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ABSTRACT. - We study the Cahn-Hilliard equation in a bounded domain
without any symmetry assumptions. We assume that the mean curvature of
the boundary has a nondegenerate critical point. Then we show that there
exists a spike-like stationary solution whose global maximum lies on the
boundary. Our method is based on Lyapunov-Schmidt reduction and the
Brouwer fixed-point theorem. © Elsevier, Paris

RESUME. - Nous etudions 1’ equation de Cahn et Hilliard dans un domaine
ouvert en ne supposant de symetrie pour le domaine. Nous supposons que
la courbure moyenne sur la frontiere a un point critique non degenere. Nous
montrons qu’ il existe une solution stationnaire avec un pic qui atteint son
maximum sur la frontiere du domaine. Notre methode utilise la reduction de

Lyapunov et Schmidt et le theoreme du point fixe de Brouwer. © Elsevier,
Paris
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460 J. WEI AND M. WINTER

1. INTRODUCTION

The Cahn-Hilliard equation [5] is an accepted macroscopic field-

theoretical model of processes such as phase separation in a binary alloy.
In its original form it is derived from a Helmholtz free energy

where f2 is the region occupied by the body, u(x) is a conserved

order parameter representing for example the concentration of one of the
components, and F ( u) is the free energy density which has a double well
structure at low temperatures (see Figure 1). The most commonly used
model is for F(u) = ( 1 - u2)2.

The constant E is proportional to the range of intermolecular forces and
the gradient term is a contribution to the free energy coming from spatial
fluctuations of the order parameter. Moreover the mass m = ~ ~ ~ Jo udx is
constant. Thus a stationary solution of E(u) Jo udx takes
the following form

where f(u) = F’ (~c) (see Figure 2) and ~E E is a constant.

There have been numerous studies of the Cahn-Hilliard equation. The
global minimizer of E ( u) has a transition layer. More precisely there exists
an open set F such that if UE is a global minimizer then UE --~ 1 on

o B T. ~cE r and c~T n Q is a minimal surface and has constant
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461STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION

mean curvature, see [16]. The dynamics of the interface have been studied
extensively, see for example [2], [3], [23]. Also local minimizers of E( u)
have been studied and their transition layer structure has been established
in [6] and [13]. In particular, Chen and Kowalczyk in [6] used boundary
mean curvature to construct local minimizers (therefore transition layer
solutions) for equation (1.1).

In this paper we are concerned with solutions of (1.1) with spike layers. In
the one dimensional case, Bates and Fife [4] studied nucleation phenomena
for the Cahn-Hilliard equation and proved the existence of three monotone
nondecreasing stationary solutions when m is in the metastable region
( 1 /3  m  1), (a) the constant solution u m, (b) a boundary spike
layer solution where the layer is located at the left-hand endpoint, (c) a
transition layer solution with a layer in the interior of the material.

Motivated by the results of [4], we shall construct a boundary spike layer
solution to (1.1) for E « 1 in the higher dimensional case when m is
in the metastable region.
The existence of spike layer solutions as well as the location and the

profile of the peaks for other problems arising in various models such

as chemotaxis, pattern formation, chemical reactor theory, etc. have been
studied by Lin, Ni, Pan, and Takagi [14, 17, 18, 19] for the Neumann

problem and by Ni and Wei [20] for the Dirichlet problem. However, they
do not have the volume constraint and the nonlinearity is simpler than here.
To our knowledge the present paper is the first to establish this kind of
results for the Cahn-Hilliard equation in higher dimensions without any
symmetry assumptions on Q.

Vol. 15, n° 4-1998.



462 J. WEI AND M. WINTER

Naturally these stationary solutions are essential for the understanding of
the dynamics of the corresponding evolution process. While Bates and Fife
[4] prove some results in this direction for the one dimensional case these

questions are open for higher dimensions.
In [11] in the one dimensional case the number of all stationary solutions

is counted by arguments using transversality.
First we make the following transformation.

Rewrite

Then equation (1.1) becomes

(Figure 3 shows qualitatively how the graph of g looks like.)

To accommodate more general g we assume that
(1) g’(o)  = E C3(R; R).
(2) g ( v ) has only two zeroes for v > 0, 0  a 1  a2 and

Annales de I’Institut Henri Poincaré - Analyse non linéaire



463STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION

(3) The function v - is nonincreasing in the interval (vo, a2) where
vo is defined as the unique number in a 2 ) such that g(s) d s = 0.

(4)  C for any v.

