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ABSTRACT. - A one to one correspondence is established between the
nondegenerate critical points of Q(x) in 03A9 and single peaked solutions
of the problem

o A . n / B m-~ 1 . ~~

where 03A9 is a Dounaea domain, 2  p + 2)/(N - 2), ~ > U, ana
n c2(S~).
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74 D. CAO, E. S. NOUSSAIR AND S. YAN

On etablit une corresponaance biunivoque entre les points
critiques non-degeneres de Q(x) en Q, et les solutions a un seul pic du
probleme

~ . ~ ~ ~ ~ 1 _ -

ou Q est un domaine borne, 2  p  (N + 2) / (N - 2), E > 0, et

Q(x) E C(n) n 
En particulier, nous demontrons 1’ unicite de la solution de moindre

energie lorsque Q(x) acheve son maximum dans 03A9 en un seul point
critique non-degenere. © Elsevier, Paris

1. INTRODUCTION

In this paper we consider the problem

where SZ is a bounded domain in N > 3, with a smooth boundary
> 0 is a parameter, 2  p  (N + 2) / (N - 2), and Q(x) (E

n C2 (03A9) has nondegenerate critical points at a1, ... , al E Q,

i. e. DjQ( a Z = 0 and det D2Q( a,i 0 where and

D2Q(x) = (~2Q(x) ~xk~xj N X . , i - 1 , ..., l, k = 1 

, 
... , N; j = 1 > ... N

The case of degenerate critical points is also considered.
Problem (1.1) arises in various applications, such as chemo taxis,

population genetics, chemical reactor theory, etc. In applications, it is

important to locate the maximum points of solutions in S~ , since these

may correspond to locations of higher chemical concentrations, certain

population, etc.

When is a positive constant, problem (1.1) has been considered
by several authors. In these studies both the topology of 0 (see Benci and
Cerami [3]), and the geometry of Q, see [5], [6] play an important role in
the existence and multiplicity of solutions of (1.1). Recently, Ni and Wei

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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[9] and Wei [12], constructed solutions with "single-peak", and the shape
and peak location of "least energy" solutions were studied. Specifically, let

where u+ = for u E H0(03A9). The well known 
Lemma implies that

is a positive critical value of IE, i. e., cE - and UE is a solution of

(1.1), where F is the set of all continuous paths joining the origin and a
fixed e E with e > 0 and = 0. It can be shown, see [9], that
cE is independent of the choice of e. A critical point uE corresponding to
cE is called a least energy solution (or a Mountain pass solution).
For Q a positive constant Ni and Wei [9] proved that uE has at most one

local maximum and it is achieved at exactly one point pE E ( . -+-pE ) -~ 0
in C1loc(03A9 - p~B{0}), and ~03A9) ~ maxp~03A9 d(p, ~03A9) as E ~ o.

DEFINITION. - We say that a function ~c defined on SZ is single-peaked, if
u has only one local maximum point in 03A9.

The aim of this paper is to show how the nondegenerate critical points of
Q(x) play a dominant role (compared to the geometry and topology of 03A9 )
in the existence and the multiplicity of single peaked solutions. In particular,
we establish a one-to-one correspondence between the nondegenerate
critical points a i of Q(x) in 03A9 and single peaked solutions.

It will then follow that if max03A9 Q (x) is attained at only one nondegenerate
critical point in Q, then problem (1.1) has, for sufficiently small E, a unique
least energy solution, regardless of the shape or the topology of n.
The case of degenerate critical points is more delicate. We establish the

existence of a single-peaked solution for each strict local maximum point
a of Q(x), and if a E n, we show that the peak point pE of such a solution
converges, as E --~ 0, to a. However the question of uniqueness of such
solutions is still open. That is, it is not known if there is one or more

single-peaked solutions whose peak points converges, as ~ ~ 0, to a.
Our procedure is based on arguments similar to that used by Rey [ 11 ],

by A. Bahri, Y. Li and O. Rey [2], and a degree argument similar to
that used by L. Glangetas for a nonlinear elliptic problem involving the
critical exponent [8].

In Section 2 we introduce our notations and establish a result on the

profile of single-peaked solutions and the locations of their peaks. In

Vol. 15. nS 1-1998.



