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ABSTRACT. - We study the equation ut - 0 u = up - 0 in
a general (possibly unbounded) domain H C IRN . When q > p, we show a
close connection between the Poincare inequality and the boundedness of
the solutions. To be more precise, if q > p (or q = p and p large enough), we
prove global existence of all solutions for any domain S2 where the Poincare
inequality is valid. When  is large enough, all solutions are bounded and
decay exponentially to zero. Conversely, if H contains arbitrarily large
balls (if N  2 and Q is finitely connected, this means precisely that .

the Poincare inequality does not hold), then there always exist unbounded
solutions. Moreover, IRN, there exist global solutions which blow-up
at every point in infinite time. Various qualitative properties of the solutions
are also obtained. © Elsevier, Paris

Key words: nonlinear parabolic equations, gradient term, global existence, bounded
solutions, Poincare inequality, blow-up, critical exponent, exponential decay.

RESUME. - Nous etudions l’équation ut - 4lu = uP - 0 dans
un domaine Q C IRN general, eventuellement non borne. Lorsque q > p,
nous montrons 1’ existence d’ un lien etroit entre Finegalite de Poincare
et le caractere borne des solutions. Plus precisement, si q > p (ou si

q = p et tc est assez grand), nous prouvons 1’ existence globale de toutes
les solutions, dans tout domaine H ou Finegalite de Poincare est verifiee.
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336 P. SOUPLET AND F. B. WEISSLER

Lorsque  est suffisamment grand, toutes les solutions sont bornées et

tendent exponentiellement vers zero. Inversement, si H contient des boules
de rayon arbitrairement grand (lorsque N  2 et H est finiment connexe,
cela signifie exactement que 1’ inegalite de Poincare n’a pas lieu), alors il
existe toujours des solutions non bornées. De plus, si 0 = IRN, il existe
des solutions globales qui explosent en tout point en temps infini. Diverses
proprietes qualitatives des solutions globales sont egalement obtenues.
© Elsevier, Paris

1. INTRODUCTION AND MAIN RESULTS

We consider the following parabolic equation:

where p, q > l, ~c > 0, and Q is a (possibly unbounded) regular domain
in (By a regular domain, we mean a uniformly regular domain of
class C2 in the sense of Browder [B] and Amann [Am].) The problem (1.1)-
(1.3) admits a unique, local in time solution u > 0, for any § E 
~ > 0, with s large enough (max(Np, Nq)  s  oo). We refer to the
Appendix A for a precise definition and local properties of solutions. We
denote by T* = T * ( ~), 0  T*  oo, the maximal existence time of
the solution.

This equation was introduced by Chipot and the second author [CW]
in order to investigate the effect of a damping term on global existence
or nonexistence. On the other hand, the first author ([S2]) proposed a
model in population dynamics, where ( 1.1 )-( 1.3) describes the evolution of
the population density of a biological species, under the effect of certain
natural mechanisms.

Several authors have studied the existence of nonglobal positive solutions
for the problem ( 1.1 )-( 1.3) and have given various sufficient conditions for
blow-up under certain assumptions on p, q, ~c, Nand 0 ([CW], [AW], [KP],
[F], [Q1], [Q2], [Sl], [S2], [STW]). Unifying and improving these results,
the authors of the present paper proved the following ([SW, Corollary 3]):

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



337POINCARE’ S INEQUALITY AND GLOBAL SOLUTIONS

THEOREM A. - Let p > q > 1 and  > 0. Let 03C8 E 03C8 > 0,
0. Then there exists some ko > 0 (depending on such that for all

k > ko, the solution of (l.1 )-(1.3) with initial data 03C6 = k03C8 blows-up in
finite time in norm.

This theorem is a consequence of a general result of [SW], valid for a
wide class of nonlinear parabolic equations of the form:

It relies on a method of blowing-up self-similar subsolutions introduced
in [SW]. In the case of equation (1.1), both the result and the proof
provided, as an important advantage, a unified treatment for the general
case q  p, independent of all the technical restrictions that had to be
imposed in the previous blow-up studies for this equation.
On the other hand, when q > p and H is bounded, global existence

for all nonnegative initial data was proved in [F], [Q2]. In particular, this
combined with Theorem A established the following conjecture, in the case
of bounded domains:

The critical blow-up exponent for problem (1.1)-(1.3) is q = p, (1.4)

in the sense that blow-up can occur if and only if q  p (see [Ql, p. 413]).
The initial motivation of the present paper is to study this conjecture in

the case of unbounded domains. We shall prove that finite time blow-up
cannot occur for q > p (or q = p and ~c large enough), whenever the
Poincare inequality is valid in that is:

Moreover, for p large enough, all solutions are globally bounded and decay
exponentially to 0, provided the Poincare inequality is also valid in 

Although we are still unable to prove or to exclude blow-up for q > p
in a general unbounded domain, we will see that the assumption on the
Poincare inequality is not artificial and turns out to play a significant role
in the problem. To this end, let us first recall that the inradius of Q is
defined as:

For finitely connected domains in dimension N = 2, the finiteness of the
inradius is known to be equivalent to the validity of the Poincare inequality

Vol. 16, n° 3-1999.



338 P. SOUPLET AND F. B. WEISSLER

in Ho (SZ) (Hayman [H], Osserman [O]), or -in other terms- to the fact
that -0 has a smallest eigenvalue, which is positive, where 0 is the

Laplace operator in Ho (SZ). (This is also obviously true for any interval
in dimension N = 1. ) We shall prove that if p ( SZ ) = ~, then there exist
(possibly global) unbounded solutions for all q > p and ~c > 0.

By combining these results, in dimension 1 or 2 and under some technical
assumptions, we obtain a characterization in terms of the Poincaré

inequality of the domains in which all solutions are global and bounded
(for q > p and ~c large).
Let us now state our main results in a more precise form. Recall that the
exponent s satisfies max(Np, Nq)  s  oo.

THEOREM 1 (global existence). - Let SZ be a uniformly regular domain
of class C2 in q > p > 1 and ,u > 0 (with ~c large enough if
q = p). Assume that the Poincaré inequality holds true in (03A9). Let
~ E Wo’s (SZ), ~ > 0, and u the solution of (l.l )-(1.3). Then:
(i) T* = oo.
(ii) If the Poincaré inequality holds also in H10(03A9), there exists some

lVl ( SZ ) > 0 such that for all ~c > M ( SZ ), u ( t, . ) is bounded and decays
exponentially to zero in ( s  r  00), as t --~ oo.

