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ABSTRACT. - In order to develop a Lebesgue approach for the fully non-

linear non autonomous evolution problem, CPa = d~ 0}
with t E I ç [0, T], in an arbitrary Banach space X, we define an
abstract L1- comparison mode (called coherence) between multivalued
time dependent families of operators (Aa(s))sEI and defined

on compact subintervals I and J of [0, T] and weighted by functions a
and j3 which belong to T~ ; (~+ ) . The solutions of these problems
are limit of discrete schemes and the crucial point is to define these

approximations in a Lebesgue sense. The results about this Cauchy problem
consist in existence of an evolution operator, integral inequalities (extending
Benilan’s inequalities for integral solutions), and continuous properties ;
they extend the theory of evolution equations initiated at the beginning of the
seventeenth by Crandall, Liggett, Benilan, Kobayashi, Evans, ([10], [ 12], ...),
and include more recent generalizations as in [18] and [6]. This general study
motivated by the observation problem of a heat exchanger (see [16]) where
a Loo-control multiplies an unbounded operator, establishes in Theorem 3.4
a suitable continuity property with respect to the weak* topology on the
weights (see applications in [3], [7], [20], ...). © Elsevier, Paris

Key words: Cauchy problem, infinite dimensional systems, coherence, mild solution,
weak* convergence.
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300 J. F. COUCHOURON AND P. LIGARIUS

RESUME. - Ce papier esquisse une approche de type Lebesgue
des problemes d’ evolution pleinement non lineaires CPA = ~ du t +

0~ avec t E I C [0, T] dans un espace de Banach quelconque.
Pour cela nous definissons un mode de comparaison (nomme coherence)
entre familles d’ operateurs multivoques (Aa(s))sEI et definies
sur des sous-intervalles compacts I et J de [0,T] et ponderees par des
fonctions a et ,~ de L°° ( ~0, T ] ; !f~+ ) . Pour les problemes d’ evolution
consideres les solutions sont des limites de schemas discrets : le point
crucial est alors de definir ces approximations sur un ensemble denombrable
de nceuds (et donc de mesure nulle) en un sens compatible avec une
infinité de classes de fonctions Lebesgue integrables generees par notre
approche. Nous mettons ainsi en evidence pour les problemes de Cauchy
CP03B1A un operateur d’ evolution, des inegalites integrales (generalisant
les inegalites des solutions integrales de Benilan) et des proprietes de
continuite: ces resultats etendent des travaux de Crandall, Liggett, Benilan,
Kobayashi, Evans, ([10], [12], ...), et absorbent des generalisations plus
recentes obtenues dans [18] et [6]. Cette etude motivee par un probleme
d’ observabilite pour un echangeur thermique (voir [16]) ou un controle
L°° agit multiplicativement sur un operateur non borne, contient en outre
(Theoreme 3.4) une propriete de continuite vis-a-vis de la topologie *-faible
des poids dans L°° (cf. [3], [7], [20], ... pour les applications). © Elsevier,
Paris

Mots clés : .’ Probleme de Cauchy, systemes de dimension infinie, coherence, bonnes

solutions, convergence *-faible.

1. INTRODUCTION

This paper deals with the abstract Cauchy problem in a

general Banach framework, for a class of nonlinear systems in which the
control a acts on unbounded operators. These situations could be met, for

instance, in the field of heat transfer applications, transport phenomena or
biochemical processes, for which, so far as we know, the classical theorems
of existence of discrete approximations, uniqueness and continuity with
respect to the parameters of the solutions could not be applied directly
(see [3], [14], [16]). This study unifies in a same approach different classes
of systems as autonomous systems, quasi-autonomous systems, bilinear
systems ...

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



301WEIGHTED EVOLUTION PROBLEMS

We define a comparison mode of multivalued families of operators
and (for subintervals I and J of ~0, T~), that is,

for a.e. s E I, for a.e. t E J, V(u, ua) E V(v, ~) E B,~(t),

where the bracket [u, w] denotes as usual lim + (see

section 2.3 for the assumptions on the functions and 

In the case = (I3p)~ , and when, the null function is the unique
positive continuous solution in D’(~0, a(T)~) of the inequation

with a(t) = J; a(T) dT we have a generalized L1 time dependent accretivity
condition, called "strong self-coherence". In view of these definitions, we
see immediately that our generalization on CPA relates on three directions:
the time dependent framework, the accretivity conditions, the weight a.
This framework contains the cases studied in [18], [5] or [6] and allows to
study, without restriction on the weights (see [20] for instance).
As in the classical accretive case, the solutions of CPA considered

throughout this paper, called mas are continuous limits of discrete implicit
schemes. More precisely, given a partition A = (so,..., sN), we approximate
CPA by the discrete system ui - ui-1 + (si - 0. One
of the main difficulties lies in the fact that the discrete schemes involve
countable sets, and consequently neglectible subsets of I. According to
our L~ time dependence, suitable choices of partitions of I are needed to
give a good approximation of a(s) and Aa(s). Since we take E W

(this space has been introduced by Crandall and Evans in [9]), there exist a
sequence of C~ functions ( 8 ~ ) ~ and a sequence converging towards 0
in If8+) satisfying t) - 8~ (s, t) I  Fk(t), a.e. s E I,
a.e. t E I. Our choices of partitions A (called adapted partitions) are

those which lead to Lebesgue sums for a and each We prove in

Proposition 2.1 that such a partition exists. We say that the partition A is an
c-Lebesgue partition for the real function f if each Si is a Lebesgue point
for f and if the step function A(f) built with the nodal values satisfies

Discrete schemes associated with a sequence of

adapted partitions with step sizes decreasing towards zero are said adapted.
The theorem 3.1 states that, if the family (Aa) I is strongly self-coherent

and if there exists a bounded adapted discrete scheme, the Cauchy problem

Vol. 16, n° 3-1999.



302 J. F. COUCHOURON AND P. LIGARIUS

CPA has a unique solution ; moreover this solution does not depend upon
the choice of any "free" parameters used in the construction of the mas.
This theorem gives rise, with a range condition and a stability condition,
to a continuous evolution operator (Theorem 3.3). This evolution operator
is then endowed with a suitable continuity properties with respect to the
weak* topology of L°° for the weights and the inferior limit of the families
of operators (Theorem 3.4). In fact, all these results are deduced from an

asymptotic maximum principle (Theorem 5.1) for discrete schemes which
gives a fundamental upper bound for lim supQ ~uQ(s) - vQ(t)~ where

(~c~ ) ~ and (vQ) Q are respectively discrete approximate solution sequences
of u°) and vO).

This paper is organized as follows. In Section 2 we introduce the basic
notations and definitions and we give the time-dependence framework.
The main results are stated in Section 3.

