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Existence of solution for a free boundary problem
in a nonlinear piecewise homogeneous medium (1)

A. BERMÚDEZ, M. C. MUNIZ and P. QUINTELA
Department of Applied Mathematics,

University of Santiago de Compostela, 15706 Santiago, Spain

Ann. Inst. Henri Poincaré,

Vol, 15, n° 4, 1998, p. 399-430 Analyse non linéaire

ABSTRACT. - A free boundary problem arising from the bidimensional
thermal modelling of aluminium electrolytic cells is studied. The medium
is assumed piecewise homogeneous and nonlinear. A fixed domain method
is proposed which leads to a weak formulation of the problem. Existence
of weak solution is proved by regularizing the contact condition between
the homogeneous subdomains and passing to the limit. (c) Elsevier, Paris

Key words: Free boundary, aluminium electrolysis, piecewise homogeneous media, weak
solution, existence.

RESUME. - Dans cet article on etudie un problème de frontière libre qui
apparait dans la modélisation thermoélectrique des cuves électrolytiques
d’ aluminium. Le domaine physique est suppose homogène par morceaux
et nonlinéaire. On utilise une méthode de domaine fixe qui conduit a
une formulation variationnelle du problème. L’ existence de solution faible
est démontré par regularisation de la condition de transmission entre les
sousdomaines homogènes et passage a la limite. © Elsevier, Paris
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1. INTRODUCTION

In this paper, a free boundary problem motivated by the thermal modelling
of an aluminium electrolytic cell is studied.

Aluminium is produced by reduction of alumina dissolved in an

electrolytic bath based on molten cryolite (see [11]). This complex process,
called Hall-Héroult, involves thermoelectrical and magnetohydrodynamical
phenomena, electrochemical reactions, complex phase equilibria and so on
(see [12]).
The Hall-Héroult process takes place in an electrolytic cell (see Fig. 1)

which consists of a rectangular steel shell with an inner covering of

insulating and refractory materials. Inside this, there is a linning of prebaked
carbon cathode blocks with embedded steel current collector bars. Both the

liquid metal and the electrolytic bath are upon these blocks. A frozen bath
layer, the so-called ledge, protects the side wall of the cell from corrosive
electrolyte. This ledge also reduces the heat loss from the cathode and
works as a heat sink when extra power is supplied to the cell, thus playing
a major role in the thermal behaviour of the cell.
The outline of this paper is as follows: in section 2, we recall the main

features characterizing the thermoelectrical behaviour of an electrolytic cell.
The unknowns are the temperature, the electric potential and the profile of
the ledge which becomes a free boundary.

Theoretical analysis of this problem is extremely difficult due to the

coupling between thermal and electric equations, the nonhomogeneity of
the domain, the physical nonlinearities and the free boundary. In [4], a

discretized thermoelectrical problem is introduced and an iterative algorithm
is used to compute the solution for a test example and real industrial

electrolytic cells.

As a first step, in [6] we study the free boundary problem in the ledge
which is both piecewise homogeneous and nonconductor, and consequently
only the thermal phenomenon is considered. Both, existence and uniqueness
of solution are demonstrated assuming that the ledge is linear (i.e. the

thermal conductivity coefficients depend on space variables but not on

temperature).
In the present paper we also study the thermal submodel. The difference

with respect to the case considered in [6] is that now thermal conductivity
also depends on temperature. This fact leads to a nonlinear diffusion

term which makes more difficult the mathematical analysis. Indeed, since
thermal conductivity also depends on the space variable, to avoid this

nonlinearity by using a global Kirchhoff transformation is not allowed.

To overcome this difficulty we use domain decomposition methods by

Annales de l’Institut Henri Poincaré - Analyse non linéaire



401EXISTENCE OF SOLUTION FOR A FREE BOUNDARY PROBLEM

considering two homogeneous subdomains (which can be distinguished in
the ledge) corresponding to the levels of bath and aluminium.

In section 3 we introduce a weak formulation in a fixed domain.

Mathematically, this problem is a stationary one phase Stefan problem
with source at the free boundary (see [17]).

Section 4 is devoted to proving an existence theorem for an auxiliary
problem, depending on a parameter, which regularizes the contact condition
between the homogeneous subdomains. After setting some a priori estimates
in section 5, existence of a weak solution for the thermal problem is proved
in section 6.