THEOREM 2 (unbounded solutions). - Let q > p > 1 and ~c > 0. Let SZ be a

uniformly regular domain of class C2 in with inradius p(SZ) = oo. Then
there exists ~ E Wo’s (S2), ~ > 0, such that the solution u of (l.l )-(1.3)
satisfies either

or

COROLLARY 3 *. - Let N  2, q > p > l, and let SZ be a uniformly regular
domain of class C2 in IRN. If N = 2, assume that SZ is finitely connected
and q > 2. Then the following are equivalent:
(i) There exists some M ( SZ ) > 0 such that for all ~c > M ( S2 ) and
~ E > 0, the solution of (l.~)-(1.3) is global and uniformly
bounded, .

(ii) the Poincaré inequality holds in Ho (SZ),
(iii) p(SZ)  oo..

* Note added in proof: One can show that Corollary 3 is actually true for all N > 1 and
without the assumptions SZ finitely connected and q > 2; see [S3].
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339POINCARE’ S INEQUALITY AND GLOBAL SOLUTIONS

We will also derive various results concerning global existence,
boundedness or unboundedness of solutions for equation ( 1.1 ):

- If [2 contains a cone (in particular IRN), and q > p, there exists
unbounded global solutions.

- Suppose q > p. If SZ = IRN, then some solutions blow-up in infinite
time at every point of IRN . On the contrary, if IRN, blow-up
(in finite or infinite time) can occur only at infinity.

- In any domain H (in particular in IRN), for q > p, the solution exists
globally whenever § has exponential decay in at least one direction.

- When q > p, if the restriction of § to some cone contained in Q has
a slow enough decay at infinity, the solution blows up in finite or
infinite time (this is known to happen in finite time when 1  q  p,
see [SW]).

- When H is contained in a strip, the solutions are global and uniformly
bounded for all § if q > p, and for small § if 1  q  p (with 
large if 1  q  2p/(p + 1)).

- We provide a qualitative description of the blow-up set when q > p,
for any unbounded solution (global or not); roughly speaking, the
blow-up cannot be local.

Last, we will show that our method for proving the existence of
unbounded solutions also applies to convection-reaction-diffusion equations
of generalized Burgers’ type:

which have been previously considered in [LPSS], [AE] and [Fr2]. This
partially anwers a question raised in [AE].
The paper is organized as follows. Theorem 1 and the other boundedness

properties are proved in Section 2. In Section 3, we prove Theorem 2,
the other facts concerning unbounded solutions, and present the extensions
to equation (1.6).

In order to clearly present the fundamental ideas of our proofs, we have
relegated a number of unpleasant technicalities to three appendices. We
have chosen an approach based on Lebesgue and Sobolev spaces, rather
than Ca spaces, since the basic a priori estimate we obtain is in In

Appendix A, we specify the properties of uniformly regular domains which
we need, and give a detailed account of the local theory for equation (1.1)
- via the corresponding integral equation - in where the domain
H is not necessarily bounded, and where s  oo is sufficiently large. Also,
we show that if the initial datum § is sufficiently regular, then the resulting
"mild" solution is a classical solution of ( 1.1 )-( 1.3). Appendix B establishes

Vol. 16, n° 3-1999.



340 P. SOUPLET AND F. B. WEISSLER

weak comparison principles necessary to our arguments. Indeed, many of
our proofs use subsolutions and supersolutions, which we need to compare
with solutions of the integral equation. Finally, in Appendix C, we
show that gradient blow-up does not occur, i.e. that an a priori bound in

prevents blow-up in 

Throughout Sections 2 and 3, we freely use results proved in the

appendices, with appropriate citation.

2. GLOBAL EXISTENCE AND BOUNDEDNESS

The key ingredient in our global existence results will be an estimate
that proves that the Lr norm of u(t) cannot blow-up in finite time (with r
finite in Theorem 2 or r = oo in the results of Section 3). However,
since the local existence space is we will have to make sure that

nonexplosion in Lr norm prevents explosion in norm. This is the

purpose of the following proposition, which is proved in Appendix C.

PROPOSITION 2.1. - Let 0 be any regular domain in p, q > 1

> 0. Let cP E > 0, and u the solution of (l.1 )-(1.3).
Assume that T*  oo. Then = oo for all r such that
s  r  oo and r > Np/2.
An analogous result has been proved by Quittner [Q2, Theorem 5.1 (i)]

in the bounded domain framework and working with L°° and W l~°° norms.
His proof relies on the Bernstein device, and on a careful analysis of the
tangential derivatives near the boundary, which makes essential use of the
negative sign in front of the gradient term. The central part of the argument
can be essentially transposed to the present context (see Lemma C2).
However, some care is needed when working in an unbounded domain and
with the theory. In particular, as we start from LT estimates and as 0
is now unbounded, the passage from L’~ to L°° (see Lemma Cl) and from

(see Lemma A2) has to be made clear.

Assuming this proposition, we are able to prove Theorem 1.

Proof of Theorem 1. - Let us first assume that § E so that, by
Propositions A3 and A4, for any finite r > s,

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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and u verifies ( 1.1 )-( 1.3). We multiply equation (1.1) and integrate
over Q, which yields, for t E [0, T * ),

Hence, by Green’s formula

j 
..

Applying the Poincaré inequality in (Q), we get

In the case 1  p  q, f1 > 0, the inequality

now implies that

for some C = C(SZ, ~, q, r) > 0, and the same inequality follows from (2.2)
when q = p and ~c > Cq ( SZ ) -1 ( g+g-1 ) q . Integrating, one then immediately
obtains 

. ,

In particular, the estimate 2.4 implies that T* = oo by Proposition 2.1.
Suppose now that the Poincare inequality also holds in Ho ( SZ) . Thus 2.2
implies that

Vol. 16, n° 3-1999.
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When 1  p  q and M > M(O, r) large enough, (2.5) and (2.3) yield

for some K = K ( SZ, r ) > 0. Hence,

A standard approximation argument (using continuous dependence in

Proposition Al) and the embedding c since

r > s > N, show that (2.4) and (2.6) are true for all initial data

In order to prove exponential decay in L°°, we write the variation of
constants formula between t and t + 1:

By the nonnegativeness of u (Lemma Bl), the L°° estimate for the heat
kernel and inequality (2.6), we obtain

where 0  6~  1 (since s > Np - see (A5)). Interpolating between LS and
L°°, this proves in addition that K and M can actually be chosen uniformly
with respect to r E [s, oo]. This completes the proof. D

Remark 2.1. - When 1  p  q  2, the conclusions of Theorem 1

remain valid for any § E with r large enough. Indeed the problem is

well-posed in this space (as indicated in [AW, p. 16]) and it is thus sufficient
to check that the LT norm of the solution cannot blow-up in finite time.

Remark 2.2. - a) The largeness assumption on ~c for (exponential)
decay to 0 cannot be relaxed in general. Indeed, if q > 2p/ (p + 1) and
(N - 2)p  (N + 2), there exist positive stationary solutions when H is
a ball of large radius, or equivalently for small p when the radius is fixed
(see [CW, Corollary 5.4 (ii)]).