In Section 4, we list in a long lemma (Lemma 4.1) the properties needed
the solutions of our problem.
The proofs of our main results are given in Section 5.
Some technical proofs and considerations are postponed in an appendix 6.

2. NOTATIONS, CONVENTIONS AND BASIC DEFINITIONS

2.1. Definition of ~co)
Let X be a real Banach space. The infinite intervals I = [6~62],

J = ~Tl , T2~ are compact subintervals of [0, T~ . A weighted family on I,
with weight a E is a family of multivalued
nonlinear operators (more precisely, a family of classes of operators) from
X to X, and the notation is used for the domain of 

Let be the following Cauchy problem

DEFINITION 2.1. - Given a weighted family we write S(a, I), the
following stability condition: there exist a function c E L1 ( ~0, T~; I~+), and
a set ~a C I with Lebesgue measure equal to ,S’2 - ,S’1 , such that for all
so E I, and for all w E there exists wa E X satisfying for all
s E and for all (u, ~a ) E 

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



303WEIGHTED EVOLUTION PROBLEMS

Remark 2.1. - Of course, the above stability condition holds in the

classical case = A - g(s), where A is w-accretive, and where g
belongs to L1(~O,T~,X~, as we see by setting = c~-I- ~~9(s~~~,and
w~ E Aw.

2.2. NOTATION. - As in [9], W stands for the closure of the C1 functions

on [0, T~2 in L1 ([0, T~2; ~) under the norm ~~’~~* which is defined by :
Ilhll* = + I ~h(s, t)~  F(s) + G(t) s, a.e t,

where denotes the L~’(~O,T~; (~) norm. By convention, the notations
~’~, and W used for functions defined on I, or on I x J,

suppose that the functions are extended to [0,T] or [0, T~Z . The sequence
AI = A = ( 80, 81, ... , 8 N , 8 N + 1) is called a partition of I. If we

have .so = Si  sl  ...  sN  S’2 = 8N+l, we denote by
7r(A) = (5~ - the step size of the partition AI. Let
w be a function from I to E (for an arbitrary set E ), we define the step
function from I to E by,

Now, let A = AI = (so, ..., sN+1 ) be a partition of I and A’ = =

(to, ... , ~ p+ ~ ) be a partition of J. Then, for any function w : I x J --~ E
defined on A x AB we denote by the step function from I x J

to E satisfying

And the notation stands for the step function defined by :

The functions a, an, belong to L°° ( [0, T~; f~+) , and the functions
a, an, b, bn are set for the respective integrals of the functions a, ,~, ,~n
on [0, T] (i.e. Vt E [0, T], a(t) a(T) dT , an (t) _ ~o an (T) dT , ...).

2.3. Definition of the coherence notion

First, we introduce two functions.

(1) We suppose that ~a ,a belongs to W.

Vol. 16, n° 3-1999.



304 J. F. COUCHOURON AND P. LIGARIUS

(2) The function ’Ø : [0, T]~ x R~ -~ R+ , is assumed to be (u.s.c. and)
such that for each K > 0, there exists a decreasing sequence 
pointwise convergent on /C~ = [0,T’j~ x R x [2014~~C] towards 
Moreover for each r ~ N, the function is required to be C~ and
wf-Lipschitz on 

Remark 2.2. - All the results of this article remain valid if we replace
the condition 03C8 ~ 0 by the following : there exists 0 , such that we
have, v(~~~,~) e [o,r]~ x R~

Similarly, we can assume that 8~ ,p takes its values in some I~n and then
~ E I~’2.

In the case ~ ~ ( s, t, ~, x) = cp(s, t, x) + ~, with p > 0 ~, the hypothesis 2
on 03C8 means simply that 03C6 is u.s.c. (see [5]).

DEFINITION 2.2 (Cohence definition).
i) The weighted family is (03C6, 03B803B1,03B2)-coherent (or 03C8 -coherent, or

coherent) for ( B,~ ) J, if for a. e. s E I and for a. e. t E J we have :

d(~~ ~~) E e B,(t),

ii) The weighted family is 03B803B1,03B1)-self-coherent (or
self-coherent, if it is for itself.

iii) If (A03B1)I is 03C8-self-coherent, and if the null function is the unique
positive continuous solution in D’ (~ 0, a(T) [) of the inequation :

then is said strongly (03C8, 03B803B1,03B1)-self-coherent.
The set where a-1 is multivalued is at most countable.

Notation. - In the sequel, Ia "~ and ~Ia "~ are respectively neglectible
subsets of I and J such that the relation (2) doesn’t hold for all

(s, t) § i~y,, X .

Example 2.1. - Let A be accretive, then (Aa ) j = A and (A;~ ) ~ = A are
strongly 0-coherent and is strongly O-self-coherent.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Example 2.2. - The classical w-accretive quasi-autonomous case :
a = l, A1 (t) = A - f(t), gives rise to a strong (03C8,03B8)-self-coherence
with, t, ~, x) = cvx -I- ~ with 8{s, t) _ .

Example 2.3. - If Aa (t) = a(t) A is everywhere defined, the strong self
coherence of appears as a generalized Nagumo’s condition for the ordinary
differential equation CP03B10 (see [13]).

Remark 2. 3. - By convention, when ( Aa ) I = A and ( B,~ ) J = B
(the operators does not depend on time) a function ~ of the form
(s, t, 03B6, x) ~ 03C8(x) will be always required for the meaning of 03C8-coherence
between the families = A and (B~) J = B .

2.4. ASSUMPTIONS. - For all weighted family ( Aa ) I we will suppose
realized in the sequel the following conditions, denoted by Ca :

(a) ‘d~ > 0, we have 

(b) the nonvoid values operator t H DAa is closed ;

(c) the weighted family satisfies the stability condition S{a, I) .
(d) the weighted family is coherent.

2.5. DEFINITION OF MAS AND DAF. - We are ready to give the fundamental
definitions of coherent dicretizations and coherent solutions of CP03B10.

According to the hypothesis 8a,~ - 8 E W, let us introduce

(8a,~) ~ - a sequence of C1 functions on [0, T~2 satisfying, for

some F E L1(~0, T]; I~~) ,

DEFINITION 2.3. - We say that a sequence ~ _ _ (~~, is

stemmed from 8 E W, if the above conditions (4) hold.
We recall that it has been said in introduction that A is an e-Lebesgue

partition of I for the real valued function f on I, if  e, if

f - ~( f ) ~  ~ and if each point of A is a Lebesgue point for f.

