M > 0) there exists
.~ > Tw = (period of w) such that every ( f , M)-approximate minimizer in
(0, T), T > .~, whose endvalues are bounded by M, is intermittently close
to w in the following sense. Every interval D c (0, T), D ~ _ .~ contains a
subinterval D* of length Tw such that supD IXv - Xw*  E where w * is
a translate of w. In Lemma B it is shown that if in addition to the above,
the endvalues of v are sufficiently close to O( w) (=the limit set of w),
and if M is sufficiently small, then the relation described above holds in
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every subinterval D* of length Tw. (In general the translate w* will depend
on D*.) Finally, these properties persist in a neighborhood of the given
integrand. The precise formulation follows.

LEMMA A. -Suppose that g E ~ possesses (ATP). Let w be a periodic
minimizer of with integrand g and let T~, > 0 be a period of w. Given
Mo, Ml, E > 0 there exists an integer ql > 1 and a neighbourhood U of g
in ~ such that the following statement holds.

Let and T > If v E W2n (0, T) satisfies

then, for every T E ~0, T - there exist ~ E ~0, Tw) and s E

[T, T + (ql - 1)T~,~ such that

LEMMA B. -Let g, w, be as in Lemma A. Given E > 0 there exist
b E (0,1) and Qo > Tw, such that for every Q > Qo there exists a
neighbourhood of g in ~ such that the following statement holds.

Let f E and T E [Qo,Q]. If v E W2’1 (0, T) satisfies,

then, for every s E there exists ~ E such that (2.25) holds.

Proof of Theorem 2.1. - It is sufficient to prove the theorem for all

sufficiently large M. Therefore we may assume that

By Proposition 2.2 there exist a neighborhood of g in 9R, say ~’t(M),
and a number S > M + 1 such that for each f e 91(M) and each
T > 

implies that,

Given E as in the theorem, there exist 8 E (0,1) and Qo > T2" such that
the statement of Lemma B holds. ’
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By Lemma A there exist a positive integer qi and a neighborhood of g
in M, say ~(S, b), such that for each f in this neighborhood and each
T > qlTw:

implies that for every T E [0, T - qlTw] there exist ç E [0, Tw) and
s E [T, T + (ql - such that

Choose

By Lemma B there exists a neighborhood of g in say such that for
each f e ?t, and each T e [Qo,Qi]:
. 

If v E W2’1 (0; T) satisfies (2.26) then for every s E ~0, T - Tw] there
is £ E [0, Tw) such that,

We claim that the statement of the theorem holds with = sJ’1(llil ) n
~(S, 6) n ~E, with 6 as above and £ = 2qlTw + 4(Qi + 4).
Assume that f E T > 2.~ -~ Tw and v satisfies (2.13). Then v satisfies

(2.28) and consequently (2.29). Therefore, for each T E [0, T - q1Tw]
there exist ç E ~0, Tu,) and s E [T, T + (ql - such that (2.30)
holds. Let m be the largest integer such that (m + 1 ) ql Tw  T.
Put Tk = kq1Tw, k = 0,..., m + 1. Then, for k = 0,..., m, 03C4k
is in ~0, T - and consequently there exists ~~ E ~0, Tw) and
~ e [Tk, T1~ + (ql - C [Tk, such that,

This implies,

Let vo be the smallest integer such that vo > Qo / ( ql T w) and let vl be
the largest integer such that vl  Since Q 1 - Qo > 8q1Tw we
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have vl - vo > 6. an interval Put := where 0  j  1~  m
and observe that then,

Further observe that the last inequality in (2.13) implies that,

Indeed this holds ’for every subinterval of [0, T] because,

If (a, b, v) is additive and is subadditive

on finite partitions of (0, T) consisting of subintervals and because

Therefore we may apply Lemma B to the function v restricted to where

vo -E-1  k - j  vl - l, and conclude that for every s E Tw] there
exists £ E ~0, Tw) such that (2.32) holds. Finally this implies that for every
s E [so, Tw] there exists £ E ~0, Tw) such that (2.32) holds. Since
so  and T - > we find that the theorem holds with .~ as
above.. ~ D

The following result is an immediate ’consequence of Theorem 2.1,
Proposition 2.2 and Lemma 2.1. Roughly it states that if f has (ATP)
and w is a periodic minimizer of (P~ ) then every ( f )-good function is
eventually close’ to w. ~ .