6 D. CAO, E. S. NOUSSAIR AND S. YAN

action 3 we establish the existence and uniqueness of single-peaked
dutions concentrating at any given nondegenerate critical point of Q.
In Section 4 we consider the case when Q has local maximum points in

. We are only able to establish the existence of single-peaked solutions
ld study their profile.

2. NOTATIONS AND PRELIMINARY RESULTS

Let V be the unique positive solution of

t is well known that V is radially symmetric about the origin, decreasing
md

___ __v __~ ~ ~ n

For a smooth bounded domain 1J C is the unique solution ot

follows from the maximum principle that PD V(y)  V(y) for all y E D.
or v E E and E > 0, let

Notice Inal, in our notation, P03A9,1 = P03A9.
T n+
--~

lor Hu integrals are LeDesgue integrals over  l unless

otherwise stated.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



77EXISTENCE AND UNIQUENESS RESULTS .ON SINGLE-PEAKED SOLUTION

For y, z E IRN define

C will aenote a positive constant.

PROPOSITION 2.1. - uE is a single peaked solution of (l.1 ) which satisfies

if and only if

for some c~E E (~, xE E Q, and w~ E satisfying

as E --~ 0, where xo = xE = where p~ is the peak of uE.

Proof - Let uE be a single-peaked solution satisfying (2.4). Let pe be
the point in 03A9 where uE achieves its maximum value on H. Following the
same argument as in Ni and Wei [9], we have

Suppose po = Let

Then vE satisfies

Vol. 15, n° 1-1998.



78 D. CAO, E. S. NOUSSAIR AND S. YAN

or some posiuve constant wnere me last inequality follows from t~.4).
rherefore

from standard regularity results for solutions of (2.10). In the above we
used vE to denote the extention of vE to I~N which is identically zero
outside ,

From (2.10) and (2.11) we have

Since vE is single-peaked, the set ~x E > ~~ has only one
connected component for any 8 > 0, the argument of Proposition 3.4 in [9]
may be employed to show that ( for any 8 > 0)

Hence

and by taking the limit as E -~ 0, we have

which together with (2.11) yield

since v satisfies the uniqueness at solution of (2.12) and the

definition of V implies that

But it is easy to see from the definition of V that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



79EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION

Hence vE - 0 strongly in and therefore

as E --~ 0. Using an argument similar to that used by A. Bahri and J.M.
Coron [I], we then have that uE can be uniquely written in the form

for some and wE E .~’E,xE , satisfying (2.7) and (2.8). It

remains to show that (2.6) holds. This can be shown by the same argument
as in Ni and Wei [9].
Now suppose that

is a positive solution of (1.1), where wE satisfy (2.6), (2.7) and (2.8).
We show next that UE is a single-peaked solution of (1.1).
We proceed by contradiction. Suppose u~ has two local maximum points

in H. We notice first that if xo = then for any fixed 8 > 0,

We consider now the following two cases:

In this case, we have

where

Vol. 15, n° 
° 1-1998.



80 D. CAO, E. S. NOUSSAIR AND S. YAN

as m the first part 01 the proof, with 03C5 satisfying
_ / ~ B _ -. w ~

where lim ’1’hus

tor some positive constant t~’ > u, and, similarly,

From (2.14), (2.15) (2.16) and (2.17), we see that

But

and

which contradicts (2.18), and hence case (1) is impossible

Annales de l’Institut Henri Poincaré - Analyse non linéaire



81EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION

In this case we may establish a contradiction using a similar argument to
that in Ni and Takagi [10].
The fact that limE-+o pE = limE-+o ~E follows by similar argument as in

case (1).

PROPOSITION 2.2. - Let u~ be a single peaked solution of (l.1 ) of the
form UE = ~xE + wE, where xE, wE, aE satisfy (2.6), (2.7), (2.8),
and xo = SZ. Then ~.

Proof - Since u~ satisfies (1.1), multiplication of the equation (1.1) by

~u~ ~yj and integration by parts yield

since on = = (~u ~n)n. Here n denotes the exterior unit
normal to ~03A9. We estimate next the right hand side of (2.19):

n !1 f1

Since 03C9~(~x + x~) - 0 strongly in ~Q ~xi is bounded, and

03B1~ - (Q(x0))-1/(p-2), we deduce form (2.20) that

where ao = lim a~ = Now let p e be such
e--o

that
- - , - - ... _,

Then 03C6u~ satisfies the equation

vol. t3. n 
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.~ ~ ~r , v

Since the embedding Ifll 1 ~ ~ ( S Z ~ -~ L ~ - ~ ( c~S ~ ~ is continuous, we deduce
from (2.19) and (2.22) that

n n

i ne last inequality follows rrom me Schauder s inequality.

