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ABSTRACT. - We study a class of parabolic systems which includes the
Ginzburg-Landau heat flow equation,

for uE : R d  R 2, as well as some natural quasilinear generalizations for
functions taking values in > 2.

We prove that for solutions of the general system, the limiting support as
E -~ 0 of the energy measure is a codimension k manifold which evolves
via mean curvature.

We also establish some local regularity results which hold uniformly
in E. In particular, we establish a small-energy regulity theorem for the
general system, and we prove a stronger regularity result for the usual
Ginzburg-Landau equation on R2. © Elsevier, Paris
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424 R. L. JERRARD AND H. M. SONER

RESUME - Nous etudions une classe de systemes paraboliques qui

comprennent 1’ equation de chaleur Ginzburg-Landau,

pour uE : Rd  R2, ainsi que des generalisations quasilineaires pour 
des

fonctions prenant leurs valeurs dans > 2.

Nous prouvons que, pour les solutions du systeme general, 
le support

limite (lorsque E ~ 0) de mesure d’énergie est une variete de codimension k

qui evolue selon sa courbure moyenne.
Nous etablissons en addition quelques resultats de regularite locale, qui

sont valides uniformement en E. @ Elsevier, Paris

1. INTRODUCTION

We p resent in this paper a collection of results concerning 
the asymptotic

regularity and qualitative behavior of solutions of the Ginzburg-Landau

system,

We also propose and study a class of equations which we 
believe are natural

generalizations of (1.1). These systems have the form

Here

Of special interest is the case where p 
= k; this is a direct generalization

of (1.1).
Annales de l’Institut Henri Poincaré - Analyse non linéaire



425GINZBURG-LANDAU SYSTEMS

The Ginzburg-Landau system arises in a variety of contexts, including
models of superconductivity and of systems of coupled oscillators near a
bifurcation point, see for example Kuramoto [27]. Recently the associated
minimization problem has been studied in great detail by Betheul, Brezis,
and Helein [4], [5], with refinements by Struwe [26], among others.

Neu [19], Pismen and Rubinstein [20], Rubinstein [21], E [9], and others
have analysed (1.1) and the associated Schroedinger-type equation using
matched asymptotic expansions. A number of results on the behavior of (1.1)
in two space dimensions were obtained by Lin [17], [18].
We view (1.2) as a natural generalization of (1.1) to energies with

nonquadratic growth in the gradient term. Given a solution uE of (1.2)
we define

We think of EE as a energy density for the generalized Ginzburg-Landau
system. This interpretation is motivated by the fact that

is formally a Lyapunov functional for (1.2). We remark that (1.2) is not

an equation for gradient flow for the functional IE. However, it retains

many of the estimates satisfied by (1.1), estimates which are crucial to any
analysis of properties of solutions. (These estimates are chiefly presented
in Section 2).

Also, in the same way that (1.1) is a kind of model problem for

codimension 2 pattern formation, the generalized system (1.2) can serve as
a model problem for the study of higher codimension pattern formation.
This view is supported by the results we present in Section 3, which are
discussed immediately below.
Our results fall into two classes. First, we characterize the qualitative

behavior of solutions of (1.2) in the limit as E -~ 0, in the case where
d > 1~ = p. More precisely, given a family of solutions uE of (1.2) with
appropriate initial data, we define an associated family of measures v;, and
we show that the support of these measures, in the limit, forms exactly a

( d - k)-dimensional submanifold which evolves via codimension k mean
curvature flow, at least for short times.

This result, which occupies Section 3, confirms the formal computations
of Rubinstein [21], Pismen and Rubinstein [20], and E [9] for the usual

Ginzburg-Landau system (1.1) in three space dimensions, and also applies

Vol. 16, n° 4-1999.



426 R. L. JERRARD AND H. M. SONER

to more general situations. It is closely related to a number of recent results
about the asymptotic behavior of solutions of scalar Ginzburg-Landau
equations and related equations. For example, Chen [7], Evans, Soner and
Souganidis [11], Ilmanen [23], and Soner [23] have shown that solutions
of the Allen-Cahn equation in a singular limit exhibit a sharp interface
which evolves via codimension 1 mean curvature flow. The latter three

papers establish this result globally in time, using various weak notions
of evolution via mean curvature. Analagous results have been established
for more general scalar reaction-diffusion equations by Barles, Soner and
Souganidis [2] and Jerrard [12], among others.

The larger part of this paper is devoted to establishing some regularity
theorems. We first prove a small energy regularity result. In Section 4

we prove that if certain weighted integrals of the energy density EE are
sufficiently small, then EE is in fact bounded in some smaller region.
This result is valid uniformly for parameter values E E (0.1]. Our proof
uses a monotonicity formula and a Bochner inequality, following ideas
of Struwe [24], and Chen and Struwe [8]. Small energy regularity and
a covering argument imply partial regularity results, as in Chen and

Struwe [8].
In the special case of the usual Ginzburg-Landau equation in R2 x [0, T],

we establish much stronger regularity results. We prove that if integrals of
the energy density are bounded in some region, then in fact the energy is
pointwise bounded in a smaller region. This result, which is again uniform
in E, follows from the small energy regularity via a blowup argument
(Section 6) and a Liouville-type theorem (Section 7). The blowup argument
is similar to one found in Struwe [25].