2. THE THERMOELECTRICAL PROBLEM

In this section we describe the thermoelectrical behaviour of the cathode

of an aluminium electrolytic cell.

The voltage drop between the anode and the cathode causes an increasing
of the temperature due to the Joule effect. Likewise, the potential distribution
of the electrolytic cell depends on the temperature through the electrical
conductivities of the materials. Therefore, from a mathematical point of
view, the full problem couples both a thermal and an electrical problem,
and it is similar to the so-called thermistor problem (see [13] and the
references therein). However two additional difficulties appear in the present
problem. Firstly, the domain of the model is not homogeneous and then
physical parameters depend not only on temperature but on position x as
well. Secondly, there is a free boundary: the profile of the ledge, called
S in Fig. 1.

The boundary conditions for the electric problem are given by the

knowledge of the current density through the cathodic bar. Moreover, the
heat flux through the exterior boundaries due to the losses by convection
an radiation leads to the boundary conditions for the thermal problem.
The ledge, being a nonconductor, is actually a fundamental part of the

cell from the thermal point of view. In the recent years, several attempts
have been made to determine the heat flux through the surface S (see [ 1 ],
[18]). Since the temperature is almost uniform in the liquid phase due to
the strong horizontal flow caused by the electromagnetic field, we assume
that the temperature, T, is equal to the solidus temperature of the bath,
called Ts, in S. The heat flux on S is given by

Vol. 15. n° 4-1998.



402 A. BERMIDEZ, M. C. MUNIZ AND P. QUINTELA

where k is the thermal conductivity depending both on the space variable
x = ~2) and on the temperature, nl represents the first component of
the outward unit normal vector to the ledge at S at point x and h(X2) is

a function to be given which only depends on ~2. In practice, h has to be
identified from experimental measurements because it depends on factors as
the electrolyte composition. In [3], a method to identify the function h from
experimental measurements of the ledge profile is developed. Including ?~i
is not only convenient from the mathematical point of view but it also

makes sense from the physical one because the heat transfer depends on the
slope of the free boundary: the greater the slope the greater the heat transfer.

In [5], this full thermoelectrical problem is discretized using pentahedral
finite elements of six degrees of freedom and numerical results are given
for real industrial situations.

The difficulties appearing on the theoretical treatment of this coupled
problem, as the nonlinearities on the physical characteristics of the materials
or the free boundary, lead us to consider a simplified problem taking place
on the (unknown !) domain occupied by the ledge.

3. STATEMENT OF THE PROBLEM

As a approach to the theoretical study of the full thermoelectrical problem,
we consider a simplified bidimensional submodel. The ledge is the domain

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



403EXISTENCE OF SOLUTION FOR A FREE BOUNDARY PROBLEM

where the problem is now posed; it is formed by two layers corresponding to
the bath and the metal levels and, as a consequence, the thermal conductivity
is different in these two levels (see Fig. 2). Since it is a nonconductor

material, release of heat by Joule effect does not occur and then we can
consider only the thermal part of the problem which becomes a one phase
Stefan problem with source at the free boundary (see [17]). A similar

problem is developed in [16] for the evolutionary and multiphase version
but it does not cover the present situation.

Let 0- be the ledge. We assume that 03A9- can be written as

where a is a positive real number, i = 1,2 are Lipschitz functions and

Actually, f 2 is an unknown function corresponding to the free boundary.
The solidified bath and metal are denoted by S~l and respectively

and we suppose that they are given by

where b is a positive real number such that b  a (see Fig. 2).
Let T ~ ? 2 = n and Fi and S be the graphs of the functions

f 1 and f 2, respectively. Finally,

Vol. 15, n° 4-1998.