THEOREM 2.2. - Assume that g E ~ has (ATP) and w E is a

periodic (g)-minimizer with a period Tw > 0. Then, for every E > 0, there
exists a neighborhood U of g in m such that for each 

If v is an ( f ) -good function, there exists t~ (depending on E, v) such that,
for every s > tE, there exists ~ E ~0, Tw) such that,

COROLLARY 2.1. -’ If f E 9R has (ATP) then problem (P~ ) possesses a
unique (up to ~ translation) periodic minimizer.

Finally we observe that Theorem 1.1 can be easily deduced from
Theorem 2.1. Suppose that G satisfies (1.1) and (1.2) and let ,~ (c~, b2 ; b3 )
and ,~G (a, b2, b3 ) be defined as in ( 1.3),( 1.4). Clearly, for G and ,~ as in
( 1.1 )-( 1.4) and an appropriate choice of a,

and the operator

is continuous. Therefore Theorem 2.1 implies Theorem 1.1.
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3. PROOF OF THEOREMS 1.2, 1.3 .

First we establish a more general version of Theorem 1.2 :

THEOREM 3.1. - Let f E Then there exists a nonnegative function
~ E such that ~{t) > 0 for all large ~~"2> is bounded for every
rrz > 0, and the following statement holds.
Denote

Then for each p E (0,1), fP E = tc( f ) and problem. with

f = fp possesses a unique (up to translation) periodic minimizer.
We start with a brief description of the strategy of the proof, which

will be presented through several lemmas. Given f E denote by ~ ( f )
the set of all periodic ( f )-minimizers of (P~ ) . If w E ~ ( f ) is not a

constant, we denote by T(w) the minimal period of w. In the first lemma
we show that every non-constant periodic minimizer w has precisely two
extremal points in each interval [a, a + T(w) ) and is strictly monotone
between two consecutive extremal points. Using this fact we show that
if  E then the set ~T(w) : w E ~( f ) ~ is
bounded. Next we show that there exists w* E ~( f ) whose range Dw* is
minimal in the sense that it is either disjoint from or stricty contained
inthe range of any other element w e ~( f ), unless w is a translate of w*.
Finally we observe that if there exists § E which vanishes on Dw*
and is positive everywhere else, then the assertion of Theorem 3.1 holds.
Since Dw* is a closed bounded interval, such a function is easily constructed.

LEMMA 3.1. -Assume that w E ~ ( f ) and w is not constant. Applying an
appropriate translation we may assume that w(0) = minR1 w. Then there
exists T E (0, T(w)) such that w is strictly increasing in [0, T] and strictly
decreasing in [T, T(w)]..

Remark. - In the special case f (v, v’, v" ) = v" ~ 2 - q ~ v’ ~ 2 - (v2 - 1)~,
this lemma was independently established by Mizel, Peletier, Troy [14].
Their proof uses the special symmetries of the integrand.

Proof. - Let E = ~T E ~0, oo) : w’(T) = 0~. We claim that E n [0, T(W)]
is a finite set. Otherwise there exists a sequence of positive numbers ~tn ~
converging to a point t* e [0, T(w)], such that w’(tn) = 0, n = 1, 2, ....
By the mean value theorem, this implies that for m = 1, ~ ~ ~ , 4, there exists
a sequence converging to t*, such that = 0 for
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all n. Therefore w~"2> (t* ) = 0, m = l, - - - , 4. Since w satisfies the Euler-
Lagrange equation corresponding to our variational problem this implies
that w is a constant, contrary to our assumption. (Note that, for f E 9Jl the
Euler-Lagrange equation is a regular, fourth order equation.)

