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ABSTRACT. - We study the Hamilton-Jacobi equation

where F :. IRN 2014~ [R is not necessarily convex. When S2 is a convex set,
under technical assumptions our first main result gives a necessary and
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190 P. CARDALIAGUET et al.

sufficient condition on the geometry of H and on D03C6 for (0.1) to admit a
Lipschitz viscosity solution. When we drop the convexity assumption on Q,
and relax technical assumptions our second main result uses the viability
theory to give a necessary condition on the geometry of S2 and on Dp for
(0.1) to admit a Lipschitz viscosity solution. © Elsevier, Paris

RESUME. - Nous etudions 1’ equation de Hamilton-Jacobi suivante

ou F : ---~ R n’est pas necessairement convexe. Lorsque H est un
ensemble convexe, notre premier resultat donne une condition necessaire
et suffisante sur la geometrie du domaine n et sur Dp afin que (0.2)
admette une solution de viscosité lipschitzienne. Si on enlève la condition
de convexite du domaine H, notre second resultat permet, a l’aide du

theoreme de viabilite, de donner une condition necessaire sur la geometrie
du domaine H et sur Dcp afin que (0.2) admette une solution de viscosité
lipschitzienne. @ Elsevier, Paris

1. INTRODUCTION

In this article we give a necessary and sufficient geometric condition for
the following Hamilton-Jacobi equation

to admit a W~~°° (SZ) viscosity solution. Here, SZ C is a bounded, open
set, F : IRN --~ I~ is continuous and cp E C1 (SZ). We prove that existence
of viscosity solutions ’ depends strongly on geometric compatibilities of
the set of zeroes of F, of p and of Q, however it does not depend on
the smoothness of the data.

The Hamilton-Jacobi equations are classically derived from the calculus
of variations, and the interest of finding viscosity solutions (notion
introduced by M.G. Crandall-P.L. Lions [8]) of problem (1.1) is well-known

1 Equation (1.1) may admit only continuous or even discontinuous viscosity solutions (see [4]).
We are here interested only in W 1 ~ x solutions.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



191EXISTENCE OF VISCOSITY SOLUTIONS

in optimal control and differential games theory (c.f. M. Bardi-I. Capuzzo
Dolcetta [3], G. Barles [4], W.H. Fleming-H.M. Soner [13] and P.L.

Lions [17]).
It has recently been shown by B. Dacorogna-P. Marcellini in [9], [10]

and [11] (cf. also A. Bressan and F. Flores [6]) that (1.1) has infinitely
(even G8 dense) many solutions u E provided the compatibility
condition

holds, where

and conv(Zp) denotes the convex hull of ZF and int(conv(Zp)) its

interior. In fact (1.2) is, in some sense, almost a necessary condition for the
existence of solution of (1.1). The classical existence results on

viscosity solution of ( 1.1 ) require stronger assumptions than ( 1.2)
(see M. Bardi-I. Capuzzo Dolcetta, [3], G. Barles [4], W.H. Fleming-H.M.
Soner [13] and P.L. Lions [17]).

Here we wish to investigate the question of existence of 
viscosity solution under the sole assumption ( 1.2). As mentioned above, the
answer will be, in general, that such solutions do not exist unless strong
geometric restrictions on the set Zp, on f2 and on cp are assumed.
To understand better our results one should keep in mind the following

example.

EXAMPLE 1.1. - Let

(Note that F is a polynomial of degree 4). Clearly,

Our article will be divided into two parts, obtaining essentially the same
results. The first one (c.f. Section 2) will compare the Dirichlet problem (1.1)

Vo!.16,n° 2-1999.



192 P. CARDALIAGUET et al.

with an appropriate problem involving a certain gauge. The second one (c.f.
Section 3) will use the viability approach.
We start by describing the first approach. We will assume there that H is

convex. To the set conv ( ZF ) we associate its gauge, i.e.

(In the example p(~) _ ~ ~ ~ ~ ).
The W 1 ~°° (SZ) viscosity solutions of ( 1.1 ) will then be compared to

those of

The compatibility condition on cp will then be

We will first show (c.f. Theorem 2.2) that if ZF C and ZF is
bounded, then any viscosity solution of ( 1.1 ) is a viscosity solution
of (1.7). However by classical results (c.f. S.H. Benton [5], A. Douglis [12],
S.N. Kruzkov [16], P.L. Lions [17] and the bibliography there) we know
that the viscosity solution of (1.7) is given by

where pO is the polar of p, i.e.