404 A. BERMUDEZ, M. C. MUNIZ AND P. QUINTELA

Notice that Fi U r2 is the part of the boundary different from
the free boundary S. We denote

Since Q is piecewise homogeneous, the thermal conductivity can be
written as follows:

On the other hand, a Robin boundary condition is assumed on Fi
involving a convective coefficient a and the convective temperature of
surroundings, Tc.
We shall assume all along the following assumptions on the data

(H 1) For i = 1, 2, ki ( s) : tR 2014~ R are continuous and there exist positive
constants krn’in and kmax, such that  ki ( s)  
(H2) Ts is a positive constant.
(H3) h E L°° (0, a) is nonnegative where a is the height of the domain
(see Fig. 2).
(H4) The function a only depends on the space variable and belongs to

Moreover, a(x) > > 0 a.e. on Fi.
(H5) Tc E L°° (o, a), with 0  Tmin  Tc  Ts a.e. on (0, a).
(H6) hni + a(Ts - Tc) > 0 a.e. on Fi, where nl denotes the first

component of the outward unit normal vector to r 1. We assume that

-1  7~1  0.

Physically, the assumption (H6) establishes an upper bound in the heat
source at the free boundary. From the theoretical point of view, it is needed
in order to prove that the solution of our problem is less or equal than T~ .
In [5] and for a onedimensional version, solutions without this property are
obtained if (H6) does not hold.

Throughout this paper we use standard notations for Sobolev spaces and
norms. We also denote

such that z ~ and z ~ t~~~ro ~ = 0~ . ( 3.9 )

where ro is an open set of the boundary of Q.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Let us consider the following free boundary problem:

. Problem (P)

Find Ti in and Si, z = 1, 2 such that

for i = 1, 2. Moreover, we must impose the transmission conditions on r12:

being the outward unit normal vector to ni, i = 1, 2. The conditions
(3.15) and (3.16) express the requirement for the temperature and the heat
flux not to have jumps on 

Equality (3.10) holds in the distributional sense and then 
belongs to H(div, SZZ ), i = 1, 2. The boundary condition (3.11) holds on

n and analogously with (3 .13), (3.14) and (3.16).
For theoretical and numerical purposes, it is interesting to embed the

problem (P) into another one defined in a fixed domain. For this purpose,
we consider the sets SZ° and SZ° called the fictitious domains (see Fig. 3).

Vol. 15, n° 4-1998.



406 A. BERMUDEZ, M. C. MUNIZ AND P. QUINTELA

We define ni as the interior of the set SZ2 U Si U and

where the meaning of c is clear from Fig. 3. We define SZ as the interior of
the set n1 U n2 U r1,2 with boundary F = Fi U F2 U r3. Moreover we set

with the standard product norm, i.e.

As is continuously imbedded into ~L1 (SZ), hereafter a function

T E will be denoted by (Ti , T2) E ~C 1 ( SZ ) with Ti = = 1, 2 .
We consider the weak problem:

. Problem (WP)

Find T = (Tl, T2) E qi E L°° (SZi), z = 1, 2 such that

where H denotes the multivalued Heaviside function given by

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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For a solution of the problem (WP), let the sets S~-, S, n7, f2
and f1,2 be defined by

Si, r~’ and r ° being defined in (3.6), (3.19) and (3.21) respectively.
Notice that qi is equal to zero in SZZ by (3.26).
Remark 3.1. - If the solution (Ti, T2 ) of the problem (WP) is continuous

and less or equal than Ts and S has twodimensional Lebesgue measure
zero, then the set equality

holds where I‘°,2 = n (see [15] for further details).

PROPOSITION 3 .1. - If there exists a regular solution (Tl , T2, q1, q2 ) of the
problem (WP) such that  Ts a. e. in 03A9i and furthermore 0393i1 c ~03A9-i,
T3 c and Qi and SZ° are open sets with Lipschitz boundary, (2 = 1, 2),
then (T1, T2, ql , q2, ,S’~ is a solution of the problem:

Vol. 15, n° 4-1998.
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for i = 1, 2 and n1 as in equation (2.1 ).
In (3.40) qi represents the trace of qi restricted to Q? on Si.

Proof - If we choose z E D ( SZ~ ) (the usual space of functions of class
C°~ with compact support in and z E we classically have
(3.35) and (3.37) in D’(S~~ ) and in D’(SZ°), respectively.
By definition of O? and we have Ti = Ts in SZ° and qi = 0 in 

respectively. Thus, by applying the Green formula, equation (3.25) implies

taking into account that 0 From (3.46), we deduce
(3.40), (3.41), (3.42), (3.43) and (3.45). Finally, since E H1(~2),
(3.44) holds true. D

Notice that if n? is connected and T~3 (3.37) and (3.42) imply
hqi = h in SZ.°, and therefore from (3.40) we deduce (3.13).
The problem (WP) is similar to those arising in the dam problem (see

[9]), and in the lubrication with cavitation problem (see [2], [10]). The
differences lie in both the coefficients of the partial differential operators
and the boundary conditions. In [6], an easier problem is considered, in

that thermal conductivity does not depend on temperature and hence the
differential operator in equation (3.10) is linear. For this problem, existence
and uniqueness of solution are proved. However, the technique developed
in that paper can not be directly applied to the present problem.