Put,

Clearly Ti E (0, T(w)) and w is strictly increasing in (0, Tl). Similarly
we define

Proceeding in this manner we obtain a strictly increasing sequence

= 0,’ - ,~} such that To = 0, 7-~ = T-(~), =0, ~’ = 0, ... , k
and w’ does not change sign in each of the intervals T~ ~ 1 ~ , j =
0, ... , k - 1. More precisely, w is strictly increasing in D~, if j is even,
and strictly decreasing in D j, if j is odd. Obviously k is even. 

,

Let D~ denote the interval (resp. 
when j is even (resp. odd).

Evidently, for each integer j, 0  j  1~ the function t ~ w(t) t e Dj
is invertible. Composing the inverse function thus obtained with the
function t ~ w’ ( t ) , t e Dj, we obtain a function hj e O(Dj) such
that w’ (t) = for every t e D j .
Now we claim that for i  j, w(TZ), unless 2 = 0 and j = 1~.

Suppose that there exists (i, j ) ~ (0, k) such that 0  i  j  ~
and w( Tj) = w( Ti). Then let u be the periodic function, with period
Tj - Ti, such that u(t) = w(t), t e Tj]. Recall that w’(Tm) = 0
for m = 0, -" ,&#x26; . Hence u e Furthermore, by Lemma 2.4,
r f ( D; u) = rf (D; w) = 0 in every bounded interval D. (Recall that the
function D -~ rf(D;v) is additive.) Therefore by Lemma 2.8, u - w,
which contradicts the assumption that the period of u is strictly smaller
than T ( w ) .

Next, we claim that, if k > 2 then D~ C for j = 1," - k. We
verify this claim by induction. For j = 1, we have w(O)  w (T2 )  w(Ti ).
(Recall that w(0) is the minimum of w.) Furthermore, since k > 2, the
previous argument yields w(O)  w (T2 )  w(Ti). Now suppose that the
claim holds for j = 1,’ - -, m 2014 1. To fix ideas assume that m is even. Then
we know that w is strictly increasing in Dm so that > 

We must show that  w (Tm _ 1 ) . Suppose the contrary. Since, by
assumption, c D ;.L _ 2 it follows that,
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Therefore the functions h~,z-2 and hm defined in D ;.z_~ and respectively
must intersect somewhere in (Recall that both functions
are non-negative in their intervals of definition and vanish at the end
points of these intervals.) This means that there exist s 1 E Dm-2 and

D.m such that = ( w , w’ ) ( s ~ ) . However, applying once
again Lemma 2.8, the argument used before shows that this is impossible
and proves our claim. 

’

Combining the last two claims we conclude that, if k > 2, the inclusion
D~ C = l, ~ ~ ~ , ~ is strict. But this is impossible because
w(TO) = D

COROLLARY 3.1. - Suppose that f E ~ and _

-~2, ~~), for every x E R3. Let zu and T be as in the statement
of the lemma. Then w’ > 0 in (o; T) and w’  0 in (T, T( w)). Furthermore,
T = T ( w ) / 2 and w is even.

Proof. - Since f is even in the second argument, it follows that the
function w given by w(t) = w(-t) is also a periodic minimizer. Recall
that we assume that w(0) = minR w so that w’(0) = 0. Consequently,
Xw(O) = Hence, by Lemma 2. 8, w - w i. e. w is even. Further
this implies that t) for every real t. Now suppose that
s E (o, T(w)) and w’ ( s) = 0. Then Xw ( s) = s). Using again
Lemma 2.8 we deduce that fW( t + 2s - T( w)), for every t e Rl.
Thus 2s - is a period of wand therefore it must be equal to 
for some integer k. Since s e (o. it follows that k = 0. This proves
our assertion. ’ 

D

LEMMA 3.2. A,ssume that f E ~ satisfies the condition,

Then no element of is constant and

Remark. - This result was established by Marcus [13] in the special case
f (v, v’, v") = ~v"~2 - + ~~(v), for a large class of potentials ~~~.