Since ~cE is single peaked, we may use the argument of Ni and Wei
[9] to show that

for any a > 0, where C~’ = G’( a) is a positive constant.

But x~ ---j Xo E ~ 0, and therefore for sufficiently small 8 > 0
we have

. ~ , r" - -r. l ~ /~~~ttB ’B

for some positive constants C,T, and for all x E  b~.
Since cp(x) = 0 for d(x, > b, we have

ror any A > u, as E ~ u we estimate next me B/ Multiply
(1.1) by 03C62u~ and integrate by parts to obtain

we have from (2.24) and (2.26) that

for some positive constants C, T. Thus,

as e --~ 0. for all A > 0. Hence

Annales de l’Institut Henri Poincaré - Analyse non linéaire



83EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION

as E ----~ 0, for all A > 0. From (2.22), (2.23), (2.25) and (2.27) we obtain

as E ---~ 0, for all A > 0, and hence by (2.19), (2.21), and the hypotheses
on use, we have

n 

as E ----~ 0. We conclude that

This completes the proof of Proposition 2.2.

PROPOSITION 2.3. - If ~c~ is the least energy solution of (l.l ) then

where = and

u~ is single peaked and the peak pE ~ xo, as E ~ 0, where,
QM

Proof - Let  E 0 be a global maximum of Q(x) on 0. Choose x~ ~ 
and oo (if £ E S2, we may choose x, = ~). Then,

as E --~ 0, and (i) follows. To show (ii) we proceed by contradiction.
Assume uE has two local maximum points Then as in Proposition
2.1, we have two cases to consider:

Vol. 15, n ’ 1-1998.



84 D. CAO, E. S. NOUSSAIR AND S. YAN

Case 1.

In this case, we have
r

where vi~(y) = u~(~y + i = 1, 2, and vE ~ v2 in where

v2 solves the problem

wnere p° = urn 1 nererore, we nave

Case 2. p;1 (  £. We may argue as in Proposition 2.1 to show
that this is impossible. Hence ~cE is single peaked. To show that the peak
pE 2014~ xo, as E --~ 0, we first notice that if pE "~ ~ 7~ xo, then

. _ f1 f f~ _ _ !1 l1 _ T T /* 

wnere u~(~y -r- ana vE ~ v 1n Arguing as aoove,
we may choose R large enough to obtain

/ A x / A B

Remark 2 .4 . - The hypotesis that ~o = limE-,o ~E E SZ, in Proposition
2.2, is satisfied if we assume, for example, that SZ is convex and ~~  0.p 

c~v
This can be shown by an argument similar to that used in Gidas, Ni,
Nirenberg [7], using the moving planes method.

Annales de l’Institut Henri Poincaré - Analyse non lineaire
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3. EXISTENCE AND UNIQUENESS
IN THE NON-DEGENERATE CASE

In this section we assume ~o E SZ is a nondegenerate critical point of
~(x). The main results of this section are:

THEOREM 3.1. - If Q has k-nondegenerate critical points ..., a~ in
~, then the problem (l.1 ) has exactly k single peaked solutions of the form

i = 1, ..., k, where aE E R+, xi~ ~ 03A9 and 2UE E satisfy

C.~J’ t ---~ u.

THEOREM 3.2. - The problem (l.l ) has, for small E, a unique least energy
solution of the form .

cxE E E SZ and wE E provided that is uniquely
attained at xo E Q, and xo is a nondegenerate critical point of Q.
Furthermore, xE --~ xo.

Let uE be a single-peaked solution of ( 1.1 ) of the form

as E ----~ 0, where a is a nondegenerate critical point of Q in f~. We assume
for simplicity of notations that a == 0. By changing the variables ~/ = 2014 .
we see that is a solution of

Vol. 15, n° 1-1998.
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wnere 03A9~ = Ey and Q has a nondegenerate critical point at
a = 0.

