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ABSTRACT. - It is shown that the regularity problem at the free boundary
of two-dimensional stationary harmonic maps can be reduced to the

corresponding problem for two-dimensional minimal surfaces and that

the analogous regularity results hold true. © Elsevier, Paris

RESUME. - On montre que le probleme de la regularite a la frontiere libre
d’une application harmonique stationnaire bidimensionnelle peut etre reduit
au probleme analogue pour les surfaces minimales, et que les resultats de
regularite correspondants sont encore vrais. © Elsevier, Paris

1. INTRODUCTION

Since the direct method of the calculus of variations in general produces
weak solutions one of the basic questions is the regularity problem. Is

the generalized solution a classical solution, does it have singularities,
how large can the singular set be? In the theory of harmonic mappings
between Riemannian manifolds there is a big difference - regarding these
questions - between the two-dimensional and the higher dimensional case.
If the domain of definition of the mappings has dimension n > 3 even
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152 M. GRUTER

minimizers of the energy functional may have singular points. A simple
example is the mapping !R" -~ given by = ~; c.f. [ 17].

Here, we are concerned with the two-dimensional case. In contrast to

higher dimensions it had already been proved by C.B. Morrey in [18] that
in two dimensions energy minimizing harmonic maps are regular. In fact,
Morrey’s method works more generally for variational integrals growing
quadratically w.r.t. the gradient of the map. However, in many situations
one is interested not only in the minimizers but also wants to know the
whole set of critical points.
As is well known there is an intimate connection between two-

dimensional harmonic maps and two-dimensional minimal surfaces. For

example, if N is a Riemannian manifold it turns out that every harmonic
map u : S2 -+ N is in fact a parametric minimal surface (or constant). In
general, a harmonic map is a parametric minimal surface (possibly with
branch points) provided it is conformally parametrized. In this case the

energy integral equals twice the area of the mapping.
Since in [6] the author proved that weak H-surfaces with finite area are

regular in the interior it follows that conformally parametrized harmonic
maps having finite energy also are regular in the interior. In [10], see also
[3], it was then shown that the method of [6] can be modified to work for
minimal surfaces with a free boundary. Later, technical improvements and
generalizations were given in [4], [11], [9], [ 14], and [15]. The behaviour of
minimizers near the free boundary had before been investigated by H. Lewy
[16] and W. Jager [13]. For more references the reader is referred to the
relevant sections of [1] ] and [2] as well as to the earlier monographs by
J.C.C. Nitsche [19], and [20].

Let us now turn to harmonic maps which are not necessarily conformally
parametrized. Nevertheless, in the smooth case there still is a certain

holomorphic function (a holomorphic quadratic differential if the domain

of definition is a Riemann surface) associated to the map. For example.
if u E C~ ( I~’ . l~ 1 ) satisfies

then the function 03A6 :  ~  (z = x + iy) given by

can easily be checked to be holomorphic.
In the case that m is only known to be weakly harmonic one may argue

as follows. Suppose that in addition u is a stationary point of the energy
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153REGULARITY AT THE FREE BOUNDARY

integral w.r.t. inner variations (see section 2 for precise definitions). Then,
by well known arguments it can be shown that the function ~ defined

in (2) (respectively its analogue in the Riemannian case) is a weakly
holomorphic L1-function. Using this observation and a simple construction
c.f. [8], and [22] for a slightly more complicated argument, the question
of interior regularity for stationary harmonic maps could be reduced to the
case treated in [6].

In this paper we are going to show how these arguments can be modified
to give regularity for stationary harmonic maps with a free boundary.

Let us mention here that the regularity question for weakly harmonic
maps in the interior case has successfully been solved by F. Helein in [12].
Later, J. Qing [21] ] using Helein’s result was able to show regularity at the
fixed boundary (Dirichlet conditions) for weakly harmonic maps. The case
of a free boundary is currently under investigation.

This paper is organized as follows. In section 2 we treat the Euclidean
case in fair detail because already here the main idea becomes clear and
one can avoid the technical complications necessary in other cases. Section
3 is then devoted to more general problems that can be handled in this
way. In particular, we indicate how to treat more general functionals, the
Riemannian case, as well as the case where the supporting surface is

allowed to have a non-empty boundary (a kind of Signorini problem).