DEFINITION 2.4. - Let (Aa) I be ~-coherent with ( B~ ) ~ and _

(8~, F~, be stemmed from 8~,~ . We will say that a partition A =
(s~ )i=1,...,R+1 of I (resp. J) is e-adapted with respect to if we have
for all 2 = 1, . . . , R, si E "a n (resp. Si E ~a and if A is
an ~-Lebesgue partition of the restrictions to I (resp. J) of a (resp. ,C3), c,
and every F~, 
Vol. 16, n° 3-1999.



306 J. F. COUCHOURON AND P. LIGARIUS

We will see in the next subsection that, for all ~ > 0, ~-adapted partitions
do exist.

DEFINITION 2.5. - An ~-adapted solution with respect to .~’~,p of
CPA (I , UO) is a step function u from I to X, such that there exist, an

~-adapted partition A = (so, ..., sN, sN+1) of I, and (ui, ui ) E for
2 = 1, ..., N, satis fying :

Remark 2.4.

(i) Given an ~-adapted partition, with the strong range condition (assumption
(a) of it is possible to find an ~-adapted solution of 
(ii) We can replace 0 in the second member of (5) by with the condition:

I 6i ) ) £I ) )  £ .

Z=1

DEFINITION 2.6. - Let (A~ ) 1 be ~-coherent with 

and be stemmed from (resp. 8a"~). An

(cn) -discrete adapted approximating family, denoted by
(F03B1,03B1,F03B1,03B2;~n)- DAF, of CP03B1A (I, u°), is a sequence (un) of (~n)-adapted

solutions with respect to both and such that limn ~n = 0. If each
un is associated with an ~n-adapted partition An , we will say that (un) is a
(An)- DAF. We will say more simply a DAF when no ambiguity is possible.

Remark 2.5. - Of course, when (Aa)~ _ and = 

in the previous definition we talk about DAF or more simply

Finally, we are in position to give the notion of solutions considered here.

DEFINITION 2.7. - Then a mild adapted solution ( mas ) u of (I, ~c°)
is a uniform continuous limit on I of a DAF (un)n 
We say that (un)n generates u.

DEFINITION 2.8. - Let us assume that is coherent for (B~ ) J. Then, a
mas u of CPA (I , is coherent for a mas v of CP03B2B( J, v° ) if u and v can
be generated respectively by an F03B1,03B2)- DAF and an (F03B2,03B2, F03B1,03B2)-
DAF.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2.6. Existence of DAF

In view of the strong range condition we have just to prove that for each
c > 0, there exist c-adapted partitions.

First, recall that a function f from [0, T~ to X is Bochner-integrable
(written f E L1([0, T]; X )) means ~T0~f(t)~ dt  oo and that f is almost

everywhere on [0, T] limit of a sequence (fn)n of simple functions (that is
step functions on Borelians of [0, T~ ) (see [ 11 ] ).

Second, let us mention without proof (see [2] or [17]) the following
lemma.

LEMMA 2.1. - Let f E L1 (I; X ) and .l~ be a subset of I = S2] of
measure zero. Then, for all c > 0 there is a partition A _ (so, ..., sN, 
of I, satisfying,
(i) for i = l, ..., N, si is a Lebesgue point of f, and si ~ N.
(ii) the step size of A verifies : 
(iii) fs2 

Third, according to this previous lemma, given c > 0 the conditions
of the definition 2.4 can be obviously satisfied if we prove the following
proposition.

PROPOSITION 2.1. - Let be the space of the bounded sequences
on f~, equipped with the supremum norm ~ ~ ~ ~ . Suppose that the integrable
functions F and F~ for k E N* satisfy the relations (b) of (4). Then, the

function s H (F~ (s)) from [0, T~ to is Bochner integrable.
Therefore if N is a null subset of [0, T], for all c > 0 there exists a partition
A of [0, T~ with points in [0, T] ~ .J~ satisfying,

Proof. - In this proof, for Y ç [0, T], Y~ is written for Y~ _ [0, T] B Y .
a) Let be the function s ~ F~ (s) _ (F1 (s), F2 (s), ~ ~ ~ , F~ (s), ~ ~ ~).

The relation F ( s ) a. e. on I, guarantees the inequality :
 oo. Therefore, we have to prove that is limit

almost everywhere of" a sequence of simple functions.
b) By Egorov’s theorem (see for instance [11], [4]) for each n E ~* , there

exists En,1 C [0,T] with (En,1) ~ 1 2n+1 and Nn E N* such that we have,

c) For each n E N*, once more by Egorov’s theorem , and in view of
the integrability of F~ for k = 1, ..., Nn, we can find En,2 C [0,T] with

Vol. 16, n° 3-1999.
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~ ( En, 2 )  n and simple functions Fn from [0, T] to I~ for k = 1, ..., Nn
verifying,

d) Then, let us define for all n E N* , the sets En = En,1 U En, 2 , and
the functions gn = ( Fn , ... , Fn n , 0, 0, ... ) . Then we deduce the following
statements :

i) for each n E N* , gn is a simple function from [0,T] to l °° ( I~ ) ;
ii) Let £ be the set £ == (~k~k0(Ek)). Then for s ~ ~, there exists

ko E N* satisfying s E And therefore in view of relations
(6) and (7), if s ~ ?, we  n .
Thus, s ~ ~ ~ F~ ( s ) . 

" "

iii) If  stands for the Lebesgue measure on [0, T] , we have (~) = 0.
Indeed, the inequality  + = 2 ~ implies,
for all ko E N*, -

(~) ~ (~k>k0 Ek) ~ ~k~k0 (Ek) = 1 2k0-1.
e) Finally, the function is therefore, limit almost everywhere of

the sequence of simple functions and consequently Foo is
Bochner-integrable on [0,T].

2.7. Boundedness of DAF

Let us end this section by the following proposition which gives from
the stability condition (assumption (c) of C~), an a priori upper bound for
the discrete schemes.

PROPOSITION 2.2. - Fix for instance, w E Let us suppose that ~ > 0
realizes, .

Let u be an c-adapted solution of CPA (I, Then we have, for all s E I ,

Proof. - Let A = (so, ..., sR+1 ) with si E for i = 1, ..., R, u = A(u)
and _ We have for i = 1, ..., R, if bi = si - si_1 ,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



309WEIGHTED EVOLUTION PROBLEMS

Then, the assumption 2.4-(c) of Ca leads to, (setting = ei),

And, immediately by iterating, we have,

According to the following inequalities

and since we have In(1 - x ) > - x - x2 for x 2 ~ , we obtain,

Thus, the required inequality holds.

3. THE MAIN RESULTS

Let us point out that the operator Da"~ _ ~3(t)(~/as) + 
o. o 

’

considered in D’(I x I), plays the part of the operator D = +

(= D1,1 ) introduced at the first time in the classical case by Crandall
- Evans [9].