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



343POINCARE’ S INEQUALITY AND GLOBAL SOLUTIONS

b) Convergence to 0 (in for M large is proved in [F, Remark p. 800]
in the special case when 0 is a ball, 1  p  q  2. However, no
estimate on the rate of convergence is provided since the result stems
from a precompactness property of the trajectory and the fact (see [CW,
Corollary 5.4 (i)]) that no nontrivial nonnegative stationary solution exists.
We now return to the case of a general unbounded domain with q > p.

The results of Section 3 will prove that there can exist global unbounded
solutions, in particular in IRN . While the question of whether there exist
(finite time) blow-up solutions when q > p remains open, we are able to
exclude this possibility for a certain class of initial data, specifically for §
having exponential decay in at least one direction.

THEOREM 2.2. - Let 0 be any regular domain in IRN, q > p > l,  > 0.

Let E > 0, with E > if q = p. Assume that ~ E satisfies the
following exponential decay condition:

Then T* = ~. Moreover, there exists a > 0 such that

for all t > 0 and x E H.

Proof of Theorem 2.2. - Without loss of generality, we may assume that
a is the unit vector in the xl-direction. We claim that, for the right choice
of cx, the functions

are (traveling-wave) supersolutions. If q > p and ,~3 > 0 or if q = p and
0  ,~  1, we have the elementary inequality

Therefore,

Vol. 16, n 3-1999.



344 P. SOUPLET AND F. B. WEISSLER

It thus suffices to choose ,~ = and cx = E2 + if

q > p, or ,C~ = 1, and cx = E2 + if q = p and E > Then we get,
thanks to the comparison principle (Lemma B1),

and so

In particular, Proposition 2.1 implies that T* = oo. D

Remark 2.3. - The result of Theorem 2.2 shows that the conjecture ( 1.4)
holds true for any N > 1, ~c > 0 and any domain H, as long as one
considers only the class of initial data having exponential decay in at least
one direction (and in particular in the class of data with compact support).
Indeed, Theorem A provides blow-up data with compact support for q  p.

For the next result, we assume that the domain S2 is contained in an infinite

strip (this is a special case of Theorem 1, since the Poincare inequality is
then of course valid). In this particular case, it is possible to improve the
result of Theorem 1 (i), by proving that if q > p, then the solutions in fact
remain bounded in L°° for any  > 0. In the case 1  q  p, although
blow-up solutions always exist by virtue of Theorem A, we can however
prove boundedness and global existence for all small data in L°° norm.
The various cases are collected in the following result.

PROPOSITION 2.3. - Let 03A9 be a regular domain of IRN, contained in a strip,
and ~ E YT~o ’s (SZ), ~ > 0. Assume that one the following conditions is met:

(Here ~co = and = are positive constants.
Moreover can be chosen so that L(p, q, ~, ~) = oo when p,
q and 0 are fixed. ). Then the solution of (~.1 )-(1.3) is global and bounded
in L°°. Moreover the bound on u depends only on ~ ~ ~ ~ ~ ~.
Remark 2.4. - This proposition yields a slightly stronger version of

conjecture (1.4) than Theorem 2, in that we do not need to assume M large
when q = p.

Remark 2.5. - The cases (ii)-(iii) of Proposition 2.3 can be enlightened
in the following way. Consider a domain Q containing balls of arbitrarily
large radius (hence not included in a strip), e.g. H = IRN . By using standard

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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rescaling and maximum principle arguments, along with Theorem A, one
can construct blow-up initial data of arbitrarily small L°° norm. When
2p/(p + 1 )  q  p, this is possible for any fixed p > 0. When

q  2p/(p + 1 ), this corresponds to  tending to 0. Moreover, when

q = 2p/ (p + 1), p is close to 1, and ,u is small enough, it is possible to
construct self-similar solutions to (1.1) on IRN that blow-up exactly in one
point, as t increases to 1, and tend uniformly to 0 as t goes to -~ (see
[STW]). This also provides blow-up data of arbitrarily small L°° norm.
The methods we use for proving Proposition 2.3 are completely different

from those in Theorem 1. We extend an idea of Fila [F] based on

supersolutions. Proposition 2.3 in fact improves the corresponding result [F,
Theorem 3] which was restricted to q > 2p/(p + 1), H bounded. Note that
the point of view of [F] is rather to consider the value of ~c as depending
on II I> II 00 .

Proof of Proposition 2.3. - Without loss of generality, we can assume
H C (0, a) x IRN-1. We are seeking a supersolution of the form

v(t, x) = where x = (~1, ~ ~ ~ , xN), with C > ~~~~~~ and a > 0 to
be determined. (Proposition 2.1 will of course imply that T* = oo.) The
condition to ensure is thus

This is achieved as soon as

and

In the case q > p, it suffices to choose

In the case q  p, (2.8) and (2.9) are satisfied if a and C verify

Such a and C exist if

Vol. 16, n ° 3-1999.



346 P. SOUPLET AND F. B. WEISSLER

If q  2p/(p + 1), then (2 - q)/(q - 1) > q/(p - q) and o- = 0, so that
suitable a and C can be found for any M > 0. If 2p/(p + 1 )  q ~ p,
then a > 0, and suitable c~ and C can be found for large enough ~c. In
both cases, we take = C.

Finally, note that for 1  q  p and M large enough, one can always take
a = 1 and C = (i.c/2)1~~P-q>e-~. Therefore, L(~) -~ oo, as ~c ~ oo. ll

3. UNBOUNDED SOLUTIONS

The proofs of Theorem 2 and of some of the other results in this section
depend in a fundamental way on the following lemma.

LEMMA 3.1. - Let p > 1, q > 2p/(p + 1) 0. There exists ~, E,

R > 0 and a (radial) function v > 0, of class C2 on IR+ x satisfying:

Intuitively, the idea is to seek an unbounded global subsolution, whose
gradient remains uniformly bounded, so that the damping effect of the
gradient term can never become too important even for large q. This
subsolution will take the form of a spherical "expanding wave", which
propagates radially away from the origin with an increasing maximum at 0.

Proof of Lemma 3.1. - We need two auxiliary functions. Let us first
define a function f : JR 2014~ 1R, of class C2, by

It is easily seen that f satisfies, for some E > 0,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Next, we define IR+ -~ JR, as

with M = 2N / E. The function ,~ is of class C2 on 1R+, with the following
properties:

Now we set

which is of class C2 on R+ x lRN. We compute (omitting the argument
in f, f’, f " for simplicity):

First taking ~c = E in equation (1.1), we have

If s = 1/2 + M + 6~ - /3(~) > 1/2, then fP > 3Ef’ hence 0.