2. THE MODEL CASE

Here, we consider the following situation.
The two-dimensional Euclidean space f~’ is identified with the complex

plane C, and accordingly points in are written as w = (1L. ’t7) = u + 
As a parameter domain we choose the open semi-disk

Let C’ denote the closed circular arc

and I the open interval

so that ()~ = C U I (disjoint union).

Voi. )5. n’ -: 2-!998.



154 M. GRUTER

Furthermore, assume that S is a smooth two-dimensional surface in f~~
- the so called supporting surface. We want to investigate the regularity
properties of harmonic maps

which map I into S, i.e. the boundary values -í""’K I := X|I are allowed to
vary freely on the supporting surface. Of course, the only problem is the
regularity near the free boundary I. It is instructive to look at the following

Example. - On B+ consider the real-valued function f ~ 
defined by

so that 0.

Denote by zo E the harmonic function having the same

boundary values as f, e.g. minimize the Dirichlet integral

in the class

As a supporting surface we take the hyperplane

and define .X E H.~ ( B+ ; f~~3 ) by

Obviously, we have

~‘° ( B+ ) ; indeed, X is not even bounded near the free

boundary. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire



155REGULARITY AT THE FREE BOUNDARY

Reinarks. - Of course, one can construct discontinuous bounded harmonic

maps in the same way.

Note that the finiteness of the Dirichlet integral or the boundedness of a
harmonic function imply that singular sets of capacity zero in the interior
are removable. D

In view of this counterexample we are led to consider stationary harmonic
maps. To be more precise we make the following assumptions.

Let

where the free boundary condition X (I ) c S is to be understood in the
sense that the L~-trace XI of X maps almost all of I into S.

Here, the two-dimensional surface S C E~~ is supposed to satisfy the
following

Assumption (A)

There are numbers po > 0, Ko > 0 and K > 1 such that the following
holds:

For each point xo e S there is a (full) neighbourhood U of xo in 8~~ and
a C2-diffeomorphism x = h(y) of R3 onto itself with the following two
properties. Firstly, the inverse h-1 maps xo onto 0 and U onto the open
ball E f~ 3 : ~ ~ ~ I  such that S n U corresponds to the set
{y E y3 = 0 ~ on the hyperplane {y3 = 0 ~ .

Secondly, if we set I

then

for all ~, ~ E f~3, as well as

Obviously, every compact (without boundary) C?-submanifold of 1R3
satisfies assumption (A). Each submanifold of R~, compact or non-compact,
for which assumption (A) holds, is a complete Riemannian manifold

with respect to the induced metric of For non-compact surfaces S,
assumption (A) imposes a certain uniformity condition on the metric

’ Here and in the following the summation convention is used.

Vol. 15. n - 2-1998.



156 M. GRITER

ds’ = d~~ at infinity and is thus somewhat more stringent than
the sole condition S E C~ . Therefore, a C?-submanifold of f~~ satisfying
(A) will be called a strict C2-surface in R3.

DEFINITION 1. - An admissible variation of a surface X E C(S) is a

family of surfaces Xt E C(S), It I  to for some number to > 0, where
is of one of the following two types.

TYPE I. - (Inner variations)
The surfaces Xt are of the form Xt = X o Tt, where is a

family of diffeomorphisms from B+ to itself such that To is the identity,
T(w, t) = Tt(w) is of class C1 on B+ x (-to, to), and such that

TYPE II. - (Outer variations)
The surfaces Xt t are of the form

where

with C independent of t, B+ U I, with K compact and

independent of t, and such that

Remarks. - Note, that condition (1) is equivalent to the requirement that
the diffeomorphisms Tt leave a neighbourhood of C fixed. For an admissible
variation of type II it follows from (3) that for 7-~1-almost all w E I the

vector 03A80(w) i s tangent to S at X(w). CI

DEFINITION 2. - We call LY E C(6’) a stationary harmonic map if the

Dirichlet integral D (l~’ ) is stationary w.r.t. every admissible variation 
of X, i.e. if

CONSEQUENCES OF STATIONNARITY. - As is well known, stationarity w.r.t.
admissible variations of type I implies

Annales de l’Institut Henri Poiltc-crre - Analyse non linéaire



157REGULARITY AT THE FREE BOUNDARY

for any vectorfield 03BE E U I, R2) which is "real" on I (i.e. tangential
along I).
On the other hand, from admissible variations of type II we conclude

for any 03A80 E H12(B+, R3) such that 03A80|C = 0 and E 

for H1-almost all w E I.