THEOREM 3 .1. - Let ( Aa ) I be strongly self-coherent. Then,
(i) If is stemmed from then, all (bounded) DAF of

the problem CPA (I, is uniformly convergent on I towards its
unique mas. 

’

(ii) The mas of CPA (I, UO) does not depend upon any function a chosen
in its class in L°°, and upon any sequence stemmed from 8a,a .

Vol. 16, n° 3-1999.
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Really, the part (i) of the theorem 3.1 can be applied in a wider framework
than C~ (which ensures boundedness and existence of a DAF). In particular,
the tangential condition 2.4-Ca-a) is not needed.

THEOREM 3.2. - Suppose that u is a mas of CPA (I, coherent for a mas
v of ( ~T; Let B be the continuous function on a ( I ) - b( J) satisfying:

Then, B is a single valued continuous function, and we have b’(s, I x J

More precisely, the function e(s, t) _ v(t) ~ satisfies in V’ (I x I) ,

o

And for = we have in D’ (a(I)) ; if ~(T) _

The function m,~ defined in the next paragraph (see definition 4.1 ) denotes
o 0

(in some sense) a maximal solution in D’ ( I x I ) , of the inequation ( 10). A
suitable choice of ;~, and J, shows that the mas u is a Benilan’s integral
solution of u°) in a generalized but natural way (see [1] or [5]).
COROLLARY 3.1 (general variable change). - Let where A is

strongly self-coherent on [0, a(T)], then the unique mas u ~’] , u° )
is given by the variable change u(t) = v(a(t)) , where v is the unique mild
solution of ( ~0, a(T )~ , uO). If furthermore, the operator A is continuous
the mas of CP~ (~0, T], u°) is a strong solution.

Let (AoJ [0,T] be a strongly 03C8-self-coherent family on [0, T] . According
to Theorem 3.1, for all u° E the evolution problem T~ , u° )
admits a unique mas u. We will set S(t,s)uO = u(t) the value taken

by u at t. Now we can state the two last results which concern strongly
03C8-self-coherent families.

THEOREM 3.3. - Let be a strongly 03C8-self-coherent family on
[0, T ] . Then, 

a) the family S _ is an evolution operator, that is ;

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(i) For 0  s  t  T, the operator S(t, s) maps DAa into Dt a ;
(ii) For all s E ~0, T ~ , we have S(s, s) _ ~ I ( ~ denotes the identity .

operator) ;
(iii) For 0  r  s  t  T, we have S(t, s) o S(s, r) _ S(t, r) ;
b) the evolution operator S is continuous on

THEOREM 3.4. - For all n E ~ U ~ oo ~ , let An = (satisfying

Can ) be a strongly 03C8-self-coherent family on [0, T ] , let Sn be the evolution

operator generated by An , and let u° E We suppose that 

converges to in the weak* topology in L°° ( ~0, T ] , ~ ) and that we have for
almost every s E [0, T ] , (s) C lim inf Aa ( s ) . Finally, we suppose
that converges towards in ( W, ~ ~ ’ ~ ~ ,~ ) . Then, 
converges towards u~ , and if the sequence of functions (,S’n ( . , 
is bounded, then (,S‘n (., converges uniformly towards 0)u~
on ~0, T] .
Remark 3.1. - This last theorem appears like a Lebesgue dominated

theorem for evolution equations (setting for instance cxn = 1 and A~n (.)u =
.~n(’) E L1(L~~ T~~ ~))’ 

’~

4. THE U.S.C. HULL LEMMA .

Now, we will give a basic lemma called "the u.s.c. hull lemma" which
is proved in the appendix. It summarizes in one proposition the most
important results that we will need in this article on the inequation
Da~~ ~ ~ t, 0, ~) .
The type of results and the methodology developed in this lemma 4.1

are similar to ones of [6]. But new problems appear here, because of the
time dependence in the multi-valued aspect and the lack of regularity
of and 

We denote by E~ (, 0 , B, cx, ,~) the following inequation in D‘(SZ)
~ 

o 0

with a(s2)~ X b(T2) = b( J) , >

EQ ( ~ > ? > 0 > B> Ct )

Vol. 16, n ° 3-1999.
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The function B is continuous on a(I) - b(J) C [-b(T2), a(S’2)~ and 8
belongs to W. We denote by E~ (_, ~, 8, ,~, c~, ~3) the equation in D’ (SZ)
obtained by replacing the three symbols "" in En (  , I>, 0 , B, a, (3) by "=".
A similar notation is used for the characteristic equations. More precisely,

we introduce for d E a(I) - b(J), the notation xd,~(, ~, 8,,~3, a,,~) _
0

for the following inequation in V’(Id) with Id =

L(a(S1) - d) V (a(~‘’2) - d)I ’

xd(_~ ~~ 8~ ~)

0

and xd,~ (_, ~, 8, ,~, c~, ,~) will denote the equation in Ð’(Id) obtained by
replacing the two symbols "" in ~, 9, B, a, ,~) by "_".

In the inequations or equations E~ ( -, - - - ) or xd, ~ ( -, - - - ) , we will

sometimes forget the parameters when no ambiguity arises (for instance,
E (  , ~, 8, ,t3) - E~ (  , ~, 8, ,~3, cx, ,~) ) . We emphasize that for all

d E a(I)-b(J) there exists a unique (ao,To) E (a(I) x ~b(Tl)~) U
( ~ a ( Sl ) ~ x b ( J) ) such that we have ao - To = d.
About inequation of type, we just recall that for

cp E L 1 ( ~a, b~ ; (~ ) , a continuous function z on [a,b] is solution in

p(t) , is equivalent to, the integrated form
d 

() - 03C6(t), is e q to, the in g

z(t) - z(s) ~ ~ts03C6(03C4)d03C4 with a  s  t  b.