(In the example _ ~ ~* ~ 1 + ~2 ~ .)
The main result of Section 2 (c.f. Theorem 2.6, c.f. also Theorem 3.2) uses

the above representation formula to give a necessary and sufficient condition
for existence of viscosity solutions of ( 1.1 ). This geometrical
condition can be roughly stated as Vy E ~03A9 where the inward unit normal,
v,(y), is uniquely defined (recall that here S2 is convex and therefore this is
the case for almost every y E there exists A(y) > 0 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



193EXISTENCE OF VISCOSITY SOLUTIONS

In particular if p = 0, we find that ~ ( ~ ) = and therefore the

necessary and sufficient condition reads as

In the above example ZF = ~ ( -1, -1 ) , ( -1,1 ) , (1, -1 ) , ( 1,1 ) ~ , therefore
the only convex H, which allows for (SZ) viscosity solution of

are rectangles whose normals are in Z p. In particular for any smooth
domain (such as the unit disk), (1.1) has no W 1 ~°° ( SZ) viscosity solution,
while by the result of B. Dacorogna-P. Marcellini in [9], [10] and [ 11 ],
(since 0 E int(conv(Zp))) the existence of general W 1 ~ °° ( SZ ) solutions is
guaranteed. Note that in the above example with 03A9 the unit disk, F and
cp are analytic and therefore existence of W l °° (SZ) viscosity solutions do
not depend on the smoothness of the data.

It is interesting to note that if F : ---~ R is convex and
coercive (such as the eikonal equation), as in the classical literature,

c ZF. Therefore the above necessary and sufficient
condition does not impose any restriction on the set H. However as soon
as non convex F are considered, such as in the example, (1.10) drastically
restricts the geometry of the set H, if existence of W l °° (SZ) viscosity
solution is to be ensured.

In Section 3 the basic ingredient for proving such a result is the viability
Theorem (Theorem 3.3.2 of [2]). This Theorem gives an equivalence
between the geometry of a closed set and the existence of solutions of some
differential inclusion remaining in this set. The idea of putting together
viscosity solutions and the viability Theorem is due to H. Frankowska
in [15].

Vol. 16, n° 2-1999.



194 P. CARDALIAGUET et al.

The main result of this section (c.f. Theorem 3.1, c.f. also Corollary 2.8)
will show that if

then we can always find an affine function p with Dp E int(conv(ZF))
so that (1.1) has no viscosity solution.
The advantage of the second approach is that it will require weaker

assumptions on F and on H than the first one. However the first approach
will give more precise information since we will use the explicit formula
for the viscosity solution of (1.7).
Some technical results are gathered in two appendixes.

2. COMPARISON WITH THE SOLUTION

ASSOCIATED TO THE GAUGE

Throughout this section we assume that F : IRN -~ R is continuous

and that

. (HI) Zp C 
We recall that ZF = = 0~.

. (H2) ZF is bounded.

. (H3) E irat,(co7av(ZF)), b’:z E S2.

In addition we assume that the interior of the convex hull of Zr is

nonempty, i.e.

REMARKS 2.1.

(i) In light of (2.1 ) we may assume without loss of generality that

0 E int(conv(Zp)), since up to a translation this always holds.
(ii) Observe that int(conv(ZF)) ~  is necessary for (H3) to make sense.
(iii) Recall that (H3) (without the interior) is, in some sense, necessary

for existence solutions (c.! P. L. Lions ~l 7J).

(iv) It is well-known (c.f. (18J) that the following properties hold:

. p is convex, homogeneous of degree one and p~~ = p.

. conv(ZF) _ ~z E p(z)  l~.

. a(conv(ZF)) _ ~z E p(z) = 1~.

, 
Annales de l’Institut Henri Poincaré - Analyse non linéaire



195EXISTENCE OF VISCOSITY SOLUTIONS

. p(z) > 0 for every z ~ 0.

(v) Since ZF the function F has a definite sign in

We will assume, without loss of generality, that

for every ~ E int( conv ( ZF ) ) . Otherwise in the following analysis we should
replace F by - F.

Our first result compares viscosity solutions of ( 1.1 ) and those of ( 1.7).

THEOREM 2.2. - Let S~ C be a bounded open set, let F and ~p satisfy
(Hl ), (H2), (H3) and (2.2). Then any W l °° (SZ) viscosity solution of ( 1.1 )
is also a W l~°° (SZ) viscosity solution of (1.7). Conversely if in addition

F > 0 outside conv(Zp) then a W 1 ~°° ( SZ) viscosity solution of ( 1.7) is also
a W 1 ~°° ( SZ) viscosity solution of ( 1.1 ).

REMARK 2.3. - In the converse part of the above theorem the facts that
F is continuous, F  0 in int(conv(Zp )), and F > 0 outside conv(Zp)
implies that

We recall the definition of subdifferential and superdifferential of

functions (c.f. M. Bardi-I. Capuzzo Dolcetta [3], G. Barles [4] or W.H.

Fleming-H.M. Soner [13]).