This latter regularity result is used in another paper by the authors, [14]
in which we completely characterize the asymptotic behavior of solutions
of (1.1) in H x [o, T ~, where H C R2 and T > 0. This result, which is
valid only locally in time, provides rigorous proof of formal results of
Neu [19], E [9] and others.

The paper starts with a collection of estimates in Section 2.

One issue we do not address is the solvability of (1.2). It is well-

known that (1.1) admits smooth solutions; this follows from the work of

Ladyzhenskaya, Solonnikov, and Uraltseva [16], as is verified in Bauman,
Chen, Phillips, and Sternberg [3], for example. Results of this sort are not
so obvious in the case of the generalized system (1.2). It is not difficult to
construct some sort of weak solutions of (1.2), for example by discretizing
in time, solving implicitly at each time step, and passing to limits. To

establish regularity, however, seems to require a priori estimates.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



427GINZBURG-LANDAU SYSTEMS

Such estimates are not, in general, valid for quasilinear systems, but they
normally hold for systems for which there is some sort of energy density
which is itself a subsolution of an elliptic or parabolic equation. This
is the case for (1.2), as is shown in Proposition 2.1. It is therefore not
unreasonable to expect that the same estimate holds for (1.2), and thus that
smooth solutions exist. In this paper, however, we focus on other issues
and simpy assume the existence of smooth solutions.
We will always assume that the initial data for (1.2) satisfies

Multiplying (1.2) by uE and defining wE : - ~ 2, we discover

The maximum principle thus suggests that any reasonable solution should
satisfy

for all (x, t) E Rd x [0, oo). Similarly, estimates in Section 2 imply that a
well-behaved solution should have the property that

Both of these statements will hold, roughly speaking, as long as there is
no influx of energy from = +00. It is not hard to see, for example,
that a solution produced by the implicit time discretization described above
will have these properties. We therefore further assume that for initial
data as described, our solutions satisfy both (1.6) and (1.7). To establish
these estimates a priori would require a delicate analysis and might not be
possible, as is shown by the example of the heat equation.

NOTATION AND PRELIMINARIES

We will use the following notation throughout this paper.
Integers d and k will always denote the dimensions of the domain and

the range, respectively, of the mappings we consider.
eE(.) and E~(.) will always be as defined in (1.2) and (1.3), where the

power p in the latter definition is understood to be the same as that in the

Vol. 16, n° 4-1999.



428 R. L. JERRARD AND H. M. SONER

generalized system (1.2). We will normally write eE instead of eE (uE ), when
no confusion can result, and likewise EE .

We employ the summation convention throughout. Roman indices i, j, , ...
are always understood to run from 1 to d, and greek indices a, ~, ...
run from 1 to k. Exceptions will be indicated explicitly. A scalar

product between matrices is denoted by A : B, so that for example
I .- 

We also use the notation

We will normally omit the superscript n which indicates the dimension of
the ambient space, displaying it only when the dimension is not obvious
from the context.

Observe that if uE solves (1.2) for a given value of the parameter E,

then t) .- uE(ax, solves (1.2) with e .- Similarly, we
have t) _ a2t). Rescaling in this fashion, we can
convert statements about solutions of (1.2) for arbitrary E into statements
about solutions with E = 1, for example. Whenever a statement of a theorem
is invariant under this rescaling, it clearly suffices to prove it for a single
value of the parameter E. We will invoke this sort of argument from time to
time by saying, without further explanation, that it suffices "by a rescaling
argument" to consider a certain case.

2. ESTIMATES

In this section we collect some estimates that we will use throughout
this paper.

We assume that uE is a smooth solution of (1.2) on Rd x [0,oo) and
that EE(~, 0) E L1 (R d).

Following a suggestion of M. Grillakis we define

The following fundamental identities are immediate consequences of the
equation (1.2). We have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



429GINZBURG-LANDAU SYSTEMS

Given a smooth test function yy E x ~0, oo~ ), we multiply the first
equation above by ~ and the second by Vyy, then subtract to obtain

We integrate to find

By adding, rather than subtracting, equations (2.1) and (2.2), we obtain
in a similar fashion

The integration by parts that we have carried out above is justified if

The former follows from our standing assumption (1.7). Invoking the same
assumption, the latter holds for a.e. t, since

and the right-hand side is finite a.e. t. Whenever we apply the above
estimates, we will integrate them over some time interval, so we can safely
ignore the set of measure zero on which pE ( ~, t) is not integrable.
We next show that the energy density EE solves a certain parabolic

equation. In the statement and proof of this lemma we omit all superscripts E,
and we write e to mean e(u) = eE(uE).

PROPOSITION 2.1. - The energy density E satisfies

Vol. 16, n ° 4-1999.



430 R. L. JERRARD AND H. M. SONER

Also,

Proof - From the definition of E we compute

We now replace ut and ~ut in the above equation by expressions we obtain
from the generalized Ginzburg-Landau system (1.2), thereby obtaining

(We have written out explicitly the terms for which there is some chance
that more condensed notation might be ambiguous.) We also have

from which we deduce that

From these we obtain, after cancelling several terms and combining terms
of the same form,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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From the definition of e we see that

The above two equations immediately imply that (2.5) 
holds.