LEMMA 4.1 (u.s.c. hull lemma). - We suppose that there exists a decreasing
sequence of C1 functions on ~0, T~2 x f~2 (pointwise) convergent
towards 03A6 > 0. We assume that for each r E N, the function 03A6r is cvr-

Lipschitz. Let B be a continuous function on a(I) - b(J) C [-b(T2), a(S2)]
and let SZa~~ _ ~ - ~a(S1)~ a(s2)~ x ~b(~’1)3 b(T2)L -

i) The inequation E~ (  , ~, 9, B, a, in D’ ( SZ) , has a unique u. s. c.
solution on SZ, denoted by 8, B, cx, ,C3) or B, B) or 
which bounds above each continuous solution of E~ (  , ~, 8, B) and
satisfies: for all d E a(I) - b(J) the function

is continuous on Id = ~(a(,S’1) - d) V b(Tl), b(T2) n (a(,S’2) - d)] ,
o

and is the maximal continuous solution in D’(Id) of the inequation
xd,~(-~ ~~ 8~ ~, ~"~) .
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ii) For s E [0,T], let B0 be defined on [-T,T] by, ,t3a (s) _
B(a(s) - b(Tl)) and ,t3o(-s) _ b(s)). Let x be a

continuous (on SZ 1,1 ) solution in ,S‘2 ~ x Tl , T2 ~) of the
in equation (  , ~, B, Bo, ,1,1 ) , constant on each set value taken
by (a-l, b-1). Then we have, for (s, t) E I x J,

Ui) Let the functions ~2, ,t31, ,132, be defined as at the beginning, then
we have,

if 8 is C1 on [0, T]2 , if B is C1 on a(I) - b(J), if a and 03B2 are
strictly positive and continuous, then mB is C1 on SZ and is the

unique classical solution of E~ (_, B, B, a , 
v) If 03A6 is w-Lipschitz, then mB is continuous on SZ , and verifies (in

D’ (SZ)) the equation E~ (_, B, B, c~, ,C3) .
vi) Let (cx°,,C3°) E Y = T], R+))2. If 03A6 is w-Lipschitz, then

(8, B, a, ,C3) H 8, B, a, ,3) is sequentially continuous from
W x C° (a° (I ) - bo( J)) x Lo to C° (SZ) where Lo, is the closed
subset of Y equipped with its weak* topology, defined by L° _
l(W ~) E y i 

vii) The sequence of functions B, converges uniformly on
Id by decreasing towards (for all d E ~- b (T2 ) , a (,S‘2 )~ ),
and particularly (m ( 8, ,~3) ) r converges (pointwise) by decreasing
towards 8, B) .

According to the following definition, all the results stated in section 3
remain valid whenever a or ,~ are the null function on I or J .

DEFINITION 4. l. - The maximal solution m,~ = of
E~ (  , 9, B, a, (3) given in the part i) of the lemma 4.1 is said u. s. c. hull
of E~ (  , 8, B, c~, ~3) . If c~ - 0 on I (resp. ,C3 - 0 on ~I ) we set for
( ~, T ) E SZ ,

For K > 0, we define the function on ~0, T~ 2 x ~2 by, 
~ (s, t, ~, PK (x) ) , where, PK denotes the projection on ~0, K~ .
Vol. 16, n° 3-1999.
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We denote by L the assumption on 03A6 asked in the lemma 4.1, that is,
ASSUMPTION ,C. - There exists a decreasing sequence ~E~ 

of C1
functions on [0, T]2 x 1R2 convergent (pointwise) towards and, for each
r E N, the function ~~ is wK,r-Lipschitz.
LEMMA 4.2. - The function satisfies the assumption ,~.
The proof of this lemma is left to the reader.
LEMMA 4.3. - Let us assume that the condition of the

definition 2.2 iii) holds. Then, for all K > 0, the property SC (y/JK , 
is also true.

Proof. - Let y ~ 0 be a continuous solution in [0, a(T)] of

x(~,[o~(r)])

If we have K > clearly, we have y - 0. If we have K  let

Then, the continuous function, ~1 defined by ~l (t) _ for t E [0, TK~ ]
and ~1(t) _ y(TK) = K for t E ~TK, c~(T)~ , is solution of [0, a(T)~).
Consequently, we have 0, and then K = 0, which is a contradiction.

Remark 4.1. - Eventually by changing ~ into for a suitable constant
K > 0 (derived from the stability condition), in the sequel we will suppose
always that the function ~ satisfies the assumption ,C introduced before the
lemma 4.2. With this convention, the existence of 8, B) is guaranteed.
According to the remark 2.2, for the same reason, the results of this paper
remain true (see with,

5. PROOFS OF THE MAIN RESULTS

5.1. A discrete maximum principle

All the results stated in the section 3 are corollaries of the discrete
maximum principle given at the end of this section.
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Let us introduce the following notation. Given partitions A =
and A’ == (to, ..., tp+1) respectively of I and J, and

given a function w : I x J 2014~ X, the symbol is the step
function v defined on ,S’2~ x T2~ by the relations,

LEMMA 5.1 (discrete lemma). - We suppose 0  r  ~ on ~0, T~2 x (~2 and
03A6 03C9-Lipschitz on [0, T]2 x R2. For all Q E N, let Q = ..., 

(resp. AQ = ..., be an ~Q-Lebesgue partition of I (resp. J)
for a (resp. ,(3). Let and ( 8~ ) ~ be sequences of functions on I x J
verifying VQ 

functions such that :

Moreover, we suppose that for all Q E ~J, the functions yQ, 8~ , H~ ,
satisfy on I x J , 8~ E W, H~ E W, and,

We assume realized the conditions, with ~~ _ ~~ t~ and 
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For some b E R+ we suppose,

We assume finally that there exist sequences of nonnegative functions (f Q ) Q
and (gQ)Q such that we have, for ( s, t) E I x J,

Then, we conclude,

Proof. - Let = yQ s~’, t~ and ~~ _ ?/Q (sf , t~ and so on for the
functions OQ , OQ , H~, ... According to the hypothesis HQ E W , pick up
integrable nonnegative functions F~ and G~ realizing,

Then, we have with the hypotheses on F and ~,

wIth and i - Si - tj - 
With conditions (16), we see that the relation (16) remains valid with the
following conventions :

a) whenever, = 0 0, we take 
) 
= 1 ;
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b) whenever, = 0 and 0, we take Q~, ~ 1 ;~ ~p~~
c) whenever, = 0 and = 0, we take 03C3Qij 03B4Qi03B1(sQi) = 03C3Qij 03B3Qj03B2(tQj) = 1 2,
and 03C3Qij = 0.

Therefore, it follows

Then by recurrence on the double suffix i, j , with for instance, Q sufficient
to ensure and 2, we obtain,

where

Therefore the upper bound announced follows easily.
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LEMMA 5.2. - Let us assume ~-coherent for (B~ ) J . Let u be
an c-adapted solution of CPA (I, uO) (with respect to .~’a,~) bounded by a
constant L, with associated partition A and let v be an c-adapted solution of

( ~I, vO) (with respect to .~’a "~ ) bounded by a constant L’, with associated
partition A’. Then, we have,

and for all w E Ds a , w’ E s E I, t E J ,

Proof. - i) Let A = (so, ..., sR+1 ) be the partition associated with the
~-adapted solution u, and let A’ = (to, ..., tp+1) be the partition associated
with the ~-adapted solution v , and let us write for the sake of simplicity
Ui = vj = v (tj ) ; then we have with 8i = s 2 - and i = 1,..., N,

tj-i and j = 1, ... , P ,

Let d(s, t) = ~)~ and c!,j = Then we obtain from
the coherence of with (B~),

With the equations (19) it follows easily from the above inequality, the
required relation,
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According to the inequality lying in the stability condition S(Aa, I), we
can write,

Hence, by iteration, the claim of Lemma 5.2 is easily ended.