DEFINITION 2.4. - Let u E C(f2), we define for x E SZ the following sets,

D+u(x) (D-u(x)) is called superdifferential (subdifferential) of u at x.

We recall a useful lemma stated in G. Barles [4].

LEMMA 2.5.

(i) u E C(SZ) is a viscosity subsolution of F(D(u(x))) = 0 in SZ if and
only if F(p)  0 for every x E Q, Vp E D+u(x).

(ii) u E C(SZ) is a viscosity supersolution of = 0 in SZ ifand
only if F(p) > 0 for every x E Q, Vp E D-u(x).

Vol. 16, nO 2-1999.



196 P. CARDALIAGUET et al.

We now give the proof of our first theorem.

Proof of Theorem 2.2.
1. Let u E be a viscosity solution of ( 1.1 ).

(i) We first show that u is a viscosity supersolution of ( 1.7). Since u is
a viscosity supersolution of ( 1.1 ), then in light of Lemma 4.2 and 2.5 we
have for every x E H, and every p E D - u ( x ) ,

Combining (2.2), (2.3) and (HI), we obtain that p E and so,

p(p) - 1 = 0. Hence, by Lemma 2.5, u is a viscosity supersolution of (1.7).
(ii) We next show that tc is a viscosity subsolution of ( 1.7). Since ~c is a

viscosity subsolution of (l.l), then for every x E SZ, and p E we

have by Lemma 4.2, p E conv(Zp) and so, p(p) - 1  0 . ’ We therefore

deduce that u is a viscosity subsolution of (1.7).

Combining (i) and (ii) we have that u E is a viscosity solution
of (1.7).

2. We show that u E the viscosity solution of (1.7) defined

by (1.8), is also a viscosity solution of ( 1.1 ).

(iii) We recall that

for all ~ E conv(ZF) . Since u is a viscosity supersolution of (1.7),
then for every x E H, and p E we have that p(p) - 1 > 0, i.e.

p E int ( conv ( ZF ) ) . From (2.4), it follows that F(p) > 0 and thus
u is a viscosity supersolution of ( 1.1 ).

(iv) Since u is a viscosity subsolution of ( 1.7), we have for every x E SZ,
and p E D+u(x), that p(p) - 1  0, i.e. p E conv(ZF) and then F(p)  0.

Thus u is a viscosity subsolution of ( 1.1 ).

Combining (iii) and (iv) we conclude that u is a viscosity solution

of (1.1). D

We now state the main result of this section (see also Theorem 3.4).

THEOREM 2.6. - Let F and cp satisfy (HI ), (H2), (H3) and (2.2). If
!1 is bounded, open and convex and p E C 1 ( SZ ), then the two following
conditions are equivalent

1. There exists u E W 1 ~ °° ( S~ ) viscosity solution of ( 1.1 ).
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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2. For every y E where the unit inward normal in y (denoted v(y))
exists, there exists a unique > 0 such that

Before proving Theorem 2.6, we make few remarks, mention an

immediate corollary and prove a lemma.

REMARKS 2.7. - (i) By v(y), the unit inward normal at y, exists we mean
that it is uniquely defined there. Since SZ is convex, then this is the case for
almost every y E ~SZ.

(ii) In particular if ~p - 0, then

and so, the necessary and sufficient condition becomes

(iii) If F is convex and coercive, then {2.5) is always satisfied and therefore
no restriction on the geometry of SZ is imposed by our theorem (as in the
classical theory of M. G. Crandall-P.L. Lions (8J).

COROLLARY 2.8. - Let SZ C be a bounded open convex set, let

F : (~N -~ L~ be continuous and such that

Then there exists ~p affine with Dp(x) E dx E SZ such

that ( 1.1 ) has no viscosity solutions.

In section 3 we will strengthen this corollary by assuming only that
Q~.

We next state a lemma which plays a crucial role in the proof of
Theorem 2.6.

LEMMA 2.9. - Let SZ be bounded open and convex and p E with

 l, b’x E Q. Let u be defined by

Let y(x) E ~S~ be such that u(x) = + p°(x - y(x)). The two
following properties then hold

Vol. 16, nO 2-1999.



198 P. CARDALIAGUET et al.

(i) If is nonempty then the inward unit normal at y(x)
exists (l. e. is uniquely defined).

(ii) Furthermore if p E D-u(x) then there exists > 0 such
that, p = + where is the unit inward
normal to ~SZ at y.

Proof
1. Let

If p then for every compact set K C (~ N and h > 0, we have

where E satisfies lim inf E~h ~ = 0.
In the sequel we assume without loss of generality that

since, by a change of variables (2.7) holds. Let p~ be the gauge associated
to 03A9 i.e.