To prove (2.6) from (2.5), note that Cauchy’s 
inequality gives

If lul2 > 1/2 then the first term in the right-hand 
side is negative. If, on

the other hand, lul2  1/2 then (1 - ~u~2)2  4(1 - Therefore

With (2.5) this immediately yields (2.6). 
D

Finally we derive some L- bounds 
for the energy. As these bounds

depend on ., we again indicate explicitly the parameter . in what follows.
From (2.5) we easily see that := satisfies

~-~

Thus the maximum principle implies that for any smooth 
solution use and

for all s,t > 0,

If we strengthen our assumptions on the initial data, 
we obtain the following

more useful result.

PROPOSITION 2.2. - Let u~ 6 C-(R’ x smooth solution

of (1.2 ) with p > 2, such that

The conclusion of the lemma follows easily from 
standard

regularity theory if p = 2.

Proof - 1. By rescaling it suffices to 
consider the case e = 1.

Vol. 16, n° 4-1999.



432 R. L. JERRARD AND H. M. SONER

Let w := lul2 and 03C8 := E + K(w - 1), where K > 03BA will be fixed
below. For a smooth function § let

Then using (1.5) we compute that

This with (2.5) gives

where

2. We estimate

Hence

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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on the set {eP/2 > K(p - 2)}. Combining these calculations, we obtain

Note that if 03C8 > 2K then E > 2K and thus eP/2 > K(p - 2).
3. For p > 2, set ..

There is a K(p) > 1 such that C(K, p) > 2K + 1 for all K > K(p).
Moreover, if K > K(p) and 03C8  2K + 1, then

Therefore by taking K = K(p) v x in the definition of ~, we get

4. If we set § :_ ~ V 2K, then .C~  0 on ~~  2K + 1} (in the sense
of viscosity solutions) and ~(x, 0) = 2K. Let

and define

From (2.7) we deduce that c( . ) is continuous and that to > 0. Also, ,C~  0
on Rd x ( 0, to ) and so the maximum principle implies that if t  to then

~(x, t)  ~(x, 0) = 2K. Thus to = +oo and §  2I~ on R~ x [0, oo). D

3. CONVERGENCE TO CODIMENSION
k MEAN CURVATURE FLOW

In this section we consider examine asymptotic behavior of solutions of
the generalized Ginzburg-Landau system in the case d > 1~ = p.

For this purpose, it is convenient to introduce the normalized measure

Vol. 16, n 4-1999.
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In the following, we assume that ro is a smooth embedded compact
(d - k)-dimensional submanifold of Rd, and that is a smooth
codimension k mean curvature flow starting from fa, for some T > 0. We
let T ~ Rd x [0, T] denote the set swept out by f t, i.e.

Also, we define

Since r is smooth and compact, we can find a number ~o > 0 and a
smooth function ~ such that

and

Ambrosio and Soner [ 1 establish several properties of the function 1 203B42 in
a recent paper. Their results immediately imply that ri has the following
properties:

THEOREM 3.1. - For (x, t) in a neighborhood of 0393, the matrix t)
has k eigenvalues equal to one, and each of the remaining d - k eigenvalues
satisfies the estimate t) (  Cb(x, t). In particular, ~2r~(x, t) is a

projection onto a k-dimensional subspace when (x, t) E T. Moreover,

In fact, Ambrosio and Soner [1] ] show that for a smooth evolving manifold
as above, t) gives the normal velocity vector of rt at (x, t) E r,
and t) equals the mean curvature vector. so the above equation
precisely characterizes smooth codimension k mean curvature flow.
We will use these results in the following form:

COROLLARY 3.1. - For any 03BE E Rd and all (x, t) in a neighborhood
of r we have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Also, ri satisfies

Proof. - The first assertion is immediate from the above characterization
of the eigenvalues of near F.

To verify the second assertion, first note that

The first of these equalities holds because ~ attains its minimum on r, and
the second follows from the description of in Theorem 3.1. If we let

~ = A??, we thus have (again using Theorem 3.1)

Given any (x, t) E Rd x [0, T], we can find y E rt such that = 8(x, t).
We then have

The following theorem is an easy consequence of these properties of r~.