Remarks. - (1 ) Condition (3) can be weakened further. For example, the
conditions in [7] will be enough since we just need the uniqueness and
weak nondegeneracy of the ground state solutions of (1.3).

(2) Condition (4) is not a restriction physically since in the physical
world v is always bounded. Hence we can modify h near infinity so that
h satisfies (4).

It is easy to see that for f(u) == -2u(1 - U2) conditions (1), (2), (3),
and (4) are satisfied. Our main result can be stated as follows.

THEOREM 1.1. - Let f2 be a bounded smooth domain in R~ (N > 2) and
Po E ~03A9 be such that H(Po) = 0 and (~2P0 H(P0) ~ 0 where H(Po)
is the mean curvature of P0 ~ ~03A9 and ~p° is the tangential derivative at
Po. Then for E   1 there exists a solution vE of (1.2) such that v~ ~ 0 in
~‘ o~ (SZ ~ Po ), vE has only one local (hence global) maximum point PE and
PE E Po, --~ Y(o) > 0. Moreover

as E ~ 0 where V (y) is the unique solution of

(By the results of [9] and [24], (1.3) has a unique radial solution).
The method of our construction evolves from that of [8], [21] and [22]

on the semi-classical (i.e. for small parameter h) solution of the nonlinear
Schrodinger equation

in R~ where V is a potential function and E is a real constant. The
method of Lyapunov-Schmidt reduction was used in [8], [21] and [22] to
construct solutions of (1.4) close to nondegenerate critical points of V for
h sufficiently small.

Vol. 15, n° 4-1998.



464 J. WEI AND M. WINTER

Following the strategy of [9], [21] ] and [22] we shall construct a solution
vE of (1.2) with maximum near a given nondegenerate critical point of the
mean curvature Po on Heuristically we rescale (1.2) to obtain

where uE(z) = for z = (x - e and f2E,P = {z E
ez -E- P e and vE is the unit outer normal to 

Taking the limit E 2014~ 0, uE -~ V where V is the unique solution of

with V(0) = V. Therefore the ground state solution V restricted to

R+ can be an approximate solution for Since the linearized problem
arising from (1.6) has the (N -I)-dimensional kernel span{~V ~y1,...,~V ~yN-1}
we first "solve" (1.6) up to this kernel and then use the nondegeneracy of
H ( Po ) to take care of the kernel separately.
The paper is organized as follows. Notation, preliminaries and some

useful estimates are explained in Section 2. Section 3 contains the setup
of our problem and we solve (1.2) up to approximate kernel and cokernel,
respectively. Finally in Section 4 we solve the reduced problem.

2. TECHNICAL ANALYSIS

In this section we introduce a projection and derive some useful estimates.

Throughout the paper we shall use the letter C to denote a generic
positive constant which may vary from term to term. We denote R~ =

> 0 ~ . Let V be the unique solution of (1.3).
Let P ~ We can define a diffeomorphism straightening the boundary

in a neighborhood of P. After rotation of the coordinate system we may
assume that the inward normal to at P is pointing in the direction
of the positive Denote x’ = B’(Ro) = 

 R0} and S21 {(x’, xN) E 
Py > p(x’ - P’)} where  R0}. Then,
since is smooth, we can find a constant Ro > 0 such that ~03A9 n Qi can
be represented by the graph of a smooth function p p : B’ ( Ro ) --~ R where

Annales de l’Institut Henri Poincaré - Analyse non linéaire



465STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION

= 0, ~ pp (o) = 0. From now on we omit the use of P in pp and
write p instead if this can be done without causing confusion. The sum of
the principal curvatures of aS~ at P is H(P) = ~N 11 where

and higher derivatives will be defined in the same way. By Taylor expansion
we have

In the following we use pe~ to denote the multiple differentiation 
where cx is a multiple index.

For x E let v(x) denote the unit outward normal at x and 
the normal derivative. Let (T~ ( ~ ) , ... , TN _ 1 ( ~ ) ) denote ( N - 1) linearly
independent tangential vectors and .., ~Ta_1 ) the tangential derivatives.