We recall that

and

Now, let Xo E S2, let g~~ E I(xo) and let qo E (the subdifferential of
pS2 at yo, in the sense of convex analysis, see R.T. Rockafellar [18]). Since
Psz is a convex function, we have ~03C103A9(y0) = (see [4]). We have

Note that 0 since otherwise we would have 0 E and so, Yo
would be a minimizer for p~ whereas > = 0. Define the
hyperplane touching ~03A9 at Yo and normal to qo,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



199EXISTENCE OF VISCOSITY SOLUTIONS

and the barrier function

2. Claim 1. - We have u  v on nand u(.xo) = v(xo).
Indeed, for x En, let ?/i(.r) E Po be such that

and let

In light of (2.8), (2.9), (2.10), and the fact that E Po, we have

and

Using (2.8), (2.11), and (2.12) we conclude that there exists ~ E (0,1]
such that

Using the homogenity of 03C1° we obtain that

We therefore deduce that

As p(Dp)  1 we have (see Lemma 4.1)

From (2.14) and the definition of u, we obtain

So we have v(x) > u(x). Observe also that v(xo)  u(xo) and so,

v (xo ) = u(xo). This concludes the proof of Claim 1.

Vol. 16, nO 2-1999.
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3. Claim 2. - We have p E D-v(xo).
Indeed, in light of Claim 1 and (2.6) we have

for every d in a compact set, and so,

4. Claim parallel to qo (recall that qo 7~ 0).
Let ~i, -’’, be such that {~o?’’’, is a set of orthogonal

vectors. Using the definition of v, Claim 1 and the fact that

we obtain

Combining (2.15) and (2.17) we deduce that

When we divide both sides of (2.18) by h > 0 and let h tend to 0 we obtain

Similarly, when we divide both sides of (2.18) by h  0 and let h tend

to 0 we obtain

Using (2.19) and (2.20) we conclude that

thus,

for some A E R. It is clear that 03BB ~ 0, since p(p) = 1 (by the fact that u is
a supersolution of (1.7) and by Lemma 4.2) and  1.

Annales de 1 ’Institut Henri Poincaré - Analyse non linéaire
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5. Claim 4. - p~ is differentiable at yo (so exists and v(yo) = qo
by definition of qo).

Suppose there exists q E with qo. We obtain repeating the
same development as before, that

for some ~ /= 0. So

with a = ~ 7~ 0. If a  0, then any convex combination of q and qo is in
and thus 0 E which yields that yo is a minimizer for pS2

which, as already seen, is absurd. So we have a > 0.

We will next prove that

for every q E 

Assume for the moment that (2.24) holds and assume that q E 
satisfies (2.23). Then,

Consequently, a = l, q = qo and so,

By (2.25) we deduce that p~ is differentiable at Yo (see [18] Theorem 25.1).
We now prove (2.24). Denoting by p~ the Legendre tranform of one

can readily check that

We recall the following well known facts:

for every q E (see [18] Theorem 23.5) and

Vol. 16, n 2-1999.



202 P. CARDALIAGUET et al.

Since Yo E we have = l, which, together with (2.27) and (2.28)
implies that

Hence, ps2(q) being finite, we deduce = 0. Using (2.26) and (2.29)
we obtain that 

.

6. Claim 5. - We have p = Dcp(yo) + where v(yo) is the unit
inward normal at yo.

By Claim 3 and Claim 4, there exists Ao such that

The task will be to show that Ao > 0. Let

We have

Using the definition of xh and the homogeneity of 03C1° we get

which, along with (2.32) implies

In light of (2.6) and (2.33), we have

which yields,

Using the definition of 03C1° (see (1.9)) we have

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Also, by (H3), there exists 8 > 0 such that

Combining (2.34) and (2.35) we obtain

Moreover, since we can express xo as a linear combination of the

normal v(Yo) and the tangential vectors {qi}N-1i=1 at aSZ in yo, there exist

a and ~c2 with i = 1, ~ ~ ~ , N - 1 such that

As and SZ is convex, a  0. Using (2.31), and (2.36) we obtain

Thus, Ao > 0. D

We now give the proof of the main theorem

Proof of Theorem 2.6.
1. (1) =~ (2) We assume that u is a viscosity solution of ( 1.1 ).
From Theorem 2.2, we have that every viscosity solution of ( 1.1 ) is a

viscosity solution of ( 1.7) and therefore by ( 1.8) u can be written as

Let ~/o E dSZ be a point where (see the notations of
the proof of Lemma 2.9). Let x ~ 03A9 be such that u is differentiable at

x and x sufficiently close from yo. Moreover the minimum in (2.37) is

attained, at some y(x) E ~SZ close to yo. In light of Lemma 2.9 there exists
> 0 such that

(i.e Du(x) - Dcp(y(:c)) is perpendicular to the tangential hyperplane).
Note that ~o(y(x)) is bounded by 2~Du~~. Indeed, using the homogeneity

of p, assuming that = 1 we have

Vol. 16, n° 2-1999.