THEOREM 3.2. - Suppose that Rd -~ R~ is a smooth solution of
the generalized Ginzburg-Landau system (1.2) with p = k and initial data

hE(X) for which

as E --~ 0. Then

Proof. - We use the smooth function ~ defined above in the weighted
energy estimate (2.3). Dropping a negative term and using (3.2) and the
definition of we have

Vol. 16, n° 4-1999.
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Select s E (0, ao] such that (3.1) holds on the set r: = t)  s~. This
number s may be chosen uniformly for t E [0, T), so we may assume that
~~~z~~~~~~1  C on R‘~ ~ Tt for some constant C, uniformly in [0, T] . Then

Moreover,

The three preceding inequalities together yield

Gronwall’s inequality now immediately implies that

for all 0  t  T. Dividing by log §, we obtain the conclusion of the
theorem. D .

Remark. - This proof may be seen as a Pohozaev-type estimate, as used
for example in Bauman, Chen, Phillips, and Sternberg [3].
The hypotheses of the above theorem mention only the initial distribution

of energy. If we assume in addition that hE exhibits a vortex-like structure

along cross-sections of Fo, so that Fo is a "topological defect", then we
can strenthen the above result.

Because ht is assumed to be a smooth codimension k manifold, at each
y E rt we may find vectors nl(y, t),..., nk(y, t) E Rd such that each
na is normal to Tt, and n(3 = 8a(3. We assume moreover that r t
is orientable, so that (y, t) ~--~ na (y, t) may be taken to be smooth and
globally well-defined on r.

For y E rt, we define wE ( ~; ~, t) : R~ --~ R~ by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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THEOREM 3.3. - Suppose that uE is a smooth solution of (1.2) with p = k
and initial data uE (x, 0) = hE (x) satisfying

uniformly for E > 0. If in addition there exists x, ~1 > 0 such that

K/e and

for all y E E then

for all ~ E Co (Rd).
The constant comes from Lemma 3.2 below.

Remark. - Theorems 3.2 and 3.3 taken together imply that if vt is any
weak limit of v;, then the support of vt exactly equals rt .
As the sign of deg(wE ( . ; y, t) ) depends of the choice of ..., n k, we

may take it to be positive, without any loss of generality.
We assume a > 0 is fixed and we introduce the notation

We denote typical points in B4u and K as x and y respectively. Given a
function vE : U ~ R/B we further define

Here leb1 denotes 1-dimensional lebesgue measure. We may think of YtE
as the subset of points in K at which the cross-section at time t exhibits
an isolated vortex, in a weak sense.

The following two estimates are proven in Jerrard [13] as Theorem 6.1
and Theorem 4.2 respectively.

Vol. 16, n° 4-1999.
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for some x > 0, and assume that

for all y E K, r E [03C3, 403C3], and that

for all t E ~0, T]. Then

for all t E [0, T ~ .
LEMMA 3.2. - Suppose that ~E E and that

and that

Then

The constant K( k) is given explicitly in Jerrard [13].
Using these we present the

Proof of Theorem 3.3.
1. For cr E (o, ~1] to be determined, define U as above.
First we define a map 03C8 E CX> (K x [0, T]; r) such that for every

t E [o, T], t) is a diffeomorphism of K onto a subset of Tt. Now we
define 03A8 : U x [0, T] ~ Rd by

Note that for fixed (y, t), W(., y, t) maps R~ onto the normal space to

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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We may assume that I  C and that the C-1 > 0, where
= det is the Jacobian of ~.

We also assume that a is small enough that ~ is one-to-one.

Finally we define vE(x, y, t) .- 
2. We now verify that vE satisfies the hypotheses of Lemma 3.1 Since uE

is assumed smooth, it is evident that the map t H vE { ~, ., t) is continuous
in the norm of W 1 ~ °° . We next compute

Also, it is clear that

so the condition on the degree of v~ ( ~, ~, 0) follows immediately from (3.5)
and our choice of cr.

Finally, note that and so

The final equality follows from (3.4) by the calculation in the proof of
Theorem 3.2.

3. Lemma 3.1 therefore asserts that (3.8) holds.
We now define, for y E rt

It is clear that we can find a finite collection of of the form
described above such that

Vol. 16, n ° 4-1999.
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Thus (3.8) and (3.9) imply that

4. For x sufficiently close to Ft, let p(x) E rt be the unique point of rt
satisfying

Fix r so small that p(x) is well-defined on {~(-,~)  4o-}. Note that for
Y 6 ~,

This is an immediate consequence of Lemma 3.2.

In the calculations below, Jp denotes the Jacobian of p, Jp :=

[det Here dp denotes the gradient of p considered as a map from
Rd into and thus is expressed as a (d - k) x d

matrix, after choosing bases for the respective tangent spaces. In particular,
with this definition the change of variables that we employ below is valid.

For every smooth, compactly supported § we have

where

and, by a version of the co-area formula,

In the last step we have used (3.11).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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5. Fix any subsequence and a measure v such that --~ v. By
Theorem 3.2, we know that spt v C ft. It follows that

We will show in Lemma 3.3 below that Jp(y) = 1 for y E ft. Thus Ii
vanishes as E ~ 0.

Also, (3.12) and (3.10) evidently imply that

LEMMA 3.3. - For p as defined above and y E Ft, Jp(y) = 1.

Proof. - Fix y ~ 0393t and orthonormal vectors To , ... , Td-k which span