In our coordinate system, for x G oi := ~03A9 n B(P, Ro), we have

For a smooth bounded domain U we now introduce a projection Pu of

H2 (U) onto {v E = 0 at as follows: For v E H2(U)
let w = Puv be the unique solution of the boundary value problem

Vol. 15, n° 4-1998.
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Let hE,p(x) = Y~x ~P) - where

Then satisfies

We denote

For ~; E SZ, set now

Furthermore, for x E f21 we introduce the transformation

Note that then

The Laplace operator and the boundary derivative operator become

a2 N-1 a2 ~

Let vi be the unique solution of

where il‘ is the radial derivative of V, i.e. V’ = Y. (r), and r = 
Let v2 be the unique solution of

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let v3 be the unique solution of

Note that v2 are even functions in ~/ == ..., 
and v3 is an odd

function in ~~ _ ..., (I.e. = vl(-~J~, v3(~~, ~~v) _
-v3{-~~ , ~N)). Moreover, it is easy to see that ~v2 ~,  

for some 0  ~c  Let be a smooth cutoff function such that
= 1, x E B(0, Ro - 8) and x(x) = 0 for x E (for a

positive number b). Set

Then we have

PROPOSITION 2.1.

To prove Proposition 2.1, we begin with

LEMMA 2.2. - Let u be a solution of

Assume that f ~2  fa~ i~12 ~ Then

Proof. - Multiplying the equation by u, we have

Lemma 2.2 follows easily by the following interpolation inequality (the
proof of it is delayed to Appendix A),

where = ~ z ~ x = P + ez E for a fixed P E 0

Vol. 15, n° 4-1998.
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Proof of Proposition 2 .1 . - We first compute the equation for 

where denotes all the terms involving derivatives of x. Since
 for some p  ~/m we have fE G 

and f E  C. On the other hand, for x E ~SZ it holds that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Note that

Furthermore,

where again denotes all the terms involving derivatives of x. This

implies T /‘

Therefore

Vol. 15, n° 4-1998.



470 J. WEI AND M. WINTER

Let = P + Ez. Then satisfies

where 9E E and both the corresponding norms
are bounded independent of E. Hence by Lemma 2.2

Therefore Proposition 2.1 is proved. C7

We next analyze After choosing a suitable

coordinate system we can assume that Then

satisfies

We compute

Now we have (let x = P + Ez)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Let

Here wi is the unique solution of

Note that ]  for some p  m and w 1 is an odd

function in y . Then w2 satisfies

Note that [  for some ,u  yfm. Similar to the proof
of Proposition 2.1, we have

PROPOSITION 2.3. -

Vol. 15, n° 4-1998.
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where wl is defined above and

Finally, let

We have

LEMMA 2.4. -

where H~(I-~+ ) _ ~~c E I~2(I-~+ ), ay~ _ ~ o~ 
Proof - See Lemma 4.2 in [19]. Q

3. REDUCTION TO FINITE DIMENSIONS

Let P ~ 03A9 and

Let be a Hilbert space defined by

For u E set

Then solving equation (1.2) is equivalent to

To this end, we first study the linearized operator

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LE is not invertible due to the approximate kernel

in It is easy to see (integration by parts) that the cokernel of
LE coincides with its kernel. We choose approximate cokernel and kernel
as follows:

Let denote the projection in L2(nE,p) onto Our goal in this
section is to show that the equation

has a unique solution E 03BA|~,P if E is small enough.
As a preparation in the following two propositions we show invertibility

of the corresponding linearized operator..

PROPOSITION 3.1. - Let LE, p = o LE. There exist positive constants
such that for all E E (0, E)

for all 03A6 E 

PROPOSITION 3.2. - There exists a positive constant E such that for all
E E (0, E) and P E ~03A9 the map

is surjective.

Proof of Proposition. 3 .1 . - We will follow the method used in [9], [21 ]
and [22]. Suppose that {3.1) is false. Then there exist sequences ~E~~, 

with P~ E ~ ~ E such that

We omit the argument ,p~ where this can be done without confusion.

Denote ....

Vol. 15, n° 4-1998.
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Note that

by Proposition 2.3 and because of the symmetry of the function wi , which
was defined in (2.9), where is the Kronecker symbol. Furthermore
because of (3.2),

as k - oo. Let and T be as defined in Section 2. Then T has

an inverse T-1 such that

Recall that ~y = T(x). We introduce a new sequence {03C6k} by

for y E I~+ . Since T and T -1 have bounded derivatives it follows from

(3.3) and the smoothness of x that

for all k sufficiently large. Therefore there exists a subsequence, again
denoted which converges weakly in to a limit as

I~ --~ oo. We are now going to show that 0. As a first step we deduce

This statement is shown as follows (note that det DT = det DT-1 = 1)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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where 03A91 is as defined in section 2. In the last expression the first two

terms tend to zero as oo since is bounded in and

[...] -~ 0 strongly in .~2 (S~) . The last two terms tend to zero oo

because of the exponential decay of at infinity.
We conclude

This implies (3.6).
Let Ko and Co be the kernel and cokernel, respectively, of the linear

operator which is the Frechet derivative at V of

Note that

Vol. 15, n° 4-1998.