In the following sections we are concerned with existence of solution
of the problem (WP). The proof is laborious and is based on defining a
regularized problem using maximal monotone operators techniques.

4. THE REGULARIZED PROBLEM

In this section we introduce the regularized problem, called problem
An existence result for this problem is given after both a Kirchhoff

transformation and an approximation technique are used.

Annales de I ’Institut Henri Poincaré - Analyse non linéaire
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Let us consider the operator

defined by

and the element .~ of (~-ll(52))~ given by

We are able to prove the following

PROPOSITION 4.2. - Let (Tl , T2 , q1, q2 ) be an element of H1 ( SZ ) ( SZ 1 ) X
such that

then ~Tl , T2 , ql , q2 ) is a solution of problem (WP), where:
. is the subdifferential of which is the indicator function of

the set ~4~ in I~1~2(r1,2).
. ~y~ , 2 is defined by 

’

. -y~a2 is the adjoint operator of ~1,2. 
’

Proof. - Since = I{0} o 03B31,2, by using the chain rule of

subdifferential calculus we obtain

Vol. 15, n° 4-1998.
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Therefore,

and we deduce that (Ti , T2 ) belongs to H1(n). Taking into account that
is a subspace of ~-L 1 ( SZ ) , we easily deduce

and the proof is complete. D

Taking into account (4.4), we define an auxiliary problem by replacing
the maximal monotone operator by its Yosida approximation given by

. Problem 

For a fixed A > 0, find (~’1 , in ~C1 (SZ) x L°° (SZ1 ) x L°° (SZ2)
such that

Notice that this problem couples the subdomains SZ1 and O2 through the
integral on the boundary r1,2 in (4.11).
The following result establishes a lower bound for the solutions of the

problem 

PROPOSITION 4.3. - Under the assumptions (Hl )-(HS), let (T~ , T2 , q2 )
be a solution of (APa), then Ta > Tmin a.e. in i = 1, 2.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof. - Let us choose zi = T03BBi)+ as a test function in (4.11),
we have

since qi = 0 if ~~  Tmin. We distinguish the sets

where hereafter [.] denotes the set of points verifying the condition into
brackets. The third integral of the left hand side in (4.13) verifies

Since the right hand side of (4.17) is nonpositive, we deduce the same
property for the left hand side of (4.13) while its right hand side is

nonnegative. Therefore, T ~ ) + = 0 on T3, i = 1, 2, and applying
the Poincare’s inequality we obtain the result. D

_ 

4.1. An equivalent problem

We are now concerned with the existence of solutions of problem (APÀ).
Let us consider the Kirchhoff transformation given in each domain fli by

Wl. 15, n° 4-1998.
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the function /3, : 2014~ !R, defined by

We define U,a as the function

and the constants

i = 1, 2. Notice that, in general, is not equal to 
The proof of the following lemma is easy to obtain and is given in [15].

LEMMA 4.1. - i) Both 03B2i and 03B2-1i are increasing differentiable functions,
i = 1, 2.

ii) ,~3i 1 (t) satisfies a Lipschitz condition with constant 1 .
-1 

_ 

-1 _ B 1 ..~ _ 2 i ii) ~-~~))(~ - ~ ~ ~(~ - ~.
We state the following

. Problem (AP~)

For a fixed A > 0, find q;, in ~ll (S2) x L°° (SZl ) x L°° (SZ2)
such that

-

. PROPOSITION 4.4. - The problem (APX ) is equivalent to the problem (APX ).