Now

wnere y == 2014, ana x~ ~ 0 as E ~ u.

We shall use the notations ( , ) to denote the standard product
and the norm in Define

lUl ’tl  J
I

We notice that icE is a critical point of KE in 

PROPOSITION 3.3. - There exist Eo > 0, bo > 0, such that for
y E Bs (0), E E (0, E~~, b E (o, bo~, there exists a unique ~ vy,
from B’s (0 ) to FE,y, such that

for all w E FE,y. Furthermore,

c - V

Proof - The argument is very similar to that used by A. Bahri and J.
Coron [I], and O. Rey [11]. We will be sketchy.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Expand

where

and RE,y ( v) satisfies

fE,y is a continuous linear form over FE,y equipped with the scalar product
(,) of Therefore E such v~ for

all v E FE,y . Furthermore, GE,y is a continuous quadratic form over FE,y .
Moreover, there exists p > 0 such that for 6 small enough

A proof of the above inequality was given in [4]. This implies the existence
of a unique symmetric and coercive operator AE,y from onto itself,
such that

for all v E 

Using these notations, we have

Vol. 15, n° 
° 

1-1998.
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using me impficit function theorem anu arguing as in [11] we establish me

existence of a unique C1-map y ~ vy, such that

for all w E FE,y, and

Iur SUIIIC positive constant v. we 

where we have used the identity

and the conclusion follows iiUiii 

From Proposition 3.3 we may define

r l B - T l _ _ B T~ l r-t T T, ~ B

tor y e l~s , where b is small enough such that Proposition 3.3 holds.
Define

a ,r r/ / ~ _ r-, /~ ~tB _ T-, ,

Remark 3.4. - (y, v) E ME is a critical point of JE if and only if y is a
critical point of LE in Bs and v = vy, where vy is given by Proposition
3.3. Furthermore, for small E; (y, v) E ME is a critical point of JE if and

only if u = POE Vy -f- v is a critical point of KE this may be proved as in
[11]. We further notice that

/ B fB ~-t ~ ~ 7 no.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 3.5. - Let Eo, bo be as in Proposition 3.3 Then

wnere n ls tne number of negative eigenvaiues of rne matrix (D-Q(0). in

particular, = 0 has a solution in Bb ~0~.

Proof - We first approxiamate Let e be as in

Proposition 3.3. Let us write
rr

z = 1,..., N, where Wi is the orthogonal projection of in The

following estimates are established in Appendix A:

i, j = 1, ... , N. By (3.9) and (3.12) we have
.__.._ __ , . -

tor all w E Hence by (3.1:3) and (3.14) we have

Appendix ti, ma v e.

Jol. 15. n° 1-1998.
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for some l > 0. Thus (noting that vy, > = 0)~~

We estimate 12 next: We first notice that tor some l > U,

tor all x E This roilows easily rrom me wiaximum pnncipie. we

further notice that

This follows easily from the estimate on vy in proposition (3.3) and the
hypothesis on C~ (x ) . Here A = ~ ~ ~y ~ ~ 2 . We also have, by Proposition 3.3, that

n T /~

and

where B = is independent of z, by symmetry.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Hence

Thus

Since det 0, there is 6 > 0 such that

tor some co > U and tor all x E 

We see from (3.21), (3.22) that

R~

i ms completes me proor or 

PROPOSITION 3.6. - There exists 03B40 > 0 such that for 0  E  ~0, 0 

~  LE has a unique critical point in Bs(0).

Proof - We argue as in Glangetas [8]. We have the following uniform
estimate for all x such 

The proof of (3.23) is given in Appendix A. Hence any critical point of LE
is an isolated point, for E sufficiently small.
Now choose ~0, 03B40 such that Lemma 3.5 holds. Then LE has, for any

0  b  bo, a finite number, say ko, of critical points in Bb ~0) at

.... , On the other hand, (3.23) implies that

_ ~ .. _ -. ~ - Tr

and hence

Vol. 15. nC 1-1998.
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for all critical points x of LE in l~s (0) . Using Proposition 3.3 and a

classical property of the degree, we have

and therefore l~o = l. This completes the proof of Proposition 3.6.
The proof of Theorem 3.1 will follow if we show that yE in (3.4) satisfies

~E -~ 0 as E --~ 0, since this implies that ~E is a critical point of LE in
Bb for E sufficiently small 0  b  bo .