Taking ~ E C~ (B+, f~2) in (5) one easily checks that

is a holomorphic function on B+.

Alternatively, this can also be deduced from the fact that (6) implies

(take ~° E Hl 2 (B+, ~3) the harmonicity of X :

An important step in the regularity proof will be the fact that (5) implies
that ~ is regular up to the boundary I. Although this is more or less well
known, for the convenience of the reader we repeat the short proof given
in [23], see also [5]. First, note that (5) is equivalent to the equation

for every ç E C) with real.

Here, B := {w ‘  1} is the unit disk, and ~ = 1 2(~u + i~v),
a = 1 2(~u - i~v) denote the Wirtinger operators. Now, (9) implies that -
in a weak sense is real-valued on I. Thus, if 03A6 is extended to B as
an L2-function by

it follows - by the famous Schwarz reflection principle - that ~ is (weakly)
holomorphic on B. To see this consider any  E C) and using (9)
and ~ ( ~’~ ) = ~c3~) * check that

Vol. 15. n - 2-1998.



158 M. GRÜTER

because £ + ç* E U I. C) and (ç + ~’~ ) ~I = 2 Re Thus, the
extended function ~ is L2-equivalent to a holomorphic function on B

(again called ~). In particular, we conclude from (10) that

(11) ~ is real-valued on I,

which can be interpreted as

Retnarks. - As has first been observed by W. Jager [13] relation (6)
implies that in a weak sense the surface is orthogonal to the supporting
surface S along I. Hence, for smooth (up to the free boundary I) maps
X E which are stationary w.r.t. outer variations the equation (12) is

automatically satisfied in view of the fact that in this case is tangent
to 6’ along I. 0

Now, define : B ~ C by

so that

and from (11) we conclude

The holomorphicity of + obviously implies that

Suppose now that ~~T E C(S) is a stationary harmonic map in the sense
of Definition 2 and define

by

An easy calculation, c.f. [8], shows that V now is conformally parametrized
on B+, i.e.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



159REGULARITY AT THE FREE BOUNDARY

Since in addition

we conclude that Y is a two-dimensional parametric minimal surface in fF~~ .
The next step is to show that Y is a stationary minimal surface for some

free boundary problem. To this end let

so that ~’ is a three-dimensional surface in f~~, namely the right cylinder
over S in R4 viewed as a subset of R5. As is easily checked, the C2-
submanifold S of R5 is in fact a strict C2-submanifold of R5 in the

(appropriately generalized) sense of assumption (A).
For any 0  R  1 the new class of comparison surfaces is defined by

Since for a.e. w E I we have X (w) E e R it follows

that Y E CR(S) .
LEMMA. - For any 0  I~  1 the niap Y G defined above is a

stationary point of the Dirichlet integral (w. r. t. inner and outer variations).

Remarks. - Since Y is conformally parametrized the analogue (5’)
of equation (5) is obviously satisfied, in fact (5’) will hold for any

~ E (~2). However, for the regularity proof no inner variations will
be needed once it is known that the solution is conformally parametrized.

Proof - Because of the preceding remark it suffices to check the analogue
of (6), i.e.

holds for any W E I~~’) such that 0 and E 

for H1-almost all w E To see this, first note that for any y = z ) E 5’
we have

Next, write any 03A8 as in (6’) as

Vol. 15. n ~ 2-1998.



160 M. GRÜTER

Then, in view of (6) the conditions on W imply that

Here, we used (14) together with (11) and the fact that

Thus, (6’) has been established and the Lemma is proved. 0

In this way we have reduced the regularity problem for stationary
harmonic maps to the analogous regularity problem for stationary minimal
surfaces. Therefore, the reasoning of [10] can be applied almost verbatim
to deduce the continuity of Y up to the free boundary IR. This in particular
implies the continuity of our original harmonic map X.