Annales de l’Institut Henri Poincaré - Analyse non linéaire



413EXISTENCE OF SOLUTION FOR A FREE BOUNDARY PROBLEM

Proof - i) Due to the monotonicity of both /3i and 03B2-i 1, the following
set identities hold

and, consequently, we deduce the equivalence

ii) Let (Tl , T2 , q2 ) be a solution of Since ,~2 is a differentiable
function, we have Ui e and ~U03BBi = ki(T03BBi)~T03BBi, i = 1, 2 (see
[14]). Hence, from (4.11 ), (4.12) and the equivalence (4.27), we deduce
that (U~ , U2 , q~ , q2 ) is a solution of 

Conversely, given ( U~ , U2 , qi , q2 ) a solution of we define

T a = ,~z 1 (Ui ), i = 1, 2. Using that ~32 1 has derivative and lemma 4.1 ii),
we obtain T~ e and (l~i(,~z 1(U~))) l~Ui , z = 1.; 2.
Therefore, from (4.22), (4.23) and the equivalence (4.27), we deduce that
(Ti , T2 , ql , q2 ) is a solution of D

Remark 4.2. - Notice that, given (Ti , T2 ) e H1 (SZ), the new variable
( U1 , U2 ) does not belong, in general, to H 1 ( SZ ) . -

COROLLARY 4.1. - Under the assumptions (Hl )-(HS), let ( Ul , U2 , qi , q2 ~
be a solution of problem then

where is given by (4.20), 2 = 1, 2.

Proof. - As in the proof of the proposition 4.4, we deduce

that (,~i 1 ( Ui ~ , ~2 1 C U2 ) ~ qi ~ ~’2 ) is a solution of (APx ) . Applying the

proposition 4.3 and the monotonicity of ,Q2, (4.28) is deduced. D

4.2. A penalized problem

The proof of existence of solution of the problem goes through
the definition of the following regularized problem:

Vol. 15, nO 4-1998.
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. Problem (APÀE)

For fixed A > 0 and E > 0, find E ~ 1 ( SZ ) such that

where Ui,s is defined by (4.21), i = 1,2, and

is the Yosida regularization of the Heaviside multivalued function H.
Let Ai : -~ be the nonlinear operator defined by

and, for w E H1(S2i), let Fi(w) E be given by

The idea for proving the existence of problem is to apply the
Shauder fixed point theorem to the operator

E being the solution of the following
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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. Problem (APÀE)
For fixed A > 0 and E > 0, and given gi E L2(r1,2), find Y E in 

such that

for i = 1,2.
Notice that, in order to define the operator £, two uncoupled problems

posed in 03A91 and O2 have to be solved, namely i = 1, 2.

Remark 4.3. - If we set g2 = for j ~ z in (4.32), the

equation (4.34) becomes (4.29) for the test function zi E and

z~ = 0 E 
We prove first that ,C is well defined:

PROPOSITION 4.5. - Under the assumptions (Hl )-(H5), there exists a

solution YZE of problem i = 1, 2.

Proof. - We consider Li the mapping which associates to w E 
the solution of the nonlinear problem:

Step 1. - Ai verifies the following properties:
. Ai is a continuous operator:
Applying the Cauchy-Schwarz inequality, the lemma 4.1, ii) and the

continuity of the trace, we deduce

where K is a constant depending on ]] and A.

. Ai is a strongly monotone operator:
Using lemma 4.1, iii), we have

with Or depending on and A.

Vol. 15. n° 4-1998.
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. Ai is a coercive operator:
Choosing v2 = 0 in (4.37) and taking into account that Ai (0) = 0,

we deduce

and then

Since Fi(w) E by applying the Minty-Browder theorem (see
[7]), we obtain the existence of a unique W E E such that

= Fi ( W ). Therefore, Li is well defined.

Step 2. - Li is compact.
Indeed, it is enough to prove the complete continuity of Li . For this

purpose, let be a sequence in which converges weakly to
w E 

be the sequence defined by

Then, y W E are the unique solutions of

and

respectively. By substracting (4.42) from (4.41), taking zi = W E as
a test function, and applying the definition of Ai (see (4.31)), we deduce

From (4.37), the Cauchy-Schwarz inequality and the Lipschitz continuity
of HE, it follows that

Since I~1 is compactly imbedded in the complete continuity
of Li Z i s now clear.

Annates de l’Institut Henri Poincaré - Analyse non linéaire
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Step 3. - Li maps Hl (Qz) in a ball.