Proof. Step 1 - Suppose that is a sequence of positive numbers
tending to infinity, and that E Y~2’1(O, is a sequence of
functions such that,
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We claim that,

The same conclusion holds if in (3.4), the condition (t) > 0" is replaced
by the condition  0".

Assumption (3.4)(i) implies that = (Xwi (0), Xwi 
and consequently, Proposition 2.2 and assumption (3.4)(ii) imply that there
exists M > 0 such that,

and

Therefore there exits a subsequence (which we shall continue to denote by
and a function v E such that, for every T > 1,

By the lower semicontinuity of integral functionals [3] and Proposition 2.1,

By (3.7), 
.

and by (3.4)(iii), v’ > 0 in (0, oo). Consequently v(t) possesses a finite
limit, say do, and v’ (t) -~ 0 as t -~ oo.

Let = 0,1, 2, ... be the function defined in [0,1] by = v( j-~-t).
By (3.8) the sequence is bounded in W2~~’(0,1) and therefore

a subsequence will converge weakly in this space to a function u.

Clearly is the constant function ~ - do. Since I f ( 0,1, v~ ) = +

Jrf(Xv(j)) - Jrf(Xv(j + 1)) and Xv ( j ) converges, we conclude (by the
lower semicontinuity of integral functionals) that If (0, l, ~c) _ This

implies (3.5). It is obvious that the conclusion remains valid if the sign
in (3.4)(iii) is inverted.

Step 2. - Assume that the assertion of the lemma is not valid. Then there
exists a sequence {wi}~i=1 in (f) such that
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Without loss of generality we may assume that = minR wi, i =

1,2,....

By Lemma 3.1, for each integer i > 1 there exists a number

Ti E such that is strictly increasing in and strictly
decreasing in In view of (3.9) either Ti --~ o0 or --~ o0

or both. In the first case put Ti = Ti and vi = wi|[0,03C4i]; in the second case

put T2 = and define vi in [0, Ti] by, v2 (t) = wi(t + 03C4i) for

i = 1, 2, .... Then the sequence tends to infinity and the sequence
~vi ~ satisfies conditions (i), (iii) of Step 1, possibly with a negative sign in
(iii). Furthermore, by Proposition 2.3 there exists a number S > 0 such that

Thus the sequence satisfies also condition (ii).

Consequently, the statement established in Step 1 implies that (3.5) holds,
which contradicts the assumptions of the lemma. D

LEMMA 3.3. -Let f E 9K. then the sets

are either disjoint or one of them is contained in the other. Furthermore
if, say, Di C D2 then either wl is a translate of w2 or Dl is contained

in the interior of D2.

Proof. - We may assume that = minR i = 1, 2. By Lemmas 2.8
and 2.4, if w1 ~ w2, then for any two points Si E (0, T(wi)), 2 = 1, 2 we
have ( w2 , w2 ) ( s 2 ) . Therefore, if one of the two functions
(say is a constant, then the value of this constant must be different

from both the minimum and the maximum of w2 so that our claim holds.

Thus we assume that neither of the two functions is a constant. Hence,

by Lemma 3.1, there exists exactly one point Ti in ( 0, T ( wi ) ) such that
Wi is strictly increasing in [0, T2~ and strictly decreasing in 

Consequently the function wz, i = 1, 2 is represented in the phase plane
_ 

(w, w’) by a simple closed curve 11i consisting of two branches stretching
between the points (w2 (0), 0) and (wi (TZ), 0) and 111 f1 A2 = ~. Since

Di = this proves our claim. . 
0

Define

LEMMA 3.4. -Let f E ~. The set ~7, ordered according to set inclusion,
possesses a minimal element Do such that, for every D E ~ either Do C D
or Do n D = ~.
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Furthermore, if

then T possesses only finitely many minimal elements.