204 P. CARDALIAGUET et al.

As u is a solution of (1.1), i.e. Du(x) E ZF, we obtain that

Letting x tend to yo, we obtain that y(x) tends to y«. Since 
we have from Theorem 25.1 in [18] that /)Q is differentiable

at yo. By Lemma 2.9 we have that dpS2(y(x)) = f v(y(~))~ and p~ is
differentiable at y(x). Using Theorem 25.5 in [18], we obtain that v(y(x))
tends to Also, by (2.39) tends, up to a subsequence, to
a limit, denoted Ao when x goes to yo. Since ZF is closed, and F is
continuous, and so is Dcp, (2.40) implies

As > 0, we have that Ào  0. Moreover u is solution of (1.7)
and so Ao is uniquely determined by the equation

As p(Dcp(yo))  l, we have that 0 and so ~~ > 0. This establishes
that (1) ~ (2).

2. (2) ~ (1) Conversely, assume that (2.5) holds.
Using (1.8) we obtain that u defined by

is the viscosity solution of (1.7). We have to show that u is a viscosity
solution of (1.1).

. Since u is a viscosity subsolution of (1.7), then for every x E Q
and Vp E D+u(x), we have from Lemma 4.2, p E conv(ZF) (i.e.
p(p)  1). As (Hl) is satisfied (with the convention: F(~)  0,
b’~ E int(conv(ZF ) )) and as F is continuous, it follows that F(p)  0.

So u is a viscosity sub solution of ( 1.1 ).

. u is also a viscosity supersolution of (1.7), and so, for every x E S~

and every p E D-u(x) we have p(p) > 1 and, from Lemma 4.2, since
p E conv(ZF) (i.e. p(p)  1), we obtain p(p) = 1. From Lemma 2.9,
there exists y( x) E ~SZ where the inward unit normal is well defined
such that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Since p(p) = 1, then A(y(x)) > 0 is uniquely determined by

And so from (2.5), we deduce that p E ZF. Thus F(p) = 0,
Vp E D-u(x). We have therefore obtained that u is a viscosity
supersolution of (1.1).

The two above obsevations complete the proof of the sufficiency part of
the theorem. D

We conclude this section with the proof of Corollary 2.8.

Proof of Corollary 2.8.
To prove that there exists p E such that the problem (1.1) has no

viscosity solution, it is sufficient using Theorem 2.6 to find y E where

the unit inward normal exists, such that

1. Without loss of generality, we suppose that 0 E Let

p be the gauge associated with the set co7av(ZF). We have that p
is differentiable for almost every a E 

So, since ZF ~ a(corav(ZF)) and ZF is closed, we can choose

a E ZF such that a is a point of differentiability of p.
2. We first prove that there exists yo e aS2, where v(yo) exists, with

for A  0 small enough. Let a = Dp(a). By Lemma 4.3 the exists yo E aSZ
such that the normal v(yo) to dSZ at yo exists and

Using (2.42) and the fact that p is differentiable at a we obtain (keeping
in mind that p(a) = 1)

for A  0 small enough. This concludes the proof of (2.41).
3. Choose y E dS2, where v(y) exists, and A  0, such that /3 = E

int(conv(ZF)) (such ~ exists by the previous step). Observe that by
convexity of p we have since p(a) = 1 and p(a +  1 that

p(a + > 1 for every ~ > 0. Let cp(~) _  ,~, ~ >. We therefore
have

for every A > 0. That is the claimed result.

Vol. 16, nO 2-1999.
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3. THE VIABILITY APPROACH

In the previous section, we have assumed that ZF C and

S2 is convex. We have proved that a necessary and sufficient conditions for
the Hamilton-Jacobi equation

to admit a viscosity solution is that, for any y E ~SZ where there
is an inward unit normal, v(y), there exists A(y) > 0 such that

In this section, we no longer assume that ZF C a(conv(ZF)) and S2

is convex. We investigate the existence of a viscosity solution
for Hamilton-Jacobi equation (3.1) for any (/? satisfying the compatibility
condition Dp(y) E int(co7av(ZF)).
The main result of this section is that, if

then there is some affine map 03C6 satisfying the compatibility condition,
and for which there is no viscosity solution to (3.1 ) (c.f.
Corrolary 2.8).

THEOREM 3.1. - Let F : (~N --~ R be continuous such that the set

ZF = ~ ~ E F ( ~) = 0) is compact ~.

Then for any bounded domain SZ there is some affine function p
with Dcp E int(conv(ZF)) such that the problem

has no viscosity solution.

The proof of Theorem 3.1 is a consequence of Theorem 3.4 below.

For stating this result, we need the definition of generalized normals (see
also [1]).