Indeed, by taking z2 = W E as a test function in (4.35) and applying the
definition of Ai we have

Using (4.38), the Cauchy-Schwarz inequality, the fact that [ 1

and the continuity of the trace we deduce

therefore W E belongs to the ball of with center 0 and radius

R = 
C, .

Finally, the existence of a function YZE satisfying (4.34) results from the
Schauder fixed point theorem. D

The proof of the following result is similar to that obtained in [8], [9] ..
The difference comes from the boundary integrals of (4.34).

PROPOSITION 4.6. - Under the assumptions (Hl )-(H5), the solution Y2E of
~2 1-

the problem is unique, z = 1, 2.

Proof. - Let and be two solutions of (4.34) and Q =
Y2E 2 . We consider the function

for a fixed 8 > 0. Since ps is a Lipschitz function, belongs to
(see [14]). From the equalities satisfied and V E 2 and taking

zi = as a test function, we obtain

Voi. 15, n° 4-1998.
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Taking into account the monotonicity of ,~z 1, the lemma 4.1, iii) and the
fact that h is a nonnegative function, we deduce

Since HE is a Lipschitz function, by using the Cauchy-Schwarz inequality
we have

This leads to

with CE independent of 8. Thus, dividing (4.50) by 8 and using the latter
expression, we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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By passing to the limit when 6 goes to zero , we obtain that (Q E - 8)+ = 0
a.e. on rl and r1,2. On the other hand, after an easy computation we deduce

and from (4.52) we obtain

Now by using the Poincare’s inequality, and letting 6 --~ 0, we obtain that
Qi  0 a.e. in 03A9i. Interchanging the roles of and we deduce

Q E = 0 a.e. in i = l, 2 which completes the proof. C7
We are now able to prove the following

PROPOSITION 
4.7. - Let L2 (r1,2 ) be such that ~ kmin a.e.

on r1,2. 
Under the assumptions (Hl )-(H6), the solution V03BBi~ of (i03BB~) verifies

Proof. - Let P03BBi~ = 03B2-1i(V03BBi~). Taking zi = E - Ts -- / 
as a

B "’ 1~2 2T2 /
test function in (4.34), we obtain

Notice that H~(V03BBi~ - Ui,s) = l a.e. in M = > Ts + ]. Indeed, if
e N then > + ~ kmin), and taking into account

(Hl), it follows that 
’~~"’~

Vol. 15, n° 4-1998.
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Applying the Green formula in (4.56) we obtain:

since h only depends on X2.
On the other hand, (H6) leads to

Therefore, we deduce that all of the terms in the left hand side of

(4.58) are nonnegative, and then all of them must be equal to zero. Thus
Ts + E a.e. on ri, and applying the Poincaré’s inequality, the

result follows. D

COROLLARY 4.2. - The assumptions being those of the proposition 4. 7, the

inequality V03BBi~  Ui s + holds a.e. in = l, 2. .°.~ z E - z , s 

Proof - By using the proposition 4.7 and the monotonicity of (3i we get

Finally, from the definition of /~2 and (H 1) we obtain

PROPOSITION 4.8. - Under the assumptions (Hl )-(H6), there exists a

solution ( U1 . U03BB2~) of the coupled regularized problem (APa E), defined bv

(4. 29), such that U03BBi~  Ui, s -f- 
kmax 

E a.e. in S2.i, 2 = 1; 2. ’ ?~ ’ ~’~ 
n 

’

Proof. - Let us consider the space L2 (rl.,? ) x L2 (~’1,2 ) with the norm

Armales de l’Institut Henri Poincaré - Analyse non linéaire
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and ,C the operator introduced in (4.33), where Y E is the solution of

problem (AP03BB E) corresponding to gi, z = 1, 2. The propositions (4.5) and
(4.6) imply that ,C is well defined.

bounded sequence in L2 (T1;2 ) x L2(r1,2)’ Then,
~g.n ~ is a bounded sequence in L2 (T1,2 ), i = 1,2.
We denote by the solution of corresponding to gi , i = 1,2.
If we set zi = as a test function in (4.34), we have

Applying (4.38), the Cauchy-Schwarz inequality and ] 1, it

follows that

hence,

where C is a constant which depends on A but not on E. It follows that

~ ~2E’~ ~ is bounded in and then it has a subsequence 
weakly convergent to an element V~ in i = 1, 2. Consequently,
~VZE’~~ ~ converges strongly to YZE Hence ,~.i 1 being Lipschitz
continuous it follows that {03B2-1i(V03BBnki~)} converges strongly to 03B2-1i (YzE ) in
L2(r1~2)~ z = 1,2. Thus ,C is compact.
We define

It is clear from proposition 4.7 that

being a closed bounded convex set, the existence of a fixed point of L,
denoted by results from the Schauder fixed point theorem.
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Finally, from corollary 4.2 we obtain

In the next proposition we pass to the limit in E.