Ty rt . Taking the standard basis e 1, ... , ed as a basis for Ty Rd, the matrix
dp has the form

After a relabelling we may assume that ei == Ti for i = 1,..., d - k and
that are normal to ft at y.

We claim that

Indeed, for any i = 1, ... , d - ~, by the definition of p,

since V6 is normal to rt. Since p(y) = y, this implies that

which implies (3.13).
Also, for j > d - k and h sufficiently small, similar reasoning shows

that p(y + hej) = p(y). Thus (dp)ij = 0 whenever j > d - k. With (3.13)
and the definition of Jp, this implies the conclusion of the lemma. D

Vol. 16, n° 4-1999.
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In the remainder of this section, we briefly indicate a way to construct
initial data hE for (1.2) in such a way that the resulting solutions, if smooth,
will satisfy the hypotheses of Theorems 3.2 and 3.3.
We impose some topological restrictions on ro by assuming that there

exist smooth, bounded, open sets = l, ..., k, such that

For a = 1,..., ~, let da be the (signed) distance to so that

Since the sets C~a are assumed smooth, each function da is smooth
near We assume in addition to (3.14) that

on ro.
For ex = 1,..., k, let da be smooth functions such that

Let d : R~ be the vector-valued function whose ath component is
da . Note that d is related to the ordinary distance function b( ~, 0), defined
above, by

Finally, note that assumption (3.14) implies that - k-1/2(1, ..., 1)
as ] -~ oo, so we may find d satisfying the above conditions, for which
there exists some number M such that

Remark. - 1. Assumption (3.14) appears to be a necessary condition for
the existence of initial data with the required properties. Given (3.17), one
can modify the sets Oa locally near ro to arrange that (3.15) be satisfied.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2. Assumption (3.14) is satisfied by any Fo which can be embedded as
a codimension 1 manifold in Also, it is clearly preserved under
homotopy.

Let v : Rk  R~ be a function of the form v(x) = for a
scalar function p such that

Then for e(v) + W(v), we have

We define

One can then verify that

in the sense of distributions, and it is clear that (3.5) holds. Moreover, one
can verify that hE satisfies the hypotheses of Proposition 2.2, and thus that
a smooth solution uE with hE as initial data satisfies

So hE has all of the desired properties.

4. SMALL ENERGY REGULARITY

In this section we establish a small energy regularity theorem for
solutions of the generalized Ginzburg-Landau system. The basic argument
we follow was introduced by Schoen [22] for stationary harmonic maps
and generalized by Struwe [24] and Chen and Struwe [8] to the case of
heat flow for harmonic maps and for Ginzburg-Landau type approximations
of harmonic maps.
The proof relies on a monotonicity lemma and a Bochner-type inequality,

that is, a differential inequality which is satisfied by the energy. The main
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novelty here is the observation that these estimates are available in this
more general context, as well as the fact that our result is local in nature. In
problems involving asymptotic behavior of solutions of Ginzburg-Landau
type systems, global energy estimates, independent of E, typically do not
hold. Thus the local character of our estimates is very useful in these

applications.
Small energy regularity results of the sort that we establish here can

be used with covering arguments to deduce partial regularity results, as in
Chen and Struwe [8].
We start by establishing a monotonicity formula, which we get by putting

an appropriate test function ~ in the identity (2.5). We first define this
function:

Let f : [0, oo) -~ [0,1] be a smooth nonincreasing function such that

Also, define p : Rd x (0, oo) - R by

where I is the identity matrix. We then have

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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So with this choice of 7y in (2.4) we obtain (using the fact that ~ is

nonnegative)

By the definition of ~y, the integrals on the right-hand side above are

supported on {x : 1~4  ~x~  1~2}. Recalling that ~~~y~2/y  
we have

Also, for Ixl > 1/4,

Thus we have established the following local monotonicity formula.

LEMMA 4.1. - The measures satisfy the estimate

Before stating our small-energy regularity result, we introduce some
notation. For Xo E Rd, r > 0, and 0  t  to, let

where q and p are defined at the beginning of this section. We write

at to mean ai. Note that the ar is scale-invariant in the following
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sense: Given a function uE solving (1.2), we may define a rescaled
function by ic(x, t) = uE(xo + Rx, R2t). We also define E = 

E(x, t) = 2/p(eE(u))P~2. As remarked in the introduction, ic solves the
system (1.2) with scaling E, and

Thus, using the fact that p(Ry, s) = we obtain by a
change of variables

In particular, by taking R = r we can convert statements about ar to
statements about aE .

We now change notation, using ~ to denote a small constant which will
be chosen below. We also introduce the notation

We now have

THEOREM 4.1 (local small-energy regularity). - Suppose that uE is a
solution of (1.2) on Br x [To, with E  r. Suppose also that there
exists ~ > 0 such that for all x E Br, s  r with C Br, and all
t E [To, we have

Then there are positive constants ri, po, and C such that if