Remark 5.1. - The inequality (20) could be rewritten in the following form,

a) dij = di-1j if a(si) = 0 ; b) dij = dij-1 if 03B2(tj) = 0;

c) di~ = = = if = 0 .

Let us state now the maximum principle which remains valid if a - 0 ~
on I or ~3 - 0 on J.

THEOREM 5.1 (maximum principle). - Assume ~-coherent for
( B~ ) ~ . Let also the sequence be a DAF of CPA. ( I , 
and let the sequence be a DAF Let B

be continuous on a ( I ) - b ( ~I ) . We suppose,

Then, for all d E a(I) - b(J) C ~-b(Tz), a(52~~ , we have,

Proof of Theorem 5.1. - With the stability condition, it exists a constant
M > 0 such that the sequences of functions and 

are bounded by M (resp. on I and J ). Let be a sequence of C~
functions on the compact interval a ( I ) - b ( J) , converging uniformly to
B ; and let .~’ == ( B ~ , F~ , F) ~ be the considered sequence stemmed from
9a "~ . Let and respectively, continuous strictly positive on I
(resp. J) converging in L1 (~0, T], R+) respectively towards a and /3. Let us
recall that a~ (s) _ J; an (ç) dg and bn (t) = J; ~3n (~) We can suppose,

= a(,S’1 ), an {,S2 ) > a{,S’2 ), and bn(Tl) = b{Tl ), bn(T2) > b(T2 ) .
Let { ~r ) r be a decreasing sequence of positive C1 functions pointwise
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convergent towards 03C8 with lfr wr-Lipschitz on [0,T]2 x 1R2 .We also
introduce the following notations, (for d E a(I) - b(J) , and T E Id =
(~a(sy - d) V b(Tl), t~(z2) ~ ~~(s2) - d)])

We can suppose without lost of generality that =

is Cl on [0, T~2 , because of the u.s.c. hull lemma 4.1-iv) and the
proof part c) of this lemma 4.1.

Then, for all d E a(I) - b(J) C ~-b(T2), a(,S’2)~, and for (s, t) E I x J,
we have, the following inequality,

For all n , 1~, and Q > Qn in order to have aQ(I) x bQ(J) ç an (I ) x bn(J)
define, the following functions for s, t E [0, T]

If 8~ is pk-Lipschitz (with pk > 0), we have,
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Let us define on I x J by

Since is C1 and 8~(an 1 (~), bn 1 (T)) is continuous (even Cl) on
I x J, an immediate computation gives

By definition of it follows :

Thus, setting,

from the discrete lemma 5.1 we obtain,

with bk = sup Since it is not difficult to show

the relations,
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we obtain, if ~ stands for ~ = ~ a~)F~(~) ~ + ~ ~(~)F~(~) ~,
lim sup lim sup sup b(t))]+~ Q s,: 

-’

Therefore clearly now, when Q -~ oo, then n -~ oo, and then 1~ ~ oo, and
then finally r --~ oo, using the u.s.c. hull lemma 4.1 (and according to the
uniform continuity of on a ( I ) x b(J)) all the terms (1) to (3) in the
right side of the inequality (22) vanish and we get, for all d E a(I) - b(J) ,

5.2. Proof of theorem 3.2

The function B satisfying (8) is single valued continuous since uoa-1and
v o b-1 are single valued continuous and since for (a, T) E a(I) x b(J),
the equality a - b(Tl) = a(Si) -.T is equivalent to a = a(Si) and
T = b(Tl) . Let (uQ) be a suitable associated with u, and a
suitable (vQ) converging towards v. Let us write t) _

and e(s, t) _ The inequality (17)
written with uQ and vQ leads (multiplying by t)] with

cp E D((I x J)J and p > 0 and rearranging),

Thus, taking the limit when Q 2014~ +00, the Lebesgue dominated theorem
(since the DAF are adapted with respect to .~’a "~ ) yields in 

Since e ( ~, ~ ) is continuous on I x J, and of course constant on each set
values taken by ( a-1, b-1 ) , thanks to the lemma 4.1 ii), the relation 9 in
the theorem 3.2 is shown.

5.3. Proof of theorem 3.1

Let (un)n be a Set = .~’ = 

Because of the stability condition ~(cx, I), (un) is bounded by a constant
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M > 0. Let be a decreasing sequence of functions on

A = [0, T]2 x ~2 , converging towards ~ on A, such that for all

r is Cl and wr-Lipschitz. Let eQ( s, t) = VkQ 
where (kQ) is a sequence of strictly increasing integers. Given e > 0,
let w E DA03B1S1 satisfying ~u0 - w~ ~ c and let wsl E X given by
the stability condition S(a, I) ; let Be be the continuous function on

~.(I) - ~(1) _ ~-(~(SZ> - ~(s2> - defined by,

According to the lemma 5.2 (relation (18)) and the definition of Be
above, we have,

lim supQ sups (eQ((s, S1) - B~(a(s) - a(,5’1)))  0, and,lim supQ supt(eQ((S1,t) - B~(a(S1) - a(t))) ~ 0,limsuPQ supt a (t) ) )  0 ,

Let ~ > 0, then the maximum principle (with a = b, d = 0, see theorem 5 .1 )
implies that there exists Q > such that ,

where we have = 9, a) .
Moreover, the function y~ satisfies in D’ (~ a ( S1 ) , a ( S2 ) ~) the inequation

xo ( , ~, 8, ~, ~) . In view of the definition of the strong coherence (see
definition 2.2) and Lemma 6.3 stated in Appendix, the family 
converges uniformly on ~a ( Sl ) , a ( S2 ) ~ towards the null function as c 1 0.
Therefore, the relation (23) provides,

It follows that is a Cauchy sequence in the set of bounded functions
on I endowed with the supremum norm. Let us denote by u the uniform
limit of (un)n , on I. Now, we have to prove the continuity of u (because
the uniqueness of the is now obvious) to obtain that U is the unique

of CPA (I, uo) .
For that, let e ( s , t ) then the maximum principle (see

theorem 5.1) allows to write, for all c > 0 and for so, so + h E I,
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Therefore, according to the u.s.c. aspect of 0, ,~3~) , we have,

Then, as c 1 0, we obtain

So the part (i) of the theorem is proved. It remains to prove the second part.
b) For this purpose let a = a in T~, and let .~’ _ .~’a,~ _
Fk, F) and F = F03B1,03B1 = (03B8k,Fk, F) be stemmed from 8a,a = 03B803B1,03B1 =

8 . Let be a DAF related to and be a DAF related

to a, .~’ . Now , we consider a DAF (wQ) Q both related to and

a, J~j . By the virtue of Lemma 2.1, such a choice is made possible. Then
in view of the part (i) of Theorem 3.1 we claim that (wQ)Q converges
towards a mas w of u° ) . But we have u = w since u and w are
both 0-strongly coherent mas of uO). In the same way we deduce
v = w and therefore u = v . Hence the proof is complete.