On the other hand, if s  1/2, then ~3(~:c~) > M + M. Hence

~~(~x~) = 1 and 36/’ - f" - fP  0. Now, for a general
~c > 0, replacing U by

we get

Vol. 16, n° 3-1999.
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for a > 0 sufficiently small since q > 2p/(p -~- 1 ), which proves (i) with
v = U~.
Finally, (ii)-(v) are straightforward consequences of the definition of f
(take R = (M + 1/2)/a and ~ = D

Proof of Theorem 2. - Let us fix a sequence of positive reals

Rn --~ oo. From the hypotheses, there is a sequence of disjoint balls

Bn = B (xn , R~) C 0, with Rn > Rn. We are going to construct a suitable
subsolution w = w (t, x) of ( 1.1 )-( 1.3) on 0 by taking advantage of the
rescaling properties of the equation. With v as in Lemma 3.1, we set:

with = where the constants Mn > 0 shall be adjusted
later. By (ii)-(iii) in Lemma 3.1, we have:

From (i), it follows that

where we have used the fact that q > p > 2p/(p + 1), Vt  0 and
= + t)2  l. We now choose

and define the function was :

Note that each wn is supported on Bn and that the Bn are disjoint. By
Lemma 3.1, it is clear that w is C2 on 1R+ x and hence is a classical

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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sub solution of ( 1. ~ )-( 1.2). Moreover, by the choice of is bounded on

[0, T] x IRN for each T > 0. On the other hand, since

it follows, by the choice of Rn, that w(0) E for all large s.

Therefore, by the comparison principle (Lemma B 1 ), the solution of (1.1)-
(1.3) with initial data w(0) remains above w(t) as long as it exists, which,
along with Proposition 2.1, completes the proof. D

Proof of Corollary 3. - The equivalence of (it) and (iii) for domains of
finite connectivity in dimension 2 is proved by Osserman [O, Theorem (a),
p. 546]. It is obvious in dimension N = 1, since H is necessarily an
interval. (Note that the implication (ii) =~ (iii) is clearly true in any domain
and any dimension. However, it is known that the implication (iii) =~ (ii)
is false in dimension N > 3 - see Hayman [H], and also Lieb [L] for
further results in this direction.) *

The implication (i) =~ (iii) is a consequence of Theorem 2.
Assume (ii): Then it can be seen by standard arguments that the Poincare

inequality holds also in (SZ) for q > 2. The assertion (i) then follows
from Theorem 1. D

Under additional assumptions on 0, one can prove that some unbounded
global solutions do actually exist.

PROPOSITION 3.2. - Suppose the regular domain S~ contains a cone, ~c > 0,
q > p > 1. There exists some ~ E C2 (SZ), ~ > 0, with compact support,
such that the solution u of (l.1 )-(1.3) satisfies T* = oo and

ProofofProposition 3.2. - To prove this, we seek an unbounded solution
with compact support at t = 0, so that Theorem 2.2 applies, and supported
by H at all time t > 0. The idea is to consider a "traveling expanding-wave",
obtained by combining a spherical expanding wave such as in Lemma 3.1
and a translation motion along the axis of the cone.

Without loss of generality, one may assume that H contains a cone 0’ of
vertex 0 with half-axis along the first unit vector ei. It follows that there
exists some K > 1 such that for all r > 0, SZ’ contains the ball 

* Note added in proof: Actually, one always has (ii) 4~ (iii) when n is uniformly regular;
see [S3].
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Let us consider the function

with f and ~3 as in the proof of Lemma 3.1. A slight modification of the
calculation in the proof of this lemma shows that

whenever 0  b  E/2 and A > 0. By the usual rescaling (see
formula (3.2)), we obtain

for all 0  a  ao, with ao small enough (depending on  but not on A, 8).
From the definition of f and ,~, we see that

Hence, Supp(za(t, .)) C SZ’ C SZ, for all t > 0, as long as we assume

Let us set § = za ( 0 ) . Since § has compact support, it can be bounded from
above by some function of the form so that Theorem 2.2 applies.
The comparison principle (Lemma B1) and Proposition 2.1 then imply the
Proposition. Q

Remark 3.1. - From the above proof, one can deduce that u actually
satisfies the estimate

Our next result gives a criterion for blow-up in finite or infinite time
in terms of the growth of § as Ixl --~ oo. In the case of equation (1.1)
without gradient term (i.e. J1 = 0), when S2 = a result of this type .

was first proved by Lee and Ni [LN], who obtained finite time blow-
up for any initial data § such that is large
enough. A similar result was proved in [STW] for equation (1.1) in the
case q = 2p/ (p + 1) and ~c > 0 small. The authors then extended these
results to general nonlinear parabolic equations of the form
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including equation ( 1.1 ) for any 1  q  p and ~c > 0 [SW, Theorem 2].
Moreover, the growth condition at oo was weakened, having only to

be assumed in some smaller region, specifically a cone, so that the result
remains valid in any unbounded domain SZ containing a cone. The following
result is thus the analog of Theorem 2 in [SW] for equation ( 1.1 ) in the
case q > p (except that we do not know whether T *  00).

PROPOSITION 3.3. - Let the regular domain S2 contain a cone SZ’, ~c > 0,

q > p > l. There exists some constant C = C ( SZ’ ) > 0 such that for all
§ e W1,s0(03A9), § > 0, satisfying

then the solution u of (1.1 )-(1.3) is unbounded (with T *  00).
The idea of the proof is similar to that of Theorem 2 in [SW]. The main

difference here is that we compare u to a global unbounded subsolution,
instead of a (self-similar) blowing-up subsolution. We then use the properties
of the equation under rescaling and translation, to "spread" the mass of the
comparison function out to infinity.

Proof of Proposition 3.3. - We compare u with the function za given in
the proof of Proposition 3.2, for some possibly smaller a, and suitable A.

Let us set C = in formula (3.3). Since
~ satisfies (3.3), there is some B > 0 such that

Take a = min(ao, 1/B), and A = max(K(M + 1/2), M + 3/2). For all
x E 52 such that 0, we (M-I-1/2)/cx, hence

so that (3.4) implies

As a consequence of the comparison principle (Lemma B 1 ), the solution u
with initial data za (0) remains above za as long as it exists, and the result
follows. D
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Remark 3.2. - With a little more work, it should be possible to prove
the results of Propositions 3.2 and 3.3 for slightly more general unbounded
domains, e.g. if H contains a paraboloid.

In the case of we obtain global solutions that blow-up everywhere
as t --~ oo. As a consequence of Proposition 3.5, it will turn out that this

can occur only in lRN.