LEMMA 3.7. - Let ~cE be a single-peaked solution of (l.1 ) of the form (3.1 )
with xe, 03C9~ satisfying (3.2), and a = lim~~0 xE is a nondegenerate
critical point of Q in Q. Then

Proof - From (2.19) we have

Expand the left side of (3.25) to obtain

and since V(y) - V(y)|]  for all y E 03A9~,x~ by the Maximum
principle, where C, T are positive constants, we have

Since c~E E we have

r

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Therefore

We estimate next:

We notice first that (~E, is a critical point of JE defined by

in where KE is given by

By following the argument in Proposition 3.3 we obtain

where is given by

By estimating as in Proposition 3.3, we obtain

We also have

Vol. 15, n° 1-1998.
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where we used the fact that

r

by the radial symmetry of V

Combining (3.25)-(3.29) we obtain

r

But 0, and therefore we conlude that

Proof of Theorem 3 .l . - Let a be a non-degenerate critical point of (~.
We may assume that a = 0. Now ~cE is a single-peaked solution of (1.1)
of the form

with

and v = E F~,y~.

By Lemma 3.7, YE ~ 0 as E -i 0, and therefore yE E Bs (0) for any
small $, provided E is sufficiently small. Since LE has a unique critical point
in Bb ( ~ ) , for small ~, ( 1.1 ) has a unique single-peaked solution of the form
(3.40), and Theorem (3.1) follows.

Proof of Theorem 3.2. - By Propositions 2.1, 2.3, ~E is a least energy
solution, and is a single-peaked solution of the form

wnere xE ~ xo, 03B1~ ~ (Q(x0)) , ~03C9~ ~~ ~ 0, ana wE E 
as E -~ 0.

Since is uniquely attained at xo ; the conclusion follows from
Theorem 3.1.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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4. EXISTENCE IN THE DEGENERATE CASE

In this section we establish the existence of single-peaked solutions when
Q(x) has strict local maximum points in SZ, which are not neccessarily
nondegenerate critical points, as required in sections 2 and 3. In fact, we
will only require that Q is Lipschitz continuous and so it may have

no critical points in SZ. The main result of this section is the following.

THEOREM 4.1. - Assume Q is Lipschitz continuous in SZ. Let xo E S~

be strict local maximum point of Q(~), that is, Q(xo) > for
~° E n SZ~ ~xo ~ , for some S > 0. Then (l.1 ) has a single peaked
solution of the form

where

Furthermore,

We will prove Theorem 4.1 when xo E The case x0 ~ 03A9 can be
discussed in a similar way.

An example will be given to show that, contrary to the case of

nondegenerate critical points in n, a nondegenerate critical point on an
doesn’t correspond to a single peaked solution of (1.1) with its peak
tending to ~Q as E --~ 0.

Let xo E denote a point where Q has a strict local maximum.
Define

wnere n is a large posiuve consLanL Lo oe determined, ana o is a fixed small

positive constant such that Q(xo) > Q(x) for all x E U 

Define

Vol. 15. n~ 1-1998.
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for u E let

consiaer me following minimization proDiem:

It is easy to show that the infimum in (4.4) is achieved, since 2  p 

2N/ (N - 2). We now state a proposition which is crucial in the proof
of Theorem 4.1.

PROPOSITION 4.2. - Let

Then for sufficiently small E > 0,

is a critical point of KE if (x, c~) is a critical point of ~TE in M.
The proof is very similar to the proof given in [4], [11]. We omit it here.
To prove Theorem 4.1 it is enough to establish the existence of critical

points in M. We need the following estimates. First we introduce the

functions as in [9]: For p E E set x = 6~/ + p,

LEMMA 4.3. - Assume ~03A9 is of class Cl . Let pE E SZ satisfies
E/d(pE, ~03A9) ~ 0 as E ~ 0. Then for any co > 0 there is Eo such

that for E  Eo

Proof - The inequality (p~) ~ c0d(p~, ~03A9) is proved in Lemma 4.6
of [9]. We prove the other inequality.

Let PE E ~03A9 be such that _ (pE - Let y~ be a point on
the ray PEPE such that ( = (1 + ~)|p~ - p~|, where ~ > 0 is small
enough so that = 

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Set

We now use Lemma 4.5 of [9] to obtain

for sufficiently small ~.