DEFINITION 3.2. - Let K be a locally compact subset of ~p, x E K. A
vector v E (~p is tangent to K at x if there are hn -~ 0+, vn -~ v such that
x + hnvn belongs to K for any n E N.
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A vector v E is a generalized normal to K at x if for every tangent
v to K at x

We denote by NK (x) the set of generalized normals to K at x.

REMARK 3.3. - i) If the boundary of K is piecewise Cl, then the

generalized normals coincide with the usual outward normals at any point
where these normals exist.

ii) If S2 is an open subset of RP and x belongs to ~03A9, then a generalized
normal v E can be regarded as an interior normal to SZ at x.

THEOREM 3.4. - Let SZ c I~N be a bounded domain and let F : (~N ~ (~
be continuous such that the set ZF = ~ ~ E ( F ( ~) = 0 ~ is compact. Let
_ b, y > with b E int(conv(ZF)).

If F(~)  0 (resp. F(~) > 0) for every sufficiently large and if
equation (3.1) has a (S~) viscosity supersolution (resp. subsolution),
then for any y E for any non zero generalized normal vy E 
to SZ at y, there is some ~ > 0 such that

REMARK 3.5. - In some sense, Theorem 3.4 improves the necessary part
of Theorem 2.6 since we do not assume any more that ZF c 
and that SZ is convex. Moreover, this result gives a necessary condition of
existence for sub or supersolution.

For proving Theorem 3.4 and 3.1, we assume for a moment that the
following lemma holds.

LEMMA 3.6. - Let SZ c I~N and F be as in Theorem 3.4. If there is some
a E such that

1. 0,  0,
2. ~x E aSZ such that a E 

then there is no viscosity supersolution to

Proof of Theorem 3.4.

Assume for instance that ~F(~)  0 for ~~~ sufficiently large. Fix
b E int( conv( Z p )) and 0 for which there is some x E ~03A9 such
that a E 
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If F(b) > 0, then the result is clear because F is continuous and

F(b + Aa) is negative for A sufficiently large.

Let us now assume that F(b)  0. Let u be a supersolution to

Set F(~) :== F(~ + b) and u(y) := u(y)-  b, y >. It is easy to check

that ii is a supersolution to

So, from Lemma 3.6 there is some 0 such that F(~«a) > 0, i.e.,
F(b + 0. Since F(b + Aa) is negative for A sufficiently large, there
is A > Ao such that F(b + Aa) = 0.
We have therefore proved that there 0 such that b + Aa E ZF. 0

Proof of Theorem 3.1.
Since F is continuous and Zp is bounded, F(~) has a constant sign for
sufficiently large. Say it is negative.

Let bE and r > 0 be such that B.,.(b) f1 ZF = ~J. From
the Separation Theorem, there is some a E RN, ~a~ = 1, such that

Note that F(b)  0. Indeed, F is continuous and F(b + ~a)  0 for

large A. Moreover, b + Aa never belongs to ZF for positive A because

From Lemma 5.3 in Appendix 2, there is some x E 9~ and a generalized
normal vx ~ NRNB03A9(x) such that

’ 

Set 0  ~ = >, a = + 6), ~ = b - aa. Let A > 0. We
are going to prove that ~ + A~ ~ If A  cr/6, then
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so that F(ba +  0 because Br(b) n Zp = 0 and F(b)  0.

If A > a/E, then

so that b« + ZF .

Since vx is a generalized normal to at x and since bo- + 03BBvx ~ ZF
for any À  0, Theorem 3.4 states that there is no viscosity supersolution

to the problem (3.1) with = >. D

Proof of Lemma 3.6.
The main tool for proving Lemma 3.6 is the viability theorem. The

viability theorem (c.f. Theorem 3.3.2 and 3.2.4 in [2]) states that, if G is
a compact convex subset of R~ and K is a locally compact subset of RP,
then there is an equivalence between

i) ‘dx G K, there exists T > 0 and a solution to

ii) ‘dx E K, ‘dv E NK(x), inf  g, v >  0.
gEG

As usual, the solution of the constrained differential inclusion (3.2) can
be extended on a maximal interval of the form [0, T) such that ’either
T = +00, or x(T) belongs to 

Assume now that, contrary to our claim, there is some viscosity
supersolution u to the problem. We will proceed by contradiction.

First step: We claim that

Indeed, otherwise, there is some x E H minimum of u. Note that
0 E D-u(x), so that F(0) > 0 because u is a viscosity supersolution.
This is in contradiction with F(Aa)  0 for all A > 0.