PROPOSITION 4.9. - Under the assumptions (Hl )-(H6), there exists a

solution (Ui , U2 , q1, q2 ) of the problem (APa), defined by (4.22) and (4.23),
such that U~  a.e. in z = 1, 2.

Proof - For a fixed E > 0, let (Ui , be a solution of (APaE).
As in the proof of the proposition 4.8, we deduce U E ) ~ is

bounded in ( SZ ) independently of E and so we can extract a subsequence
of E still denoted by E such that

Moreover, {U03BBi~} converges strongly to Ui in L2(03931,2), L2(0393i1) and L2(0393i3),
z = 1,2. From (4.68) and (4.71) it follows that

Since ~2,s)~ is bounded in L2(~21) x 
there exists (q;, q2 ) in x L2 (S~2 ) such that

On the other hand, notice that qi belongs to the closed convex set 
defined by

since this set is weakly closed.
Finally, in the set  Ui,s] we have

and applying the Lebesgue theorem we get

From (4.73), we deduce

and by the uniqueness of the limit

which completes the proof. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire



423EXISTENCE OF SOLUTION FOR A FREE BOUNDARY PROBLEM

5. A PRIORI ESTIMATES

This section is devoted to obtaining some estimates for the solution of
the auxiliary problem {APa).

PROPOSITION 5.10. - Under the assumptions (Hl)-(H6), a solution

( U1 , U2 , q~ , q2 ) of the problem (AP~), defined by (~.22) and (4.23), satisfies

Proo=f: - Taking (z~, z2) _ ((~1 ~(U1 ) -~’s)+, (~2 1 (U2 ) -Ts)+) as a test
function in (4.22) and using = we obtain

Notice that q; = 1 a.e. in [U; > By applying the Green formula and
taking into account that h only depends on x2 it follows that

From (H6) we deduce that a (,~z 1 ( Ui ) - T~) + hni > 0 a.e. on On

the other hand, as in the proof of the proposition 4.3, it follows that
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the third term of the expression (5.3) is nonnegative. Consequently all of
the terms of (5.3) are nonnegative and then they are equal to zero. Thus
(03B2-1i(U03BBi) - Ts)+ = 0 a.e. in z = 1, 2. By the Poincaré’s inequality
and the monotonicity of ~3z 1, i = 1, 2, we deduce (5.1 ). D

COROLLARY 5.3. - Under the assumptions (Hl )-(H6), a solution

(Ti , ~’2 , qi , ~’2 ~ of the problem (APa) defined by (4.1 ~) and (4.12) verifies

Proof. - As in the proof of proposition 4.4, we obtain that ( Ui , U f , qt , q2 )
is a solution of the problem (AP~ ). By applying the proposition 5.10 it

follows that Ul’  Ui,s a.e. in Oi and then using the monotonicity of
,C3i 1, i = 1, 2, we have (5.4). D

PROPOSITION 5.11. - Under the assumptions (Hl )-(H6), a solution

of the problem (APa) verifies

with K a constant which does not depend on ~.

Proof - Taking z2 ) = (,Q1 1 ( ~i ) , ,C~2 1 ( U2 ) ) as a test function

in (4.22), we obtain

From proposition 5.10, we have U.~’ ~ Ui,s a.e. in Using both q; = 0
a.e. in  and ~2014 = 0 a.e. in ~Ui - the second term of

(5.6) vanishes and we have
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Since all of the terms on the left hand side of (5.7) are nonnegative,
we obtain

By the Cauchy-Schwarz inequality, it follows that

where here and in the sequel meas(.) stands for the Lebesgue measure
of the set in parenthesis.