THEOREM 1. - Let S C R3 be a strict C2-surface, and suppose that X (w)
is a stationary harmonic map in the class C(S). Then X (w) is continuous
on B+ U I. 0

Remarks. - For a detailed proof of the corresponding result for stationary
minimal surfaces the reader is referred to the nice presentation in section 7.6
of [2]. One easily checks that the restriction to two-dimensional surfaces
in 1R3 is not essential. D

HIGHER REGULARITY. - Once continuity of X on B+ U I is known one
can prove higher regularity by methods well known to experts, e.g. Holder-
continuity, Cm,03B1-regularity, as well as analyticity, provided the supporting
surface is sufficiently regular. In particular, for a strict C2-surface as in
Theorem 1 one gets X E C1~~ (B+ U I, I~3) for any c~ E (0,1), and the
image surface X(B+UI) meets the supporting surface S orthogonally in the
classical sense. For more precise statements compare section 7.8 of [2]. D

3. GENERALIZATIONS

First, we are going to look at more general functionals than the Dirichlet
integral. We shall only outline the arguments indicating the necessary

changes from the conformally parametrized case.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In [7] it was shown that every conformally invariant variational integral
on l~ 2

where

satisfies

as well as

can be written in the form 2

Here, the (n x n)-matrix is symmetric and positive definite,
while is skew-symmetric. It follows from [8] that the interior
regularity theory for stationary points of (2) can be reduced to the case
where the solutions are conformally parametrized. Hence, the results of
[6] are applicable.
A prominent example of such a functional is

for a domain c ~2, u E l~3), and a smooth vector field Q on (~3.
The corresponding Euler equations are

and if u is conformally parametrized it follows that at regular points the
mean curvature of the surface C is given by H(u) = div Q(u).

Let us now return to the general functional (2).
If u is a stationary point of the integral I the function (z == x + iy E

C = ~)

2 Summation convention for j. k = 1. 2 ....1’V.

Vol. 15. rr 2-1998.



162 M. GRUTER

is holomorphic in the interior. Here, stationarity is to be understood w.r.t.
inner and outer variations (always fixing the boundary values). That ~ does
not depend on the coefficients follows from the fact that the integral

is invariant under orientation preserving diffeomorphisms of the domain of
definition of the mapping u. Hence, inner variations of this integral do not
contribute to the first variation.

Suppose now that S is a k-dimensional (1 ~ k  N) strict C2-
submanifold of in the (suitably generalized) sense of assumsption
(A) in section 2.

As before, we define the class

the notion of admissible variation is defined as in Definition 1, and

stationary~ points of the integral I are defined as in Definition 2. In the

conformally parametrized case the integral (3) has been treated in [11].
By the same reasoning as in the model case we may again conclude that

(7) ~ is real-valued on I.

Geometrically speaking this condition means that the tangent vectors H.t
and uy are orthogonal to each other along the free boundary I if is

equipped with the Riemannian metric given by (G~~.)~_~;-~,....,~-.
The original problem is now replaced by a free boundary problem in

for the (k + 1 )-dimensional supporting submanifold

Note, that is topologically just +~’ but with a different Riemannian

structure.

If Uo E C (S) is a stationary point of I the new mapping Uo : ~3+ -=~ _’~
given by

will then be conformally parametrized (w.r.t. the Riemannian metric on BIt).

,W tturles clo l’Institut Henri Pmirrcctr-e - Analyse non linéaire
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The new functional I will again be conformally invariant, and its

coefficients are given by

and

Hence, for U = (~u, v) we have the decomposition

and it is straightforward to check that the analogue of the Lemma in section
2 holds, i.e. Uo is a stationary point of I.
To be able to apply the arguments from [11] ] one has to impose an

additional compatibility condition on the supporting surface S and the

coefficients in the original functional I. In the case of the integral (3) one
had to assume that the vector field Q is tangential along S. This condition
turns out to be equivalent to the fact that the surface Uo (B+) intersects

the supporting surface S orthogonally along the free boundary I. However,
since it is not clear that such a condition is really necessary we shall not
be more explicit here.

Let us now turn our attention to the case of harmonic maps which are

stationary for a free boundary problem in a Riemannian manifold. The
corresponding problem for minimal surfaces (= conformally parametrized
harmonic maps) has been investigated by J. Jost in [14] and [15]. First, we
are going to consider the situation treated in [ 14]. There, Jost showed

regularity for minimal surfaces in Riemannian manifolds of bounded

geometry 3 with a free boundary on a supporting hypersurface of class
C‘’ with bounded second fundamental form and a uniform neighbourhood
in which the nearest point projection onto this hypersurface is uniquely
defined. Obviously, this is the appropriate generalization of what we termed
strict C2-surface in R3 in section 2. In section 5 of [ 15] the result of [ 14]
was generalized from the hypersurface situation to the case where the

supporting surface is allowed to have arbitrary codimension (> 1). Since

i.e. the sectional curvature is bounded and the injectivity radius is bounded away from zero.