5.4. Proof of corollary 3.1

Let Ia = [0, a(T)] and 7i = [0, T]. According to the remark 2.3, we have,

By theorem 3.1 the mas u of is coherent for the mas v of

uO). Because of the estimate of Theorem 3.2, we obtain is
defined on ( I~ + ) 2 ),

where B is the continuous function satisfying,

for d E [0, a(T )] . Then yo (t) = t) satisfies Xo(:S;, ~, 8, 0, ~e,1 ) in

D’ (] 0, a(T ) [) .Thus, we obtain yo(t) = t) = 0 on [0, a(T )] . Then,
the inequality (24) gives, u(s) = v ( a ( s ) ) for all s E [0, T ] .
The last conclusion of this corollary is evident, since with our hypotheses,

v is C1 on [0, T] (see for instance [8]).
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5.5. Proof of Theorem 3.3

Only the assertion (iii) in the part a) of theorem 3.3 is non trivial. In

order to show this assertion, put u(t) = S(t, r)m° for t E (r; T~ and some
u° E DA° and v(t) = S(t, for t E ~s, T] ; then define the continuous
function B on ~-(a(T) - a(s)), a(T) - a(s)~ by,

It follows from the strong coherence that we have = 0 on

~- a (T ) , a (T ) ~ . Hence, theorem 3.2 applied with v and yields

Now, turn to the part b) of the theorem 3.3. Let 

sequence converging towards (s, t, w) in the metric space Y. Given c > 0,
let w~ be such that we have, we E and  ~ . Then, let Be
be the function defined on [-T, T] by,

where, we is the element of X provided by the stability condition S(a, I),
and where M  +00 is an upper bound of For N~ E N*,
satisfying,

the maximum principle theorem 5.3 yields ,

Consequently, in view of the u.s.c. aspect of m(8, it follows, for all

> 0,

Since decreases uniformly towards the null function on a([s, T]) ,
when c 1 0 (see Lemma 6.3 in Appendix), it results,

The proof is now complete.
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5.6. Proof of Theorem 3.4

For each n E N U ~ oo ~ , let Un be the function Un = ,S’n ( . , 0), and let
an - 

a) The family bounded by some constant C > 0 in
C° ( ~0, T ~ , ~ ) , by hypothesis.

b) We give now a suitable bound for n e N.
Given c > 0, let (w, w) E A ~ (0), with  2 . According
to the definition of the inferior limit, there exists for each n 

( wn , wn ) E Aa n ( 0 ) , such as the sequence ( ( wn , w~ ) ) n converges towards
(w, w) . Let us define an integer NE verifying,

The condition S(an, c, [0, T~) provides again, (see inequalities (18) in
lemma 5.2)

Recall that we have an (s) = fo d~ and, (from the change of
variable lemma 6.1)

Consequently, since converges towards in the weak* topology of
T~, I~), there exist a sequence of positive numbers converging

towards zero and an integer P~ > NE realizing, for all s E [0, T],

where, we put for instance, C~ = supn ( ~ ~ w~ ~ ~ + C + 1 -~ ~ 
c) Equicontinuity of (un)n in T~, X). For x E ~-T, T~ , and

r~ > 0, let be defined by ,

Let = for n E ~ U ~00~ , and put mn =
The maximum principle (see theorem 5.1 ) gives,

for n  PE;,
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The equicontinuity lemma 6.2 ensures that for all r~ > 0, there exists an

integer such as we have,

Let y~ be the maximal continuous solution in D’(]0, a(T)[) of

xo (_, ~, 8, 2~, cx) . By lemma 4.1-vii), we get that the sequence

converges uniformly on towards Moreover,
in view of the lemma 6.3 the generalized sequence converges

uniformly on towards zero as c 1 0. Then, from

the relation (27) yields (choosing first a suitable and second a suitable

r~ ) to the existence of an integer R~ = such that,

Since is continuous on [0, a(T)]2, then the announced

equicontinuity holds.
d) Convergence of Let be an adapted of

CPA~ ( ~0, T~ , u~ ) . Let 1Co be the following compact subset of X,

put for (t, v) E [0,T] x X . According to the part
b) of this proof, it is immediate to verify that (gn ) n is an equicontinuous
sequence of continuous functions on [0, T] x X. By the Ascoli-Arzela
theorem (gn)n is relatively compact in C° ( ~0, T~ x /Co,R). Then, consider
a cluster point g = lim gnk of Let c > 0 and Q be an integer.

Set Ao = ..., t~Q+1 , with nodal points in the set of s e [0,T] such
that A~03B1~(s) C lim infn A03B1nn (s) and,

with 8f == tf - and E For i = 1, ..., NQ
choose,
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We can find an integer r(Q, e) verifying, (with M = ]] ~ ),

If cp E D ~ 0, T ~2 , and cp > 0, for Q large enough and n > r(Q,s), it
follows from a simple computation,

Observe that the sequence of functions = an s an t conver es
towards t) = weakly* in L°° ([0, T~2; I~ Thus, letting
n = oo , and after Q --~ oo, in the relation (29), and since c is
arbitrary, we see that the continuous function h : (s, t) g(s, u~(t)) _
h ( s, t) is solution in D~]0,T[~ of

f~(s~ t)~ ~ a~ t~ t) ~ t))
~(s, 0) = limk Ilunk (s) - and t) _ u~ (t) () . °

Moreover, the inequality (28) shows that = 0 for
(s, t) E [0, T] 2 such as = Therefore, h is constant on the set
values taken by a~ ) . Finally, using lemma 4.1 part ii), we obtain,

where B is the continuous function on ~-a~(T), defined by,

Then, since we have B(0) = 0, we claim h(t, t) = 0, for all t E ~0, T~ ,
that is,

Hence, is the unique cluster value of (un)n in C° ( ~0, T~, X ) .
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6. APPENDIX

Here, we state some useful results and we give summary indications
about the proof of Lemma 4.1. More details can be found in [16] or [6].

6.1. Change of variable lemma

LEMMA 6.1. - All selection a-1 of a-1 is measurable. Moreover, for
f E we have, f o a-i E L1 (a(I), U~) and,

The proof is clear and left to the reader.