PROPOSITION 3.4. - Let Q = p > 1 and ~c > 0. There exists

E ~ >_ 0, with compact support, such that the solution u
of (l.1 )-(1.3) satisfies T* = oo and

ProofofProposition 3.4. - Taking § = v ( 0 ), with v as in Lemma 3 .1, it

is an immediate consequence of this lemma and Theorem 2.2. D

We now provide a qualitative description of the blow-up set of all

unbounded solutions (global or not) when q > p and Q is any (non-Poincare)
domain. We set 

’

The situation, which is rather unusual, is described by the following
alternative.

PROPOSITION 3.5. - Let SZ be a regular domain in q > p > 1 and

~c > 0. Assume that ~ E is such that either T*  o0 or u is

global unbounded.
IRN, then E 

(ii) If 03A9 = then either E = IRN ~ {~} or E = {~}.

Remark 3.3. - Propositions 3.2 and 3.4 prove that there indeed exist
unbounded (global) solutions with blow-up set E of each of the types
described in Proposition 3.5. However, we do not know whether the case
E can actually occur in 

Proof of Proposition 3.5. - (i) Since SZ is regular, one can assume that

B(xo, E) C SZC for some Xo E IRN and some E > 0. By a calculation
similar to that in the proof of Proposition 2.3 (i), one easily finds that

v(t, x) = I .is a smooth (unbounded) stationary supersolution on
JR+ x Q, for suitable a > 0 and C > ~ By the comparison principle
(Lemma B1), the solution u(t, .) must then remain locally bounded in SZ
for t E ~0, T * ), hence E = ~ oo ~ .
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(ii) Assume that some Xo E IRN is not a blowup point, i.e.

The function v defined in part (i) is now a (smooth) supersolution on
x B(xo, E)), provided we choose C > max(M, ~~~~~~, ). We

conclude as above. D

To conclude this section, we show that our method for proving the
existence of unbounded solutions also applies to other equations, namely
the convection-reaction-diffusion equations of generalized Burgers’ type:

This partially answers a question raised in [AE] (see the commentary before
Lemma 4.6 p. 453). However it remains an open question whether blow-up
can occur in finite time when q > p (as it is for equation ( 1.1 )).

PROPOSITION 3.6. - Let q > p > 1 and a E 0. There exists

some ~ E ~ > 0, with compact support, such that the solution u
of (3.5) with initial data ~ satisfies

Moreover, if T* = oo, then we have the estimate

with q = min(l, l~(q - p)).

Proof. - By [AE, Theorem 2.1], for any § E (for
instance), there exists a unique maximal solution of (3.5), classical on

(o, T * ) x such that u E L°° ( (0, T) x lRN) for all T E (0,T*), and
limt.~T~ = oo if T*  oo.

We constuct an unbounded subsolution. Let V (t, x) = 2v(t, x), where v
is given by Lemma 3.1 with q = p and M to be fixed later.

First assume p  q  p + 1, hence p/(p + 1 - q) > p. Using Young’s
inequality and 1, we get

for any E > 0, with some constant CE > 0.
Next assume q > p + 1 and set m = q - p > 1. By modifying the

function f in the proof of Lemma 3.1 in such a way that f(s) = 
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for s large, and by taking cx small in formula (3.1), one can prove that
the result of Lemma 3.1 remains valid with the additional property that

~ ~ (v"2 ) ~ E x with arbitrarily small,
and with

instead of (iii). Then we obtain

Hence, in both cases,

Choosing E so small that 2P-l - 2q-lE > 1, and f1 > we deduce

that QV  0, and the result follows by choosing § = ~V (0) . (To justify
the application of the comparison principle here, see for instance [AE,
Lemma 2.2 and Remark 2.3], which apply, since V is C2 and has

compact support for all t; one can also adapt the proof of Lemma Bl.) D

Remark 3.4. - After reading a preliminary version of this article, M.
Escobedo [E] informed us that the methods in [AE] can be used to show
that, if q > p > 1, and under the additional assumption p  1 + 2 /~V, then
for > 0, the solution u of (3.5) cannot be global and uniformly
bounded on lR+ x lRN. In other words, either T*  oo, or T* = oo and

lim supt~~ |u(t) |~ = oo.
This remark, in turn, inspired us to refine the original version of

Proposition 3.6. We point out that our method of proof is completely
different from those in [AE] (eigenfunction methods).

APPENDIX A. - LOCAL THEORY

AND REGULARITY OF SOLUTIONS

A.I. Introduction and preliminary facts

Since our main results distinguish the behavior of solutions to

Annales de l’Institut Henri Poincaré - Analyse non linéaire



355POINCAR~’ S INEQUALITY AND GLOBAL SOLUTIONS

depending on whether or not the Poincare inequality holds on H, it is

essential that we have a local theory of solutions of (Al) on unbounded
domains with unbounded boundary.

For this purpose, in all that follows, we will assume that H is a

uniformly regular domain of class C2, as defined in Amann [Am,
Chapter III, p. 642], who refers to Browder [B]. (It seems that this definition
of uniform regularity is a bit stronger than the definition in Adams [Ad,
p. 67].)
Our approach to proving existence of solutions to (Al) is based on the

(formally) equivalent variation of parameters integral equation:

where the mappings Ji and J2 are defined by

with q > 1, p > 1, and a and b arbitrary real numbers. In this article, we are
concerned with the case a > 0 (i.e. a = 1) and b = -~c  0. While the local

theory for equation (A2) does not depend on the signs of a and b, the results
of Appendix C depend on a crucial way on the fact that b  0 > 0).
We use the abstract theory developed earlier by the second author [W].

This approach enables us to construct a local theory for equation (A2)
based essentially on properties of the linear part of the equation, i.e. the

heat semigroup. It is well known that the heat semigroup et° is well defined
on an arbitrary open set and has the following properties.

(SG1) et° is a Co semigroup on 1  r  oo.

(SG2) et° is a contraction on 1  r  oo, i.e.

for all t > 0 and all 03C6 e Lr(03A9).
(SG3) is a bounded analytic semigroup on 1  r  oo. In

particular, there exists Mr such that

for all t > 0 and all § E 
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(SG4) If 1  r  s  oo and t > 0, then --~ is
a bounded map and

See (for example) the forthcoming book by Brezis and Cazenave [BC] for
detailed proofs of these facts.
We denote by the domain of the generator of the heat semi-

group in L~’ ( SZ) . The following additional properties are special cases of
Theorems 13.3 and 13.4 in Amann [Am].

(SG5) with its graph norm, is a closed subspace of n

Wo ’r ( SZ ) , with equivalent norms, for all 1  r  oo.

(SG6) restricts to a Co semigroup on (S~),. for all 1  r  oo.