Vol. I ~. n ?- I 998.



164 M. GRUTER

our method reduces the case of stationary harmonic maps to the case of
stationary minimal surfaces in a higher dimensional manifold we may as
well consider the situation where the supporting submanifold has arbitrary
codimension. The reasoning illustrated in the model case will then give the
following result which we state without proof.

THEOREM 2. - Suppose that M is a complete n-dimensional

Riemannian manifold of bounded geometry, ~ is a C2-submanifold of M
without boundary with bounded second fundamental form and a uniform
neighbourhood in which the nearest point projection onto 03A3 is uniquely
defined. Let C (~) .- ~X E H2 (B+, M) : X(I) c ~~ and assume that
X E C(~) is a stationary harmonic map in the sense of Definition 2. Then
X is of class U I, M) for any 03B1 E (0, 1). If 03A3 is of class C3 then
X E U I, M) for any c~ E (0, 1). D

Remarks. - l. For the proof one only has to note that as in section 2

is again holomorphic on B+, continuous in B+ U I, and real-valued on I.
Here, ( ~, ~ ~ denotes the scalar product in the tangent space TM. Thus, we
replace M by M := M  , 03A3 by 03A3:= 03A3  R ~ M, and X by Y where
Y(w) := (X (w), w + ~(w)) ; c.f. section 2 for the notation. Then we are
locally in the situation considered in [14] respectively in section 5 of [15].
The result proved by Jost now implies Theorem 2.

2. Our method also works in the piecewise smooth case considered in
[15] and yields continuity just as for stationary minimal surfaces. D

Instead of entering the general framework let us finally explain the case
of a supporting surface with non-empty boundary in the Euclidean situation.

Here, one considers a surface S C (~3 of class (at least) C2 such that the

boundary c~s of the manifold S is a regular one-dimensional submanifold
of class C2 such that the following assumption is satisfied (compare [10]
and section 7.6 of [2]).

DEFINITION 3. - A supporting surface S is said to fulfil Assumption (B)
if the following holds true:

There are numbers 0  po  1, Ko > 0, and K > 1 such that we have:
For each point :~o E S there is a (full) neighbourhood U of xo in R~ and

a C’-diffeomorphism h of 1R3 onto itself with the properties (B 1 )-(B4).
(Bl) The inverse g := h-1 maps U onto the open ball Bpo :== {y E 

Iyl  po~ such that g(xo) = 0.

Annales de l’Institut Henri Poincaré - Analyse non lineaire



165REGULARITY AT THE FREE BOUNDARY

(B2) There exists some number cr = [- 1, 0] such that

and

If Xo E then a- = 0, and 03C3  -/9o if = ~.

(B3) If gjk (y) :- hyj (~) ~ hyk (y) are the components of the fundamental
tensor of 1R3 w.r.t. to the curvilinear coordinates y then

for all ~, ~ E I~ 3 .

(B4) For any y E 1R3 and any j, k, l E ~ l, 2, 3~ we have

For the convenience of the reader we have chosen to give the precise
definition as in [2], because it is now straightforward to check that the
new supporting submanifold satisfies a similar

condition. For example,

and

Here, i1 denotes a neighbourhood in (~5 and BPo C (~5 the open ball of
radius po centered at the origin. The class C (S) is defined exactly as in
section 2. As before, if Y : B+ - ~’ is the new harmonic map the proof
of Y E C° ~B+ U I , (~ ~ ) proceeds in the same way as the proof of Theorem
1 in section 7.6 of [2] with the obvious slight modifications that are due to
the fact that S is no longer a hypersurface.
To show Holder-continuity of the original map X one uses Widman’s

hole filling technique for the new map Y which is conformally parametrized.
Note, that the conformality condition now implies that

Using (12) the proof of Theorem 2 in section 7.6 of [2] then shows

that Y E U I , (!~~’ ) for some a E (0,1), in particular the

Holder-continuity of X.

Vol. 15. n ~ 2-1998.



166 M. GRUTER

THEOREM 3. - Let S C R3 be a supporting C2-surface satisfyimg
assumption (B), and suppose that X C C(S) is a stationary harmonic

map. for some 03B1 C (0, 1 ) have

The question of higher regularity - note that C1,1/2 is optimal
in the minimal surface case if c~s ~ ~ - will not be discussed here. Instead,
the interested reader is referred to section 7.7 of [2]. D
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