Proof. - If = inf ~ f (z, 0, 0) : z E then there exists a periodic
minimizer which is a constant so that ~ contains an element Do consisting
of one point. Obviously Do is a minimal element of D. Therefore we may
assume that (3.12) is valid. We claim that under this assumption,

and that there exists v E ~( f ) such that max v - min v = c~.
Let ~wn~ be a sequence in ~( f ) such that an := max wn - inf cx.

We may assume that each function wn attains its minimum at zero. Put

bn := minR wn, cn .- maxR wn and Tn .- T(wn). By Lemma 3.2 the
sequence of periods is bounded and, by Proposition 2.3, the

set ~ ( f ) is uniformly bounded. Therefore, by taking a subsequence if

necessary, we may assume and ~Tn ~ converge. We denote
their limits by b*., c*, T* respectively. By Lemma 2.2, ~wn~ is bounded

in and consequently there exists a subsequence which

converges weakly in W 2 ~ ~’ ( o, T ) and strongly in C 1 ~0, T ~ , for any T > 0.
Its limit v satisfies b* = v(0) = minR+ v and c* = maxR+ v. By the weak
lower semicontinuity of the functionals, v is ( f )-perfect (see (2.15b)). If
T* = 0 then b* = c*, is a constant. However, by (3.12), this is

impossible. Thus T* > 0 and v is a periodic minimizer with period T*.
Hence D* == [b* , c*] E ~ and c* - b* = a. Since v is not a constant a > 0.
Therefore (3.13) holds and our claim is proved. In view of Lemma 3.3 this
implies that D* is a minimal element.

In order to verify the last statement of the lemma, observe that if Di, D2
are two distinct minimal elements of D then, by Lemma 3.3, Di n D2 = 0.
Therefore, the uniform boundedness of ~ ( f ) and (3.13) imply that the
number of minimal elements is finite. D

Proof of Theorem 3 .1. - Let wo be a function in ~ ( f ) such that

is a minimal element of D. Let § be a function in C°° (I~) such that,
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and ~~’~’~’~~ E m = 0,1,2,.... In the present case such a function is
easily constructed. In a more general context the existence of such functions
was established in [2, Ch. 2, Sec.3].

With § as above, let f p be defined as in the statement of the theorem. Then

If v is a periodic function, equality holds in (3.14) if and only if

Hence

Consequently, == and wo is a minimizer of ( P~ ) with

integrand We claim that wo is the unique (up to translation) periodic
minimizer of this problem. Indeed, if w is another periodic minimizer of
this problem then, by (3.14), {3.15), w E ~( f ) and ~w(t) : t E .R~ C [b, c~.
Since [b, c] is a minimal element of D it follows that {w(t) : t E .R} == [b, c].
However, by Lemma 3.3, this implies that w is a translate of wo . D

Next we prove a slightly stronger formulation of Theorem 1.3 (i):

THEOREM 3.2. - Let f E If 03C6 E and f03C1 are as in Theorem 3.1
then, for each p E (0,1), f p possesses (ATP).

Proof. - First suppose that  inf R f ( ~, 0, 0) . In this case the

statement of the theorem is an immediate consequence of Theorem 3.1 and

the following result of Zaslavski [18]:
Assume that h E ~J2 and that  infR h t ~ , 0, 0). Then h has (ATP) if

and only if there exists a unique (up to translation) periodic (h)-minimizer.
Next suppose that = infR f(., 0, 0). Then there exists ~o E Pl

such that f (~o, 0, ©) _ and § is positive everywhere except at ~o.-By
Theorem 3.1, for every p e (0,1), problem with integrand f p has a
unique periodic minimizer, namely the constant function with value ~o . In
order to prove that (fp) possesses (ATP) we must prove that,

Let v satisfy the assumptions of (3.16) for some p E (0, 1). Then, in
view of (3.14), Jf (v) = Since
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and ~f03C1 (-, v) is bounded on (0, ~) it follows that ~f (-, v) is bounded, i.e.
v is an ( f )-good function, and T0 03C6(v(t))dt  ~. We claim that