for some (xo, to) E Br /4 x [To + T2, Ti] and T E (0, then we have
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Proof. - 1. We first claim that it suffices to establish the theorem under the

assumption that T = r vfij. Indeed, if T2  then we define r by insisting
that T = f vfij. Note that r  r, and so 7(~x~~r)  y(~:c~) for all x. Thus

Clearly also (4.2) continues to hold if r is replaced by r. We may then
use r instead of r in the proof, and the desired equality will be satisfied.

Next, by rescaling we may set r = 1. Thus we assume that

The constant ~ E (0,1] will be fixed at the end of the proof. After these
normalizations, (4.2) implies that

2. For 03C10 ~ (0,1/4] to be chosen, let

Thus E (x, t)  2P[ in Estimate (2.6) now implies that
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Note also that it now suffices to show that C for appropriate
choices of q, po. Indeed, if we have this estimate, then

which is the conclusion of the theorem.

Then

and w  in P~ (x, I). The coefficients in the above equation satisfy

so by a parabolic Harnack inequality for nondivergence structure equations,
see Krylov and Safonov [15], which depends only on the above bounds
on the coefficients, we have

4. Since ~7  1 and po  1/4,

and so for (x, t) E ~a (~, t), we have

Thus

by the monotonicity formula, Lemma 4.1.
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Recall that by construction, t  to, so the last term on the right hand
side above is bounded by 

5. By translation, we may set xo = 0, and we define i := t + ~2 - to.
Observe that by construction we have

We now claim that if po is sufficiently small, then

We write

where

Recalling that  == 1 on B1/4(0), we have

if 1/8 > H. which may be achieved, for given q, by adjusting po.
Taking po still smaller yields Ii  
To estimate note that if p(x - + i) - + i) > 0 then

We rewrite this inequality as
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This implies that

using (4.6). Thus

if po is chosen small enough. With (4.3) this implies that I2  r~~3.
The estimate of 13 is very similar to that of I2, so we omit it. Thus

we have proven our claim.

6. Putting together steps 4 and 5, we find that

Taking ~ small now gives

As remarked in step 2, this immediately yields the conclusion of the
theorem. D

5. SOME VARIATIONS

By modifying the argument of the small energy regularity theorem, we
obtain slightly different results which will be useful later on.

PROPOSITION 5.1. - Suppose that u~ solves (l.l ) on Br x where
E  r. Assume also that there exists ~ > 0 such that

Then there exist constants C ( ~ ) , T() such that

Remark. - Note that this applies only to the usual Ginzburg-Landau
system with quadratic growth.
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Proof. - 1. As in the proof of Proposition 4.1, it suffices to prove the

result for r = 1 > E. We may also assume by a translation that To = 0.

Take Xo E B1 /2, to  1 / 16 to be fixed later, and define

Exactly as in the proof of Proposition 4.1 we select ao E (0, to) and
(x, t) E Pao such that

We further define 3 := ( to - Q~)/2. Following the argument of steps 1-4
of the proof of Proposition 4.1, we find that

for some 3  3.

2. By the monotonicity lemma, the definition of aE and the assumed
L°° bounds on E~ ( ~, 0),

From the definitions we have t + jj2  2to, so with Step 1 we obtain

So there exists some T > 0 such that if to  T, then

Next define
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PROPOSITION 5.2. - Suppose that u~ is a solution of (1.2) on Rd x ~To, T~~,
with E  l, and that for all s  1 and all (x, t) E Rd x [To, Tl~ we have

Then there are constants q, po, C which may depend on x, such that if

for some T > 0 and (xo, to) E Br /4 x [To + T2, then we have

Remark. - The point is that when we omit the cutoff function ~y from

the integral, we no longer require T to be small.

Proof. - The assumption that T is small is used only in two places in
the proof of Theorem 4.1 The first is in deriving (4.4), where it is used

to guarantee that  is nonzero on a certain set. This clearly is no longer
necesary when using a~ instead of cxr.

Second, in (4.5) we employ the monotonicity formula Lemma 4.1, and
thereby pick up an error term which is bounded by T2. If however we
work with a~ instead of then there is no error term in the monotonicity
formula. Indeed, setting ~y = 1 in (4.1) we obtain

Thus in this situation we can derive (4.5) with no restrictions on T. D

6. REGULARITY

In this section we prove a uniform asymptotic regularity result for the
usual R2-valued Ginzburg-Landau system

in 2 space dimensions.

We will use the notation
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To simplify notation, we do not explicitly indicate the dependence of 8
on r. Note that 8 is just the distance to the parabolic boundary of Qr.
Our main result is

THEOREM 6.1. - Suppose that u~ solves (6.1 ) in Qr with

for all 0  t  r2. Then

In particular, for every o  1,

Combining this with the short-time regularity result, Proposition 5.1, we
immediately deduce the following

COROLLARY 6.1. - Suppose that uE satisfies the hypothesis of Theorem 6.1.
If, in addition,

then

We start by proving a compactness result that we will use several times.

LEMMA 6.1. - Suppose that ~vn ~ are functions such that for each n,
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uniformly in n, then vn is locally uniformly continuous (Lipschitz in the x-