Moreover, if N  r  oo, then is continuously embedded into
(see Adams [Ad, Theorem 5.4, p. 97]), and

(This is a consequence of Theorem 3.18, p. 54, Theorem 5.4, p. 97, and

paragraph 4.7, p. 67 in [Ad].) By Lemma 11.1 in Amann [Am], SZ admits
a strong 2-extension operator, from which one deduces the following
interpolation inequalities:

valid for all § E W 2 ~’~ ( SZ ) . Inequality (A7) follows from [Ad, Theorem 4.7
p. 79]. Inequality (A8) is proved in [Fr1, Theorem 9.3] in the case when H is
bounded or 0 = The strong extension property implies the inequality
for an unbounded domain SZ. Finally, we also have the following elliptic
regularity properties (see Amann [Am, Theorem 12.1]).

(ER1) If § E and !~~ E then § E and

(ER2) If ~ 6 and e then ;6 6 ~~(H), and
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A.2. Statement of the local results

Now that the assumptions on Q and the semigroup et° have been
specified, we can state the results of the local theory that that will be
needed in the present article. The goal is to construct a local theory on
the spaces where r  oo is large. Our purpose here is not to
find optimal value of r, but rather to choose r as large as we need so
that the technical arguments are as simple as possible. Thus, from now
on we assume that

PROPOSITION A 1. - Let ~ E Wo ’’~ ( S~), where r verifies (A9).
(i) There exists a unique maximal solution u = u(.; ~) E

C( ~0, T~-. (~) ), Wo ’’’ (SZ) of the integral equation (A2). If the existence

time T.r. (~) is finite, then = oo.

(ii) (Continuous dependence) For all T E (0, T~. (~) ), there exists some

neighbourhood V of 03C6 in Wo ’’’ ( SZ ), such that > T for all 03C8 E V, and
such that for all t E (0; T], the map 03C8 H u(t; is (Lipschitz ) continuous
from V to Wo ’’~ ( SZ ) .

The next point is to make sure that if § belongs to (SZ) for more
than one value of r, then the corresponding solutions and their maximal
existence times Tr (~) do not in fact depend on r. We will also derive some
useful estimates on the norm of the solution.

PROPOSITION A2. - Let ~ E Wo’’’(S~), where r verifies (A9), and let u(t)
be the resulting solution of (A2) in 
(i) u(t) E for all t E (0, Tr (~) ) and all s E (r, oo). Also,

u(t) E for all t E (0, T~.(~)).
(ii) Let R > 0. There exist T > 0 and C > 0 such that Tr (~) > T for all
~ E (the centered ball in of radius R), and

for all E U(r,R~, and all t E ~0, T], where u and v are the corresponding
solutions of (A2).
(iii)  oo, then = oo.

(iv) E n with r  s  oo, then = and
the corresponding solutions in and in coincide.

Notation. - In what follows, we designate by T* the common value
of all for all r such that § E 
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Next, we turn to regularity properties of solutions of the integral
equation (A2). By standard parabolic Lr-regularity theory (see e.g. [LSU]),
and Proposition A2 (i), it is easy to see that, for any § E the
solution of (A2) given by Proposition A2 is in fact a classical solution
of (Al) (that is: (1.1)) in (0, T* ( ~) ) x S2. However, for the developments
in Appendix C, we will require C2 solutions up to the boundary, for
smooth initial data, for instance for § E C3 ( SZ ) . The basic tool we use
is the generator of the semi-flow induced by the integral equation. Recall
that if § E and if u ( t) is the resulting solution of (A2), then the
generator B is defined by

provided this limit exists. The domain of the generator, Dr(B), is precisely
the set of § E H for which this limit exists. From [W, Theorem 2.2], we
deduce the following regularity result:

PROPOSITION A3. - Let ~ E Dr(B). Then:

Our main task is therefore to identify B and its domain.

PROPOSITION A4. - D~. (B) is the set of all ~ E such that

Moreover,

Suppose ~ E Dr (B) n for some r verifying condition (A9). Then
each and is separately in W 1’’ (SZ) C C$ (SZ). Moreover,
the resulting solution u of (A2) verifies u E C(~0, 
The following corollary, which is an immediate consequence of

Propositions A3 and A4, will be useful in the Appendices Band C.

COROLLARY A5. - Suppose ~ E C~ (SZ), and let u(t) be the solution of
(A2) with initial value It follows that:
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(d) each term and is continuous into CB (SZ)
for t E ~0, T * ( ~) ). In particular, u is a classical solution of (A 1 ) on

Q = [0, T* (~)) x ~.

A.3. Proof of the local results

We begin work by giving some additional properties concerning the heat
semi-group.

LEMMA A6. - Let 1  r  oo. For all t > 0, et° : ~ 

is a bounded map. Also, there exists Cr > 0 such that

for all t > 0 and all 03C6 E 

Proof. - Since et° is an analytic semigroup on it follows that
---~ c is bounded for all t > 0, where we

consider DT ( 0 ) with its graph norm. In particular, E for

~ E and all t > 0. Thus, we may use the interpolation inequality (A7)
and property (SG5), with § replaced by This gives

and the proposition now is a consequence of inequalities (A3) and (A4). 0

LEMMA A7. - Let 1  r  s  oo. For all t > 0, ~

is a bounded map ~except if s = oo, then et° : -~ is a

bounded mapJ. Also, there exists C = C(r, s) such that

for all t > 0 and all 03C6 E 

Proof. - If s  oo, the fact that et° : LT (SZ) --~ is a bounded

map follows from the previous proposition and property (SG4) of the heat
semigroup mentioned above. Also, (A13) is an immediate consequence
of (A5) and (A 12).

If s = oo and r > N, we use the Sobolev inequality (A8) and
property (SG5), with § replaced by This is permitted since

W2,r(f!) n We thereby obtain
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where we also have used inequalities (A3) and (A4). This proves (A13)
if s = oo and r > N. If s = oo and r  N, then we combine (A13)
with r > N and (A5) to obtain the general case. The fact that

et° : --~ W 1~°° (SZ) is bounded follows from (A13) and (AS) with
s = oo. This proves the proposition. D

To handle the integral equation (A2) via the framework of [W], we need
the following property of the mappings Ji and J2.

LEMMA A8. - If q  r  oo, then Ji : Wo ’’’ (SZ) ~ Lr/q(03A9) is Lipschitz
on bounded sets and continuously Frechet differentiable. If N  r  oo,

then J2 : Wo ’r (S~L) -~ is Lipschitz on bounded sets and continuously
Frechet differentiable.

Proof. - It is clear that if r > q, then J1 : W1,r0(03A9) ~ Lr/q(03A9) is

Lipschitz on bounded sets, and in fact continously Frechet differentiable. If
r > p, the same is true for J2 : L’~ ( SZ ) --~ L~’~p ( SZ ), and therefore also for
J2 : Wo ’’~ ( SZ ) --~ In both cases, the Frechet derivative of J2 at a

function § applied to another function ~ is given by

(To simplify the notation, we restrict ourselves to real-valued functions.)
We can improve this as follows. If r > N, then Wo ’’~ (SZ) is continuously
embedded into (Theorem 5.4, Part III, pp. 97-98 in [Ad]). In this

case, we see that if cP E then is a bounded linear map
~ 

on and therefore also a map Wo ’r ( SZ) --~ Since

it follows that J2 : Wo ’’~ (S~) --~ L’’ (SZ) is continuously Frechet differentiable
(and Lipschitz on bounded sets), for all N  r  oo. D

We are now ready to prove the local results for (Al) aand (A2).