Indeed by Lemma 2.2 v and v’ are uniformly continuous on (0, oo ) .
Therefore, if there exists a sequence ~tn ~ tending to infinity such that
v ( tn) -~ ~i 7~ ço then there exists a positive 8 such that

Since v is bounded and § is positive except at ço this contradicts the

integrability of ~ ( v ( ~ ) ) on 
Next we claim that v’(t) = 0. If not, assume for instance that

lim sup v’ (t) _ ~ > 0. Then, because of the uniform continuity of v’, it

follows that there exists a sequence tending to infinity and a positive 8
such that inf ~v’(t) :  t + S~ > (/2 for all sufficiently large n.
Therefore v(tn + 8) - v(tn) > 8(/2 for all sufficiently large n, which
contradicts (3.17). Thus (v, v’) (t) _ (~o, 0) and (3.16) is proved. D

Finally we turn to,

Proof of Theorem 1.3 (ii). - Denote by E the set of all functions

~ e ,~(cx, b2, b3) such that F~ has (ATP). By Theorem 3.2 the set E

is everywhere dense in ,~(cx, b2, b3). For each § E E there exist

W o~ (R~), T~ > 0 such that

Let § E E, -n > 1 be an integer. By (3.18), the definition of the set E,
the continuity of the operator

and Theorem 2.2 there exist an open neighborhood U(~, n) of § in

,~(a, b2, b3) such that for each ~ E U(~, n) and each function
w E Wlo’~ ~~~ .

Define

Let h E ~’, WI, w2 be (Fh )-good functions. To complete the proof of the
theorem it is sufficient to show that = SZ ( w2 ) . Let E E (0,1). There
exist an integer n > and § E E such that h e U(~, n). It follows
from the definition of U ( ~, n ) that

This completes the proof of the theorem.
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APPENDIX A

This appendix is devoted to the proof of Lemma A, which will be based
on several additional lemmas.

LEMMA A.l. -Let E, M > 0. Then there exist 8 > 0 and an integer ql > 1
such that for each v E which satisfy

I9(~~ v) ::; + + 8

there exist ç E E [0, (qi - such that

Proof. - Let us assume the converse. Then for each integer p ~> 1 there
exists vp E W2~1 (o, pT,u, ) such that

vp) _ + ~9(Xvp (~)) - + 2-P

and for each ~ E ~0, TZ" ) , each T E [0, (p - 

By (A.2) and Proposition 2.2 there exists Mi > 0 such that for each
integer p 2: 1 

.

(A.2), (A.4) and (2.2) imply that for any integer n > 1 the sequence
is bounded in L~’~0, nTw~. It is easy to verify that there are

v E ~ o~ ( 0, oo ) and a strictly increasing subsequence of natural numbers
such that for every integer n > 1

By (A.2) and the lower semicontinuity of integral functionals [3] for

each integer n 2: 1
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Clearly

It follows from (A.5) and the definition of (see (A.2), (A.3))
that for each T E ~0, oo ) and each ç E [0, Tw )

(A.6) and (A.7) imply that the function v is (g)-good. Then

There exists a sequence of numbers C such that

For each integer j > 1 we define u~ E W2 ~ 1 ( - 4Tw , 4Tw ) as follows

By (2.2), (A.ll), (A.6) and (A.7) the sequence is bounded in

L~’[-4Tw, 4T.u,]. It is easy to verify that there are u E W2~1(-4T.u,, 4Tw)
and a strictly increasing subsequence of natural numbers {jp}~p=1 such that
(A.12) .

--~ u(t), ~ u’(t) as p ~ oo uniformly in [-4Tw,4Tw],

-~ u" as p -~ oo weakly in L’~ [- 4Tw , 4Tw ] .