variables and C0,1/4 is the t-variable), and En is precompact in 
Moreover, if En -~ E E ~0, and

then

(i) if E = 0, then v solves

Proof. - 1. The proof does not in any way depend of the radius r, so
we work on Q to simplify notation. It is obvious that vn and Vvn are
uniformly bounded in Lo. Let Q’ := Q (81 ) for some 9i  1, and fix a
function ( E Co ( Q) such that ( - 1 on Q’.
By using ( in the estimate (2.3) we immediately obtain

2. Now we define Q" :== Q(()2) for some 82  ?i. From Step 1 we know
that vn ( ~, t) is Lipschitz in Br for every t E [0, r2~ . Fix (x, tl ), (x, t2 ) E Q"
with ti  t2. For all s such that C we may integrate the
inequality

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



455GINZBURG-LANDAU SYSTEMS

over y E to obtain

In the final inequality we have used (6.7). If t2 - ti is sufficiently small,
then Bs(x) C BOlT for s = (t2 - tl ) 1/4. The above inequality with this
value of s then yields

This implies that vn is locally uniformly continuous, as claimed.
3. We multiply (2.6) by (2 En and integrate over Q to find that

We now use Cauchy’s inequality to cancel the bad terms on the right-hand
side against terms on the left, thus leaving us with

In particular, VEn is uniformly bounded in L~(Q~).
4. We next claim that

Multiplying (2.6) by (2 and calculating as in Step 3, we find that
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Because En = eEn ( Vn) is uniformly bounded, there exists some E > 0
such that IVnl ] > 1/2 whenever En  E, so that the above estimate plainly
implies (6.9) in this case. On the other hand, if En > E, then

5. Fix a smooth function ~ supported in Q’ such that ~ - 1 on Q". By
differentiating (6.1) with respect to time and multiplying by 2vn,t, we obtain

Multiplying by ~ and integrating, we get

In particular, using Step 1, Step 4, and Cauchy’s inequality we obtain

where 8 > 0 will be selected below. Defining ç - r~1~2, we use a

Sobolev-Poincare inequality to compute

We substitute this into (6.11 ), select 8 small and use Step 1 to conclude that

Since

we easily deduce that En,t t i s uniformly bounded in L2 ( Q" ) . With Step 3
this proves that ~ En ~ is precompact in 
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In fact, the above estimates show something slightly stronger: that

1 ) 2 / En ~ are both precompact in 
6. Assume now that (6.3) holds. We first consider the case E = 0. In this

case, pn : _ ~ IVn ] -~ 1 uniformly as n - oo, so for n sufficiently large we
may define a globally single-valued function ~n such that

We normalize ~n by imposing the requirement ~n(o) E [0, 2~r). We then
see from (6.3) that ~n ~ ~ locally uniformly in Q, where § satisfies

v = It is also clear that ~~~ -, weakly in L2.
Writing (6.1) in terms of pn and ~n, we obtain two equations, one of
which is

With the above estimates, we may pass to limits to find that § satisfies

Rewriting this in terms of v yields (6.4).
7. Still assuming that E = 0, we need to prove that E = ( 1 /2) ~ ~v ~ 2 . In

view of the results of Step 5, it suffices to show that

in From (6.8) and the fact that ~ 1 uniformly, we have

for n sufficiently large. This immediately gives the desired conclusion.
8. If we assume that E E ( 0, oo ) or E = +00, the stated conclusions

follow in a straightforward fashion from the estimates of Steps 3 and 5.
9. Finally, fix some 0  t  1 and let § E L2(B1). Suppose also that §

is supported in U C C Bi. Fix h > 0 small enough that t + h  1. Then

where
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and 13 has the same form as 12. It is clear that 7i - 0 as n - oo. Also,

by Fubini’s Theorem. Thus

using the fact that En,t is locally uniformly bounded in L2. Clearly 13
satisfies a similar estimate, so

Since h is arbitrary, we are finished. D
We are now ready for the

Proof of Theorem 6.1.
1. First note that the statement of the theorem is invariant under rescalings,

so we may assume without loss of generality that r = 1.

Suppose that

Temporarily fix n ~ ~-1/2, where ~ is the constant from Theorem 4.1.
For each E > 0, the function

is well-defined and continuous in Q and approaches 0 as 8(x, t)
approaches 0. From (6.2) it is clear that the hypotheses of Theorem 4.1
are satisfied. It follows that
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otherwise (6.12) and Theorem 4.1 would lead to a contradiction. Thus we
can select En - 0, (xn, tn) E Q such that

and for all (x, t) E Q such that t  tn, we have

The small-energy regularity Theorem 4.1 now implies that

for all (x, t) E Q such that t  tn. In particular, if we let rn = 8 ( x n, tn) / n,
then

and define

Note that sn) E tn) for (x, t) E so vn is

well-defined on this set. Let En = en /rn. Then vn solves

If we denote En(x, t) = eEn (vn ), then by rescaling equations (6.15), (6.2),
and (6.13) respectively, we obtain

whenever R  (4rn ) -1, (x, t) E Pn/2(0,0). These estimates are all

independent of n.
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Similarly s.~ {t) ~ tn ) ( 1- n-1 ) whenever t E ~-n, 0]. Thus, recalling
the definition of b, 

.

4. We may assume after passing to a further subsequence that En --~ L E
[0, +oo] and, as a result of Lemma 6.1, that vn - v locally uniformly and
that En(’, t) --~ E(., t) weakly in Lfoc(R2), for every t  0..

Let 
~

E inherits the estimates

from (6.16) and (6.17) respectively, and

from (6.18) Also, (6.19), (6.20) and Fatou’s lemma imply that

for all (x, t) E Po.