Proof of Proposition A 1. - For each t > 0, we define the nonlinear

map Kt by

Lemmas A6, A7, A8, and property (SG4) imply that Kt : Wo ’’~ ( SZ ) ---~
Wo ’r ( S~ ) is continuously Frechet differentiable, Lipschitz on bounded sets.
Furthermore, if U(r, R~ is the centered ball in of radius R, then
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(In fact, Cr{R)  Cr(Rq-1 + Rp-1).) Condition (A9) easily implies that
N ( q - 1 ) / 2r -I- 1 / 2  1, and so the integral equation (A2) generates a
semi-flow on having the properties described in Theorems 1, 2.2
and 3.1 of [W]. Note that the integral equation (A2) can be written simply as

This proves Proposition Al D

Proof of Proposition A2. - (i)-(ii) Let r  s  oo. By Lemmas A6,
A7, A8, and property (SG4), we see easily that for all t > 0, Kt maps

into [except if s = oo, in which case Kt maps 
into and that

Condition (A9) on r implies that if 0  t  Tr (~), then the integral term
in (A14) is a convergent Bochner integral in in case

s = oo]. Also, Lemma A7 implies that the semigroup term is in the desired
space. Moreover,

In particular, if § E n with r  s  oo, then

(We emphasize that these calculations do not use the optimal powers of t.
Condition (A9) on r enables us to use the same power of t for all s with
r  s  oo.)

If E Wo ’s ( SZ ) , and if u and v are the corresponding solutions of
(A14), a calculation similar ’to (A15) gives

(A17)
By part (iii) of Theorem 1 in [W], given R > 0, there exists T > 0 such
that > T for all § E and the time-t maps of the semiflow
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generated by (A14) are uniformly Lipschitz on for t E [0, T~ . This
fact combined with (A17) immediately gives (A10).

(iii) Suppose that  oo. Replacing § by 
for some small E > 0, we may assume that C for all
t E ~0, Tr (~) ) . It follows that

and

for all t E [0, T~(~)). The integral equation (A2) now implies that

from which we see that

It now follows from Gronwall’s lemma that stays bounded on
any bounded subinterval of ~0, Tr (~) ) . This proves that = oo.

(iv) The fact that the solutions arising from § in and in

(S~) coincide on [0, is an immediate consequence of (A16), (i),
and of the local uniqueness in Wo ’s ( S~ ) . In view of (A15), with 
and r replaced by s, (iv) follows from (iii). D

Proof of Proposition A3. - This is an immediate consequence of
Theorem 2.2 in [Wl], using in particular the fact that the maps
Kt : Wo ’’’ ~ are Frechet differentiable. D

Before beginning the proof of Proposition A4, we note that, by
Theorem 3.1 in [W],

where Dr(B) is precisely the set of § E for which this limit
exists. (There is a technical point here worth mentioning. In Theorem 3.1
in [W] there is an additional requirement that E Dl,r(0) for all t > 0,
where is the domain of A as a semigroup generator in Wo ’’~ ( SZ) .
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However, since et° is an analytic semigroup on it is also an analytic
semigroup on Dr(A), with its graph norm. Thus, E for all

t > 0.’ Since is continuously embedded in Wo ’’’ ( SZ ), it follows that

C It then follows that E for all t > 0

and for all § E Wo ’r ( SZ ) . )

Proof of Proposition A4. - We note first that if 03C6 E where r

verifies (A9), then J2(~) E Indeed, VJ2(~) - 
which is in since Wo’’’ (S2) C Thus et° J2 (~) converges
to J2(~) in for all § E Also, E and

so converges to Jl in (SZ) for all 03C6 E W1,r0(03A9). Finally,
A~ E and so = converges in for all

~ E Wo’’’(S~). In other words, if § E then + +

converges as a distribution to as t ~ 0+.

Suppose that § E Dr(B). The limit (A18) must be the same
as the distribution limit. Thus, A~ + + E and

is given by (All).
On the other hand, if 0 ~ + + E Wo ’ T ( SZ ) , then

and so the limit (A18) indeed exists.

Suppose that § E Dr(B) n We have already seen that

Since § E it follows that Jl(~) E 
The hypothesis § E Dr (B) implies that 0~ + Jl(~) + J2(~) E 
and so A(~ E Elliptic regularity (ER1) enables us to conclude that
~ E W2~~’(SZ).
We claim that Ji(~) must therefore be in To show this,

we need to show that ~~~~~q E One easily verifies that
= q~~~~9 2~~~~(ak~). Since § E W2~’’(SZ), each component

of V~ is in which is embedded in Moreover, each

component of ~(~~~) is in This proves the claim.

Since Jl(~), J2(~). and 0~ + 7i(~) + J2(~) are each separately in
it follows that 0~ E Wl’ (S2). The elliptic regularity condition

(ER2) allows us to conclude that § E W3~T(S2)_
By Proposition A3, B~u(t) is continuous into From the above

bootstrap argument, applied to u(t), and the elliptic estimates given in (E1)
and (E2), it follows that u(t) is continuous into This completes
the proof. D
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APPENDIX B. - COMPARISON LEMMAS

Although such type of results are well-known, we provide here in precise
form the comparison lemmas that are adapted to the present context (and in
particular to the case of unbounded domains, W5’s solutions, and unbounded
comparison functions).

LEMMA Bl. - Let 03C6 E > 0, and u be the corresponding
solution of (A2). Let T E Q = ( 0, T~ x S2.
(i) Then u(t, ~) > 0 on ~0, x Q.

(ii) Assume that v E C(Q) n Cl,2( Q) satisfies .

and

, . , . , ,

Then v > u in Q.
(iii) Assume that v e C(Q) n C1,2(Q) satisfies

and

Q.