By (A.6) and the lower semicontinuity of integral functionals [3]

Clearly

It follows from (A.11 ), (A.12) and (A.8) which holds for each T E [0, oo)
and each ç E [0, Tw), that

On the other hand (A.13), (A.14) and Lemma 2.8 imply that u(t) = w(t)
for all t e ~- 4Tw , 4T.u, ~ . The obtained contradiction proves the lemma. D
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LEMMA A.2. -Let Mo , M1, e > 0. Then there exists an integer q > 1 such
that for each v E W2~1(0, which satisfies

there exist ~ E ~0, T E ~0 ; ( q - 1 ) Tu, ~ such that

Proof. - By Proposition 2.2 there is So > Mo + Mi + 2 such that for
each T > 2-1 each v E W~~l (o; T) which satisfies

the following relation holds

By Lemma A.I there exists an integer qi > 1 and a number 8 > 0 such
that for each v E W2~1(~, which satisfies

v) _ + + b

there exist ~ E ~0; T E ~0; (ql - such that (A.16) holds. By
Lemma 2.6 there exists Ko > 0 such that for each T > 4Tw, each x; y E R2
satisfying  Mo + So + 1 the following relation holds

Here we use the fact that is bounded on compact sets. Fix an integer

Assume that v E W 2~ 1 (o, qTu, ) and (A.15) holds. It follows from (A.15)
and the definition of Ko (see (A. 19)) that

By the definition of So (see (A. 17)) and (A.I5)
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There exists a sequence [0, such that

Clearly

Together with (A.21 ) this implies that there is j E ~0, ... s - 1 ~ for which

It follows from this relation, (A.22), (A.23) and the definition of 8, ql
(see (A.18)) that there exist ç E [0, T ) , T E [tj, such that (A.16)
holds. This completes the proof of the lemma. D

ProofofLemma A. - By Proposition 2.2 there are a neighborhood u1 of
g in 9Jt and a number M2 > Mo + Mi such that for each f E Ui, each
T > and each v E W 2~ 1 (o, T) satisfying (2.24) the following
relation holds

By Lemma A.2 there exists an integer qi > 1 such that for each

v E which satisfies

there exist ç E ~0, T~,,), s e [0, (qi - 1 )Tw] such that (2.25) holds.
There exists a number Fo > 0 for which

By Lemma 2.7 there exists a neighborhood U2 of g in 9Jt such that

for each f ~ U2, each e ~ satisfying I  M2 the relation
 2-’ holds.

By Lemma 2.7 there exists a neighborhood U3 of g in 9Jt such that for
each f e U3, each v e satisfying

the relation 2-1 holds. Set U =

Ui n U2 n 
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Assume that fEU, T > qlTw, v e ~I2 y (Q ~ T) satisfies (2.24) and
T E [0, T - By the definition of and M2 relation (A.26) holds. It
follows from (2.24), (A.26), the definition of U2 and (A.28) that

By this relation and the definition of U3

It follows from this relation, (A.26) and the definition of ql (see (A.27))
that there exist ç E [0, E [T, T + qlTw - Tw] such that (2.25) holds.
The lemma is proved. D

APPENDIX B

Here we establish Lemma B whose proof is based on several auxilliary
results. ’

The following lemma shows that given E > 0 and a (g)-good function v,
for sufficiently large T the restriction of (v, v’) to [T, T + Tw] is within E
of a translation of (w, w’ ) .
LEMMA B.I. -Assume that v E W2,1loc(0, ~) is a (g)-good function and

. E > 0. Then there exists T( E) > 0 such that for each T > there is
~ e [0, Tw) such that 

’

Proof. - Since v is a (g)-good function for each 8 > 0 there exists
T(6) > 0 such that

for each Tl > T (b) and each T2 > Tl (see Lemma 2.4).
Assume that the lemma is wrong. Then there exists a sequence of

numbers {ti}~i=1 C (0,oo) such that
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and for each integer i > 1 and each ç E [0, Tw )

For each integer i > 1 we define Ui e (-ti, ~) as follows

It follows from the definition of > 0 (see (B.l)), (B.2), (B.4)
and (2.2) that for any integer n > 1 the is bounded

in L‘~ ~-n, n~ .
It is easy to see that there exist u e and a strictly increasing

subsequence of natural numbers {ip}~p=1 such that for every integer n > 1

By the definition of > 0 (see (B.I)), (B.2), (B.4), (B.5) and the
lower semicontinuity of integral functionals [3]

for each Tl E > Tl.