The proof of the lemma consists in showing that inequality (3.3) does
not hold.
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Second step: Without loss of generality we set ~a~ = l. Since ZF is
compact and  0 for 03BB ~ 0, there is some positive E such that

Since u is a supersolution, we know, from a result due to
H. Frankowska [15] (see also Lemma 5.1 in Appendix 2), that

Let x E 0 and (vx, vp) E u(x)). Since F( ~vx~ ) > 0, we have
thanks to (3.4), 

P

An easy computation shows that this inequality implies

Let G = {a + (1 - Ez)1~2 B} x {0} where B is the closed unit ball of
Then the previous inequality is equivalent with the following

so that K = Epi(u) n (H x R) is a locally compact subset such that

In particular, it satisfies the condition (ii) of the viability theorem.
Thus, from the viability theorem, ‘d (x, u(x) ) E K, there is a maximal

solution to

where either T = o0 or x (T ) E 

Let us point out that p’(t) = 0, so that p(t) = u(x) on [0, T).
Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



211EXISTENCE OF VISCOSITY SOLUTIONS

Third step: Let x E ~03A9 be such that a E We claim that

there is a solution to (3.5) starting from (x, u(~)) _ (x, 0) defined on (0, T).

Since a belongs to from Lemma 5.2 of the Appendix 2,
applied to C = {a + (1 - EZ)1~2 B~, there is some a > 0 such that

Vc E C, Vb E RN with |b|  l, VB E (0, a), x + 9(c + ab) E H.

Since 0 ~ C, we can choose also a > 0 sufficiently small such that

0 ~ C + aB, where B is the closed unit ball.

We denote by S the set

It is a subset of 0 and x E o~s.

Let zn E S converge to x, (xn ( ~ ) , pn ( ~ ) ) be maximal solutions to (3.5)
with initial data (xn, u(xn)) defined on [0, Tn ). Let us first prove by
contradiction that the sequence Tn is bounded from below by some positive
T. Assume on the contrary that Tn 2014~ 0+. Note that

because x’ (t) E C which is convex compact. Thus, for any n, there is

cn E C such that Xn(Tn) = xn + 
Since xn E S, for any n > N there are On E (0, a), bn E B and cn E C

such that xn = +abn). Since xn converges to x and 0 ~ C + aB,
we have 9n -~ 0+. Let No be such that No, 8n + Tn  a.

Then

Since C is convex,

belongs to C. Moreover,

Thus, for any n > No, belongs to S which is a subset of 0 and
we have a contradiction with Xn ( Tn) E 
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So we have proved that the sequence Tn is bounded from below by
some positive T.

Since G is convex compact and since the solutions (~~(~), p~(~)) are
defined on [0, T], the solutions (x,L(~), p,z(~)) converge up to a subsequence
to some (~(~), p(.)) solution to

(see Theorem 3.5.2 of [2] for instance).
Since, :x’(t) E C, for any t E [0, T] there is some c(t) E C such that

x(t) = m-f-tc(t). Thus, for t E (0, inf f T, a}), x(t) belongs to S and so to S2.

In particular, (x(t), p(t)) _ (~(t,), 0) belongs to the epigraph of u for
t E (0, T’) (with T’ = i.e.,

This is in contradiction with inequality (3.3). D

4. APPENDIX 1

We now state two lemmas which are well-known in the literature. The
first one is a Mac Shane type extension lemma for Lipschitz functions.
The second one can be found in F.H. Clarke [7] and H. Frankowska [14].
However for the sake of completeness we prove them again.
LEMMA 4.1. - Let 0 be a convex set of I~N and u E with

p(Du(x))  1 a.e. in H, then there exists an extension ic E of
u with p(Dic(x))  1 a.e. in 

Proof.
The task here is to check that ic given by

satisfies the requirements of Lemma 4.1. (Note the similarity with the
viscosity solution (1.8).)
1. We first show that n is an extension of u.
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For this, it will be sufficient to show

To prove (4.1) we proceed by regularization. We introduce the mollifier
function 

_ ,

and the sequence fn(x) = n N f ( nx) where C is chosen so that ~ f = 1.
First, we extend u, as a Lipschitz function, to the whole of and we

still denote this extension by u (this can be done by Mac Shane lemma).
We then set

It is well known that uniformly on every compact set. Let SZs be
the compact subset of H defined by

for 8 > 0 and n > s . As p is convex and homogeneous of degree one,
using Jensen inequality, we obtain that

Since Un is of class CB (4.2) implies that for x, y E n6, there exists
x E RN such that

and so, letting n tend to infinity, we obtain

Letting then 8 tend to 0, we have deduced (4.1) and so, ii is an extension
of u.

2. We next show that
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Indeed we have

3. We then show that (4.3) implies that  1 a.e.

As ic is a Lipschitz function we can use Rademacher theorem and obtain
that for almost every x E ~‘~’

This means that for every E > 0, there exists 8 > 0 such that

for every Ihl  8, and so,

From (4.3), we get that

As p is convex and homogeneous of degree one, we have

Taking the supremum over every h (  b in (4.4) we obtain

where,
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Letting now E tend to 0, and using (4.5) we obtain

LEMMA 4.2. - Let u E with Du(y) E conv(ZF) a.e. (i.e
p(Du)  1 a.e.), then

for every x E Q.