476 J. WEI AND M. WINTER

Equation (3.6) implies that By the exponential decay of V and
by (3.2) we have after possibly taking a further subsequence that

i.e. Ko. Therefore = 0.

Hence

as k - oo. By the definition of we get I>k -~ 0 in H2 and

Furthermore,

Since

we have that

In summary:

From (3.9) and the following elliptic regularity estimate (for a proof see
Appendix B)

for 03A6k E HN we imply that

This contradicts the assumption

and the proof of Proposition 3.1 is completed. C~

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Proof of Proposition. 3.2. - Assume that the statement is not true.

Then there exist such that 6~. -~ 0 as k --~ oo and

P~, E and such that for all k, ---~ not surjective.
Let KE,p and be the kernel and cokernel of LE, respectively. Then

: C ~,~~ ~ is not surjective, i.e. for all k there exists a

0 such that W for all W E 

This is equivalent to ~~ E and 0. Because we can assume

that w.l.o.g. = 1 this can be rewritten as follows. For all k there exists

such that

Now since

and because of the elliptic estimate (3.10) it follows that

for some constant C independent of k . Extract a subsequence (again denoted
by such that as defined in (3.5) converges weakly in ~2 ~R+ ~
to as 7~ ~ oo and satisfies

with

From (3.12) we deduce that belongs to the kernel of and (3.13)
implies that lies in the orthogonal complement of the kernel of 

Therefore = 0. As in the proof of Proposition 3.1 we show by
the elliptic regularity estimate (3.10) This

contradicts (3.11 ) and the proof of Proposition 3.2 is finished. D

We are now in a position to solve the equation

Vol. 15, n° 4-1998.
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Since is invertible (call the inverse we can rewrite

where

and the operator is defined by the last equation for 03A6 ~
We are going to show that the operator ME,p is a contraction on

if 8 is small enough. We have

where A > 0 is independent of 6 > 0 and c($) ~ 0 as 03B4 ~ 0. Similarly
we show

where -~ 0 as 8 -~ 0. Therefore ME,p is a contraction on B8. The
existence of a fixed point now follows from the Contraction Mapping
Principle and is a solution of (3.15).

Because of

we have

We have proved

LEMMA 3.3. - There exists E > 0 such that for every pair of E, P with
0  E  E and P G there exists a unique E 03BA|~,P satisfying

E CE,p and 

We need another statement about the asymptotic behavior of the function
as E --~ 0, which gives an expansion in E and is stated as follows.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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PROPOSITION 3.4.

where

and ~o is the unique solution of

~o is orthogonal to the kernel of Lo (3.18)

where Lo = ~ - m + h’ (V), Lo : 

Proof - Note that the kernel of Lo is

Furthermore we have

The notations for 03A91, ~, 03C1 and T are as in section 2. Our strategy is to

decompose into three parts and show that each of them is bounded in

! . as 6 2014~ 0. That means we make the ansatz

where the functions 03A81~, 03A82,1~, 03A82,2~ will be defined as follows. Let WQ be
the unique solution of

where

Vol. 15, n° 4-1998.
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Since  C there exists a constant C > 0 such that

Define 03A82,1~ by

where ~r is the projection in L2 onto Because of the exponential
decay of ~o, the smoothness of x and and by (3.20) it follows that

Finally, define ~’~(~) to be the unique solution in H~, ( SZ ) of the following
equation

where

Note that the right-hand side of the last equation lies in since

This is clear for by definition. By construction we have that

E2 (~E + ~E n ) satisfies the Neumann boundary condition. By
(3.18) and the smoothness of ~ we conclude that E H2. By (3.19),
~ E H2. Finally, since ej E H2 where

we have E ~2. Therefore e C;p. Furthermore, the following
lemma is true. 

LEMMA 3.5.

Annales de /’lnstitut Henri Poincaré - Analyse non linéaire
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Proof - We have

where

Note that

by the definition of x and the exponential decay of V. Furthermore

This proves Lemma 3.5. D

By Lemma 3.5 and the invertibility of

Proposition 3.4 follows. D

Vol. 15, n° 4-1998.
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4. THE REDUCED PROBLEM

In this section we solve the reduced problem and prove our main theorem.
By Lemma 3.3 there exists a unique solution Kflp such that

Our idea is to find P such that

Let

Then WE(P) is a continuous map of P.