It is easy to see that for each t E jR~

Together with (B.6), Lemma 2.8 this implies that there exists [0, Tw )
such that u(t) = w(t + ço), t E It follows from this relation and (B.5),
(B.4) that there exists an integer po > 1 such that for each integer p > po

This is contradictory to the definition of (see (B.3)). The obtained
contradiction proves the lemma. D

LEMMA B.2. -Let E > 0. Then there exists b > 0 such that for each T > T.u,
and each s E ~0, T - if v is a function in W 2 ~ 1 ( 0, T ) such that . 

’

then there is ~ E ~0, Tw) for which
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Proof - By Proposition 2.1 and the continuity of for each integer
i > 1 there exists 6z E (0, 4-i ) such that for each x, y E I~2 satisfying

 ~2, d(x, e the following relation holds

Assume that the lemma is wrong. Then for each integer i ~ 1 there exist
Ti > E W 2 ~ 1 ( 0 ; T2 ) such that

and there exists Si e [0, Ti - such that for each ç E ~0, Tw)

For each integer i > 1 there exist ~i , ~2 E [0, such that

For each integer i > 1 there exists a function ui E W2,1(0, 03C4i + 2Tw)
such that

It follows from (B.13), (B.12) and the definition (see (B.9))
that for each integer i > 1

Together with (B.13), (B.10) this implies that for each integer i ~ 1
(B .14)

For each integer i > 1 there exists ~3 E such that

We define sequences of as follows
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It is easy to verify that there exists u e (0, ~) such that for each
integer i > 1

For each integer i > 1 we set

It follows from (B.16), (B.17), (B.13), (B. 11) that for each integer i > 1,
for each ç E 

(B.17), (B.14), (B.16) imply that u is a (g ) -good function. By Lemma B.I
there exists a number T* > 0 such that for each T > T* there is £ E [0, Tw )
such that

This is contradictory to (B.18) which holds for each integer i > 1 and
each £ E [0, Tw ) . The obtained contradiction proves the lemma.

Analogously to Lemma 3.7 in [17] we can establish the following result.

LEMMA B.3. -Let f E ~, w E T > 0, w(t + T) = w(t),
t E R1, If (o, T, w) = E > 0. Then there exists an integer q > 1
such that for any ~ E ~0, T) there is a function v E W2 ~ 1 ( o, qT) such that
) = 

+ E.

Lemma B.3 implies the following result.

LEMMA B.4. -Let E > 0. Then there exists a number q( E) > 0 such that
for each T > q(E), each ~1, ~2 E ~0, Tw) there exists v E W2’ 1 (O, T) which
satisfies = Xv(T) - Xw (~2 y .

Lemma B.4, Proposition 2.1 and the continuity of ~r9 and UT imply the
following extension of Lemma B.3.

LEMMA B.5. -Let E > 0. Then there exist numbers b, q( E) > 0 such that
for each T > q ( E), each x, y E R2 satisfying
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there exists v E W2n(0, T) which satisfies

COROLLARY B .1. - Let E > 0 and let b, q( E) > 0 be as guaranteed in
Lemma B.5. Then for each T > q(E), each x, y E R2 satisfying (8.19) the
following relation holds

Corollary B .1 and Lemma B.2 imply the following result.

LEMMA B.6. -Let E > 0. Then there exist b > 0, Q > Tw such that for each
T > Q, each v E W2,1 (p, T) which satisfies d(Xv (s), ~Xw (t) : t E 
b, s = 0, T, I9 (0, T, v)  Xv(T)) + b and each s E ~0, T - Tw]
there is ~ E ~0, Tw) for which

Lemmas B.6 and 2.6 imply Lemma B.
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