Proof.
We first show that D+u(x) C eonv(Zp). Observe that from (4.1) we

have: 
, _ , , ,

Using the definition of D+u we have for every x E S2 and p E D+u(x)

Proceeding as in Lemma 4.1, we observe that for every p E D+u(x), and
every E > 0, there exists 8 > 0

for every Ihl  6. We therefore get

since p is convex and homogeneous of degree one. Taking the supremum
over every ~ja~  6, we obtain

Defining

and using (4.6), we get
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Letting E tend to 0, we obtain p(p)  1. Using the same argument for
D-u(x) we conclude that

In the proof of Corollary 2.8, we used the following result (see also
Lemma 5.3). 

’

LEMMA 4.3. - Let SZ be a bounded, open and convex set. For every
a E (~N ~ ~0~ there exists y E where v(y) the unit inward normal
exists, such that

Proof.
1. By the divergence theorem, we have

It is then clear from the above identity that the claim of this lemma will
follow if we can prove that  a, v(y) >~ 0 on a set of positive (relative
to measure. This will be achieved in the next step.
2. Suppose on the contrary that there exists ~ 7~ 0 for which the conclusion
of the Lemma fails. We may assume without loss of generality that 0 E 52.
Let po be the gauge of H. Then for each ~ E ~ and each y E ~S2 such that
v(y) exists we have (keeping in mind that = 1)

and so, using that the set where v(y) exists is dense in ~03A9 we deduce that

for every y E Next, take x E 03A9 and  E R such that x + jla E aSZ.
We have, for y = x + ~ca,

which is at variance with (4.7). D
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5. APPENDIX 2

We collect here some lemmas needed throughout the proofs of

Theorem 3.1 and 3.4 and Lemma 3.6. Lemma 5.1 appeared in [15], but
we will give a proof for sake of completeness. Lemma 5.2 and 5.3 are
well known results of non smooth analysis, although it is not easy to find
a proof in the literature. We think that the proof of Lemma 5.3 is new

and interesting.

LEMMA 5.1. - If 03A9 is an open subset of and u is a 

supersolution of

then

Let us point out that the converse of this result holds also true (see [15]).

LEMMA 5.2. - Let S2 be an open subset E ~SZ and a E 

with 0. Let C be a compact subset of I~N be such that

Then there is some a > 0 such that

LEMMA 5.3. - C (~ N is open and bounded, then, for any a E 
there is some x E ~SZ and a generalized normal vx E such that

Proof of Lemma 5.1.
Let (vx, (0, 0) be a generalized normal to Epi(u) at (x, u(x)). We

have to prove that vp  0 and ] belongs to 

Since (x, u(x)) -f- t{o,1) belongs to Epi{~c) for t > 0, (0,1) is tangent to
Epi(u) at (x, u(x)), and so  (0,1), (vx, vP) >  0. In particular, vP  0.
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Assume for a while that vP = 0. Then, vx ~ 0. Set hn :== 1/n. Since
u is Lipschitz, the sequence

is bounded and it converges, up to a subsequence, to some which
is tangent to Epi (u) at (x, u(x) ) .
Thus  >  0 which is impossible since 0. So

vP  0.

Set p := We now have to check that, b’v E p~N,

Fix v E V~~’~{0} and denote by 0 the lower limit as above. Since u is
Lipschitz, B is finite. We have to prove that 0 > 0.

Let be a sequence converging to 0 such that

converge to B.

Note that

converges to (v,  p, v > --~8). Thus (v,  p, v > +0) is tangent to Epi(u)
at (~, u(x) ) and

This implies that

So 03B8 > 0 because v03C1  0.

Since u is a supersolution and E D-u(x), we deduce from
Lemma 2.5, 0. D
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Proof of Lemma 5.2.
Assume that, contrary to our claim, for any n > 0 there are 0  n ,

cn E C, bn E B with x + 0n(cn + H.

Then cn converges, up to a subsequence, to some c E C. Clearly c is

tangent to at x.

Since a E this implies that  a, c >  0, which is in

contradiction with the assumption. D

Proof of Lemma 5.3.
Assume that the conclusion of the lemma is false. Then

This means (from the viability Theorem (again !) applied to the closed set

K : _ ~ N B SZ and G := a) that for any x the solution to x’ ( t ) = a,
x(O) = x remains in K forever.

Let now y belong to H. Since n is bounded, there is some T sufficiently
large such that x - Ta ~ H. The previous remark applied to x - Ta yields
that x(t) = x - Ta + ta belongs to for any t > 0, which, for t = T,
is in contradiction with x E H. D
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