Remark 6. l. - Since the quantity ~a(I) f o (a) da does not depend on
the choice of (measurable) selections a-1 of a-1 we agree on the notation

f ° da.

6.2. Indications about the proof of the u.s.c. hull lemma

a) Suppose that x is a continuous solution in D’ (~ Sl , S2 ~ x ~ Tl , T2 ~)
of E~1,1 ( , ~, Bo, 0, 1, 1) . Since x is bounded on I x J, the operator
cp - defined by

~ 0 0

can be extended to the space of test functions D(7 x J) defined below,

D(7xJ) = {03C6 : I  J ~ R, (/? continuous with compact support on 7 x J,

by setting = limk for all sequence in D(I x J)
verifying
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It is clear therefore, that this definition does not depend upon the choice of
converging towards cp. And if we have cp > 0 , we can take 0

for all k (by taking for instance, classical regularized functions). Therefore,
we have for 03C6 E D(I x J), (03C6 ~ 0 ~ R(03C6) ~ 0).
Then let us consider b(t)) with 03B6 ~ 0. 03B6 E D(S2) .

Then cp E D(I x J), and cp > 0. It follows > 0 ; so using, in

this last inequality (see relation (31)), the change of variable (Lemma 6.1)
a = a(s) and T = b(t) , we see that b-1) is a continuous solution of
E~(; ~, 8, S, a,,~) . Therefore, if we prove the existence of the maximal
solution mB , introduced in the part i) of the lemma, we will have for

(a, 7) E a(I) x b(J)

or in other words, with (s, t) E I x J , x(s, t)  b(t,)) .
b) Consider y a continuous solution (if it exists) of the fol-

lowing inequation in D’(S2). Let ~~(~r,T) -
~~a+z-‘~~p~rz~a-2-d~~~ where d E a(1) - 6(J), ( E ,~ ~ 0,

and p E D(~-1, 1[) with p(T) dT = 1. The function ~~ has a compact
support in 03A9 for n large enough. Recall that Id denotes the interval

Id = [(a(SI) - d) V b(T1), b(T2 ) A (a(S2) - d)~ . Then, with the change of
variable,

we obtain easily,

No problem of integrability occurs thanks to the hypotheses on ~~. and

8(E W). Since ~, ~r are continuous, a-1, b-1 are a.e. continuous, and
~ E W, letting n --~ oo , we get,
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o

And is solution in D’(Id) of xd = 
0, B, a, ,C3) . Notice that we have for a.e. ~ E Id ( if we write 8 ( s, t) ~ ] 
F(s) + G(t), for a.e. s and a.e. t, with F, G E L~([0, T], R+)),

It follows from the Gronwall’s lemma an a priori upper bound for zd .

Thus, the inequation xd has a maximal continuous solution Yd verifying
o

the equation 8,,~3) in D’(Id) (see [19], [6]).

c) We will examine now the C1 case. We suppose B is Cl on

[-b(T2), a(S2)], and 03A6 is C1 on [0, T]2 x R2 and w-Lipschitz. Let 0 ,
be C1 on [0, T]2 and a and /3 strictly positive continuous in [0, T~ . We
suppose also that we have,

then (see [6]) the solution B,13, ~, ,~) is Cl on S2 , and is a classical
solution of E(=, B,13, a, ,~) .

d) We suppose here that ~ is C1 w-Lipschitz on [0, T]2 x R~ . Let (~k)x,
(resp. (~3~)k) be a sequence of strictly positive continuous functions on I
(resp. J). We (can) suppose that we have for q E {1,2}, an(Sq) = a(Sq)
and bn(Sq) = b(Sq)’ Let (Bk)k be a sequence of functions Cl on

a(I) x b(J) , converging in x b(J)) towards B. Let be

a sequence of Cl functions on [0, T)2 converging towards 0 in (W, ~~’~~*) .
Let us consider a sequence (Gk) k of functions from ~0, to , such
that Gk is C1 with compact support included in ~0, k ~ [ and

with Gk bounded by Let 

let Pz be the projection on the intervall I,
and mk be the restriction to a(I ) x b( J) of Then,
we claim that the family (mk)k converges in CO(a(I) x b( J) ) towards
the unique continuous solution of E~ (_, ~, 0 , B, c~, ,C3) . Indeed, this claim
follows easily from the equicontinuity lemma 6.2 below. ,

e) In the general case, where ~ is the decreasing pointwise limit
~ = lim B continuous, and 0 E W. In this case, the - reader can

easily verify that the sequence B, a, ~3))r is pointwise convergent
Vol. 16, n° 3-1999.
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by decreasing towards the maximal (in the required meaning) solution of
E~ (_, ~, 8, l3, c~, ,~) . Indeed, (~d (~r, e, ,~, a, ,~) ) ~, converges uniformly by
decreasing towards ~, 0 , B, c~, ,~) on Id.
The U.S.c. hull lemma results clearly from the previous steps a) to e).

LEMMA 6.2. - We suppose that the sequences (c~~ ) ~ and converge
respectively towards c~ and ~3 in the weak* -topology of L 1 ( ~0, T ~ , (~ ) . Let
03A6 be 03C9-Lipschitz on [0, T]2 x R2, and let 8q q be a bounded sequence
in Put ~q + 8q . Let a sequence of W functions,
converging towards 0 E W, and let be a sequence of continuous
functions on a(I ) - b(J) , converging uniformly towards B . Set (with the
notations of the above step d)) = m( q, o~, Bk) o 
Then the family 

,j 
is (bounded and) equicontinuous on SZ .

More precisely, writing, ~d’q (T) = 8~, Bk) ( T + d, T), and Id =
d) V b(Tl), bk (T2) V (a~(S2) - d)~ for d E ak(I) - bk(J) and

a~ (s) _ ~’o d~ and bk(t) _ ~’o dT, we have ; ,.
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3. For T E 1 (case d) _
b~ (Tl )), the relation (33 ) holds if b > 0 and the relation (34) holds
if 03B4  o.

Proof. - Indications are given in [16].

6.3. A differential lemma

LEMMA 6.3. - We assume that the function ~ is u. s. c. on [o, T] x (~2 .
Let (g° )n be a sequence of real numbers converging towards g~ , and
(gn)n be a sequence of functions converging towards g~ in L ~ ( ~0, T ~ , (~ ) .
Furthermore, we suppose that the following inequality holds in ~0, T] x I~2
for some positive constant l, ( ~ ( s, ~, x) ~  -f- 1 ) . For n E f~ U ~ oo ~ ,
let us denote by gn the maximal continuous solution in D’ (] o, T[) of the
inequation,

Then, we have, lim supn (yn - 0 .

Proof of lemma 6. 3 . - See [16].
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