Proof of Lemma B 1. - (ii) Let ~~, E C~ ( SZ ) be a sequence that

approximates § in and the corresponding solutions. By
Proposition Al (ii), each un exists on [0,T] for n large enough. Moreover,
each Un is a classical solution by Corollary A5, and is bounded on Q by a
constant Mn. Let w = ~cn - v. Since Un E C ( ~0, T ~ , Wo ’s ( SZ ) ) and v > 0,
it follows from (A6) and a compactness argument that

and we have w ( t, x )  0 on the parabolic boundary ( ~ 0 ~ x H) U ( ( 0, T ) x
Therefore, either w  0 in Q, or the positive supremum of w in Q

is attained at some point of Q.
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On the other hand, w clearly satisfies

on Q. (Consider separately the cases x)  v(t, x) and 0  v(t, x) 
un( t, x ) . ) Therefore, by the maximum principle, w cannot achieve a positive
maximum in Q (note that Vt~ == at a positive maximum). Hence,

in Q. The result follows by letting ?~ 2014~ oo, and using the continuous
dependence (Proposition Al) and the embedding C 

(iii) The proof is similar to that of (i), by exchanging the roles of v
and un . In particular, z = v - un satisfies (B2), thanks to (B 1 ) and (A6),
and z also satisfies

with M = max(Mn, M’) and M’ = sup v ( t, x ), which is finite by

virtue of (B 1).
(i) This is a special case of (iii) with v = 0. D

The following version of the weak maximum principle will be needed
in the proof of Lemma C2. It relies on the Stampacchia method. A similar
result (in the case of instead of proved by M. Chipot,
can be found in [AW, Lemma 4.2].

LEMMA B2. - Let N  r  oo, r > 2, and T, C > 0. Assume that

z E E and

on (0, T] in the sense. Then K = max (sup z(0, x) , sup

z (t, x))) is finite, and we have z  K on ~0, T~ x Q.

Proof of Lemma B2. - S ince C CB ( SZ ) , z i s uniformly
bounded on ~0, T~ x SZ, so that, in particular, K is finite. We have

(z - K)+ E C([0, T~, Wo’’~(SZ)), (z - K)+ E Moreover,

and
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Therefore

Writing

and choosing E small enough, we obtain that

and the results follows by integrating in t. D

APPENDIX C. - EXCLUSION OF GRADIENT
BLOW-UP: PROOF OF PROPOSITION 2.1

We need two preparatory lemmas. All the constants Ci in the statements
of Lemmas Cl and C2 remain bounded when their arguments remain in a
bounded set. The first lemma shows that blow-up in any L’~ norm (for large
r  oo) implies blow-up in all of these norms. Throughout this section, u(t)
is the solution of (A2) with initial value § E (SZ), as in Appendix A.
Here, we need to set > 0, and ~.T2(u) _ 

LEMMA Cl. - Let cP E Wo ’ S ( SZ ), 
T*  oo. Then

If, in addition, r > max(p, Np/2), we have

Proof of Lemma C 1. - Let us first assume that. § E _ C~ ( S~2 ), so that (2..1 )
holds. For any finite r > s, multiplying (1.1) by ur-l, integrating on 0
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and using Green’s formula yields

hence,

By density and continuous dependence, using the embedding C L°°,
this inequality holds in fact for any § E and (C1) follows.

, Next, it follows from the integral equation

the nonnegativeness of u, property (SG4), and r > max(p, Np/2), that
for all t E [0, T], :

and the result follows. ’ D

Remark Cl. - By an iteration procedure, one can see that the second
part of Lemma C 1 (and hence Proposition 2.1 ) remains valid in fact for all
r > s, with r > p and r > N ( p - 1)/2.
The next lemma, which is modeled after [Q2, Theorem 5.1 (i)], shows

that the absence of blow-up of u in L°° norm prevents blow-up of the
gradient of u in L°° norm.

LEMMA C2. - Let 03C6 E Wa ’ S ( SZ ), /) > 0. There exists some to =

to ( ( ~ ~ ~ ~ y~,1 ~ S ) > 0 such that T * > to, and such that for all T, to  T  T*,

Proof of Lemma C2. - We first assume that § E and define the
function w(t, x) = 2 (~~c(t, x) (2. By Propositions A3 and A4, it follows that
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Moreover, w satisfies the equation

where each term is in C((O,T*),Lv(S2)). By Proposition A2 (ii), there
exists to = to(~~~~~n~~~,s) > 0 such that T* > to, and such that

Fix T E (to, T* ), and set

Then the function z( t, x) = w( t, x) exp( A( to - t,)) satisfies the parabolic
inequality

where each term is in C((t~.T~,L’(S2)). Let G~ _ (t,o,T) x S2. Since z E
it follows from (A6) and a compactness argument that

the supremum of z in Q is attained at some point of Q. Applying the weak
comparison principle (see Proposition B2), we deduce that the maximum
Z of z is attained on the parabolic boundary ((to) x S2) U ((to, T) x 
The end of the argument now proceeds exactly as in [Q2, Theorem 5.1,
p. 118]. We give the details for the convenience of the reader.

If the maximum Z is in fact attained on (to ) x S2, then (C4) immediately
gives

If Z = z (t, xo ) for some point (t,xo) E (to, T ) x then, since u is a
classical solution up to the boundary (Corollary A5), it follows that

By Lemma C3 (see after the end of this proof), we have

Since ~u(t, . ) ~ attains its maximum at (t, xo ), we have 0.

Therefore, by (C6) and (C7), we obtain NC{SZ)/tc. Both
this inequality and (C5) give the desired estimate (C3). Proposition A2 and
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the embedding c allow one to extend this by density to

all § C 
D

The previous proof made use of the following geometric lemma. This

property is stated without proof in the work of Quittner [Q2]. Though it is
of an elementary nature, we prefer to provide a proof here, both for sake of
completeness, and because the required assumptions on Q have to be made

precise when dealing with an unbounded domain.

LEMMA C3. - Assume that SZ is uniformy regular of class C2 (see
Appendix A). Then for any function v E C2 (SZ), vanishing on it follows
that 

, _ , , _ ,

for all ~° E o~~, where n is the normal direction and T any tangential
direction to ~03A9 at x°.

Proof of Lemma C3. - Let x° be a point of By the uniform regularity
assumption, there is a parametrization of ~SZ in a neighborhood U of x°,
of the form xN = 8(x’) = 8(~1, ~ ~ ~ , satisfying 
Let be the corresponding orthonormal basis of 

’

Without loss of generality (by an orthogonal change of coordinates),
one can assume that the tangent hyperplane to 80 at x° is parallel
to e 1, ~ ~ ~ , e N _ 1, and that the exterior normal is parallel to eN. Let

1  i  N - 1. The ith tangent vector to ~S2 at a point x E 9H n U
is given by

Since v(x) = 0 on dS2, it follows that

for all x E ~SZ n U. In other words,

On the other hand,
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Since a e (x°~ ) = 0 and 0, we infer from (C8) and the
mean-value theorem that

and the result follows. D

Completion of proof of Proposition 2.1. - Assume that T *  oo and

for some r such that s  r  oo and r > max(p, Np/2). Then, by Lemma
C1, (C9) actually holds for any r, s  r  oo. By Lemma C2, since C3
is bounded function of its arguments, we then obtain

By Proposition A2, this implies that T* = oo, a contradiction. D
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