Let K be the constant given by

Notice that K is independent of A. Thus, from (5.9) and taking into account
that ,C3~ 1 (UZ )  Ts a.e. on r1 and F%, i = 1, 2, we obtain (5.5). D

Remark 5.4. - By definition of and using (Hl), it is easy to deduce

the following inequality

Thus, from (5.7), we obtain

Consequently, (U1 , U2 ) is bounded in ~1 (SZ) by a constant which is

independent of A.
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6. EXISTENCE OF A SOLUTION

We are now able to prove the main existence result

PROPOSITION 6.12. - Under the assumptions (Hl )-(H6), there exists a

sol ution (Ti, T2 , ql , q2 ) of the problem (WP ), defined by (3. 25) and (3. 26).

Proof. - For a fixed A > 0, we consider ( U~ , U2 , qi , q2 ) the solution
of problem (APX).
From the remark 5.4, ~ (U1 , U2 ) ~ is bounded in ?-~l (SZ) independently of

A. Thus, we can extract a subsequence still denoted by A such that

Furthermore, ~ U~ ~ converges to Ui strongly in L2(ri) and L2(r1),
~ = 1,2. Then, from (6.3), the proposition 5.10 and the corollary 4.1,
we obtain

is bounded in x L2 (S~2), there exists (q~ , q~) in
x L~(S~2) such that

and qi belongs to the weakly closed set defined by (4.74). As in the
proof of proposition 4.9, q2 vanishes a.e. in  z = 1, 2. Thus,
it follows that

On the other hand, if we take (zi, z2) in as a test function
in (4.22), we get
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and letting ~ -~ 0, we deduce

For z = 1,2, we set Ti = ~3z 1 ( UZ ) . By taking into account the

equivalence (4.27), it follows that

Thus, both (Ti,T2) E and (ql, q2) E x 

verify (3.25) and (3.26).
Finally, (5.5) leads to

On the other hand, taking into account that ~~ 1 is a Lipschitz function
for i = 1,2, (6.4) leads to

Thus

and then (Tl , T2 ) E H ~ ( SZ ) which finishes the proof. C7

From the proof of the proposition f .12, we deduce that Ti  Ts a.e. in
SZi , 2 = 1, 2. Actually this property holds for every solution of (WP):

PROPOSITION 6.13. - Under the assumptions (Hl )-(H6), a solution of the
problem (WP) satisfies
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Proof - Let us choose z2 = (Ti - as a test function in (3.25),
we have

since qi = 1 a.e. in [Ti > Ts] , i = 1, 2. By applying the Green formula
and taking into account that h only depends on x2 it follows that

From (H6) we deduce that T~) > Tc) > 0 a.e.
on i = 1; 2. Consequently, all of the terms of (6.17) are nonnegative,
and then they are equal to zero..Thus (Ti - Ts ) + = 0 a.e. on z = 1, 2,
and by the Poincaré’s inequality we deduce (6.15). D

Remark 6.5. - A relationship between the parameters h, k2, Tc, Ts, nl and
c ensuring that S is indeed enclosed in 0 is an open problem. However,
the following properties are easy to verify:

1) If T~) = 0 a.e. on ri, i = 1,2, then Ti = T~,
z = l, 2 is a solution of (WP), and, consequently, the liquid phase

fills up the whole domain.

2) If hn 1  0 a.e. on r i , 2 = 1, 2, then there exists a subset
of SZ where the temperature is greater than Ts . Therefore, the assumption
(H6) is necessary in order to obtain solutions of the initial problem (P).

3) The following "onedimensional" problem gives us an insight into the
shape of the solution of the problem (WP):

Let us consider the problem (WP) taking place in the domain

Q = [0.1] x [0,1]. Then ri, i = 1, 2. We choose h, ae and r,
as three constants and ki (T) = 1. i = 1. 2. The solution is as follows:

1) . For h  
Tc) 

,- 

a + 1
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thus T  Ts and no free boundary exists.

ii For 
~{Ts - ~~) 

 h  a T - T- ~ s c)~

where ~y is given by

The free boundary is given by S _ ~ (~y, x2 ) , 0  X2  1}.
iii) For h > a(Ts - 

and then condition T  Ts does not hold. Thus the liquid phase fills up
the whole domain.
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