Let us now calculate WEep). First of all, from condition (4) on h, we have

Therefore

Hence by Proposition 2.3

because

Annales de I Institut Henri Poincaré - Analyse non linéaire
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and Proposition 2.3. On the other hand, since

we conclude

where and J~ are defined by the last equality. We first calculate 

Vol. 15, n° 4-1998.
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Note that

and

since ~o is even and V - = EVl where Vl is even. By Proposition
2.1

Hence

So

We next compute IE .

since ~o is even. Finally, we compute the term JE.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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But

where

Combining JE, we obtain

where is continuous in P and = uniformly in P.

Suppose at Po, we have 0 then standard Brouwer’s

Vol. 15, n° 4-1998.
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fixed point theorem shows that for e « 1 there exists a P~ such that
= 0,P, ~ Po.

Thus we have proved the following proposition.

PROPOSITION 4.1. - For E sufficiently small there exist points PE with
PE -~ Po such that WE(PE) = 0.
By Lemma 3.3 and Proposition 4.1 we have

i. e.

i.e. UE is a solution of the Cahn-Hilliard equation. Moreover

and FE -~ Po E ~SZ.

Finally, we study the shape of the solutions Let PE be any local
maximum point of Then by (1.1),

But f~ -~ h(V) > 0, hence
+

So a1 > 0. On the other hand, from our construction,

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



487STATIONARY SOLUTIONS FOR THE CAHN-HILLIARD EQUATION

Similar proof as in Theorem 1.2 of [18], we conclude PE E and there

is only one such PE.

Appendix A: Trace Inequality

LEMMA A.I. - Let 0  E  1. Then

for all  E where the constant C is independent of E.
Note that the constant C in (A.I) is required to be independent of

E. Therefore Lemma A.I is special although trace inequalities are quite
standard.

Proof of Lemma A .1. - For 03A6 E define W E by a
linear transformation:

Observe that ~~~’~~L2~a~E,P) = =

and = Therefore (and
after translation) (A.I) is equivalent to

for all ~ E and 0  E  1 where C is independent of E. The

proof of (A.2) is standard and is omitted here (see for example the proof
of Theorem 3.1 in [1]). D

Appendix B: An elliptic regularity estimate

In this section we prove the following inequality

for all ~ E 0  ~  Eo where is as defined in Section 2
and C is a constant independent of E. For a point P on 9Q we can find
a constant Ro > 0 and a smooth function p : B’ (l~o ) ~ R such that in
B (P, Ro) the boundary ~03A9 is described by the graph of p where p satisfies
p(0) = 0, Vp(0) = 0 (compare Section 2). Furthermore there exists a map
?7 = T(~) with DT(0) = I (the identity map) from a neighborhood Up of
P onto a ball B(O, Rl ) (compare Section 3). By a linear transformation
we naturally get a map T E from Up = ~ (~ - e onto a ball

Vol. 15, n° 4-1998.
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with center at 0. We Then the Laplace operator
becomes = Dy + AE where

Observe that for given 8 > 0 we can find l~l > 0 and Eo such that for

In the same way we transform

where BE is a differential operator on = 0~ with coefficients
which are bounded in L°° for 0  E  Eo (compare section 2). From

{ Up I P e we select a finite subcovering of and denote it by
~ Ul , ... , Un ~ . Choosing Uo the is a finite covering
of f2 consisting of open sets. We keep this covering fixed from now on.
Let ~80, ... , be a partition of unity subordinate to this open covering.
Denote Of (y) = 9i o Since

we have

Since 8o has compact support in RN

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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(see for example [10], Corollary 9.10). Because of

and

we obtain

We are now going to estimate i = 1,..., n. Note that

where k = 0,1, or 2 and

for v E H2(UiE). Then

(see for example [15], Theorem 4.1). Now (B.2) implies that

Therefore from (B.6)

Vol. 15, n° 4-1998.
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For the operator BE we can calculate in an analogous way. The trace
theorem implies

Since C is by construction independent of E we can choose 8 so small that
1 - Cb2 > 1/2. This implies

Similarly as before

and

because of = 0. Combining (B.7) - (B.9) we get

We conclude, using (B.3), (B.4) and (B.10), that

where Cn depends on n. Since n is independent of 6 the proof of (B.I)
is finished. D

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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