5. We now consider three cases, corresponding to the three cases of

Lemma 6.1. In each case we will show that v must be a constant, in

contradiction to (6.23).
Case (i): E = 0.
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From the proof of Lemma 6.1, we see that we may write v =

sin(~)), where § solves the heat equation on and that

E = ~~ ( /2  C. It follows that ~~ also solves the heat equation on 
Standard Liouville-type theorems then imply that ~c~ is constant, and we see
from (6.22) that this constant can only equal zero. This contradicts (6.23).

Case (ii): E E (o, +oo).
Lemma 6.1 implies that v solves (6.5) on As in case (i), a Liouville-

type theorem shows that v must be constant. This is the content of

Theorem 7.1, which is proved in the next section.
Case (iii): E = +00.

By Lemma 6.1, v solves the heat equation on Po. An argument very
similar to that given for case (i) above shows that v is constant. Thus the
proof is complete. D

Remark. - 1. Heuristically, case (i) corresponds to the possibility that a
singularity might form in the interior of Q, and cases (ii) and (iii) correspond
to the possibility that a singularity might enter Q at the boundary. Thus
they arise as a consequence of the fact that the theorem is local in nature.

2. Carrying out a similar blowup argument for the usual Ginzburg-Landau
system (1.1) in d space dimensions, one may obtain a function v solving
either (6.4), (6.5), or (6.6) on Rd x (-oo, 0~ and satisfying the estimates
(6.21), (6.23), (6.24), and

for every (xo, to) E Rd x {-oo, 0]. To establish a regularity result like
the one given above, one would need a Liouville-type theorem asserting
that such a function is necessarily constant. We conjecture that such a
Liouville-type theorem holds.

3. For the generalized Ginzburg-Landau system (1.2), one may again
carry out a blowup argument to find a function solving a limiting PDE on
the set Rd x ( - oo , 0] , but one does not expect a Liouville-type theorem
to hold except under special circumstances. In this case, these results can
be interpreted as giving some qualitative information about the types of
singularities that can occur, as in Struwe [25].

7. A LIOUVILLE-TYPE THEOREM

We start out with a Liouville-type theorem for the elliptic Ginzburg-
Landau equation in R2. Stronger results of the same character may be
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found in Brezis, Merle and Riviere [6]; we include this here for the reader’s
convenience.

LEMMA 7.1. - Suppose that u : R2 --~ R2 solves

and that E(x) .- (1/2) ~~u~2 + W(u) is bounded and satisfies

Then u is constant.

Proof. - As in (2.3) we derive

for smooth test functions q. Let TJ(x) = where

Letting r ---~ oo and using (7.1), the right-hand side tends to zero. Thus
lul - 1, and so the equation becomes Au = 0. Now the result follows
from the standard Liouville’s Theorem. D

With this theorem we complete the proof of Theorem 6.1.

THEOREM 7.1. - Let u be a function solving

on = R2 x ( - ~, 0] and satisfying in addition the estimates
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where E := ~ is the number from Proposition 5.2, and 03BA may be

any positive number.
Then u is constant.

Proof. - 1. We may assume by rescaling that E = l.
For R > 0, T  0 set

Then (7.5) states that

for all T  0.

2. If there is some T  0 for which

then for every x E R2, t  T, R > 1 we have the estimate

and Proposition 5.2 implies that

Letting R - oo, we find that E(x, t) = 0 for all x E R2, t  T. This

implies that u is constant on {t  T}, which in turn implies the conclusion
of the lemma.

3. In order to demonstrate that (7.7) holds and complete the proof, we
assume that

for every T  0, toward an eventual contradiction. We first claim that with
(7.6) this implies that for each T  0, there exists some R(T) > 1 such
that H(R(T), T) _ ~.
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To prove this, it suffices to show that for each T  0, H(. , T ) is locally
Lipschitz in [0,oo). By the chain rule and (2.3), we have

where C(R) contains a factor of 2R from the chain rule and sup norms
of derivatives of p. One easily checks that C(R) may be taken to be
continuous. Now using estimate (6.10) with ~ ~ 1 we get

where we have used (2.3) in the last inequality. With (7.4) we find that

which implies that  C(R) for all T  0.

4. From (7.4) it is clear that for each x E R2 and t  0,

Using this fact and Step 3, we may thus choose Xn E R2, tn  -n such
that for Rn := R(-n) > 1,

Define

for (x, t) E Po. Then rescaling as usual, we find that Un solves

with the estimates
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and for any (x, t) E Po,

5. Now (7.9) and Proposition 5.2 imply that

This shows that the hypotheses of the Compactness Lemma 6.1 are satisfied
by the sequence Un, with En := 1/Rn  1, so we may extract a subsequence
converging to a function it locally uniformly, with En  E in 
The strong convergence of En and (7.10) imply that

ic is not constant. ( 7.11 )

Since En  1, we only need to consider two cases:

Then we show as in Step 5 of the proof of Theorem 6.1 that u is

constant, in contradiction to (7.11)

In this case, by rescaling we obtain

since tn ~ -~ as n ~ oo. With Lemma 6.1 this shows that it solves the
elliptic Ginzburg-Landau system

> = C. However, we have shown
in Lemma 7.1 that that any such function must be constant, again
contradicting (7.11 ). D
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