But simple calculations show that

since ] -~ 0, as E ---~ 0, by hypothesis. Hence by the Maximum
principal, we conclude that

This completes the proof of Lemma 4.3.

LEMMA 4.4. - Let xo E ~03A9 denote a point where Q has a strict local
maximum. Let zE E ~xo ~- tv : t  0~ be a point such that

where v IS the unit outward normal to dS L at xo. Then

for some positive constant -y.

Proof - The following estimates were established by Ni and Wei [9] :

.... n wr . _ .. n

Vol. 15, n~’ 1-1998.
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But

Using (4.8), (4.9) and (4.10), we obtain

by Lemma 4.~, we have

Annaies ue i Institut Henri Poincare - Analyse non linéaire
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1’herefore,

which completes the proof of Lemma 4.4.

Proof of Theorem 4 .1 . - We first derive a lower bound for 
where

we have

where 03C3 is some positive constant.
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Combining (4.7) and (4.8) we obtain

From the above inequatity, (4.12), and (4.13), we obtain

We are now ready to prove that XE E AE, and ~03C9~(~y + x~)~ ~ 0 as
E ~ 0.

Claim 1. + I --~ 0 as E -~ 0.
In fact, since 8EN, we Therefore,

for small 8, we have

Thus, from Lemma 4.4, (4.14) and the fact that is a minimizer

of Je, we get 
.
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Therefore, + ---~ 0, as E --~ U. in particular, ~t E > u is

small enough, .

Claim 2. xE E AE for small E > 0.

We procedd by contradiction. Suppose x~ e 8AE for all small E. There
are two clases to consider:

(i) xE E U SZ. Then

for some positive T. From Lemma 4.4 and inequality (4.14), we have

where o( 1 ) 2014~ 0 as E ---~ 0. This is a contradiction.

(ii) Suppose for any EO, Ho > 0, there is 0  E  EO, H > Ho, such

that xE satisfies

But from claim 1 and (4.14) we have

and from and Lemma 4.4, we then have

, , . , , , , , ~, i__ 1 ~ 1 /oB "

But
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by (4.6). Hence

for some constant C > 0. This is a contradiction if we choose

H > Ho = 2co
From claims 1 and 2 we have that is an interior point of M for

small E, and therefore a critical point of J in M. By Proposition 4.2 we
then have that ~cE = + cvE is a critical point of KE, and Theorem
4. follows.

The following example shows that for a local minimum point of Q,
a single peaked solution, with its peak approaching the minimum point,
may not exist.

Example. - Let 03A9 be the unit ball in Let cp(x) E Co [0, oo)
with = o, cp’ (r)  0, r > 0, and  0. Thus cp attains its global
maximum at r = 0. Define Q(x) by

where C is a positive constant large enough so that Q(x) > 1. Then Q(x)
is decreasing in the ~~ -direction.

Using the moving plane method in the xl -direction, as in [7], we see
that every positive solution u of

attains its maximum in the set = 0~ n B 1 (0). This shows that there
is no positive solution of the above problem with single peak near the
minimum point (1,0,0,..., 0) of Q.

APPENDIX A

In this appendix, we provide some of the estimates used in sections 2,
3, and 4. We first state the following result, which is a direct consequence
of the maximum principle.
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LEMMA A.l. - There is a constant .~ > 0 such that

From Lemma Al we obtain

LEMMA A2. - There exists a constant .~ > 0 such that the following
estimates hold:

where

Vol. 15, n° 1-1998.
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LEMMA A.3. - Let Eo, bo, E Bs ~0), 0  b  bo, be as in Proposition
3.3. For 0  E  Eo set

i = l, ... , N, where 03C9i is the orthogonal projection of ayy on FE,y. Then
the following estimates hold:

Proof - We first consider the scalar product in of ~vy ~yi with
= 1, ... , N :

From (A1),(A2), (A3), and the estimate in Proposition 3.3, we can
solve the above equations for ai and and show that

_ , /j -. _

To estimate ~03C9i~ we follow the argument in [8, Proposition 3.2]:
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Direct calculations snow

we nave

Claim (1):

for some p’ > 0, uniformly for 0  E  E .~s ( 0 ) , 0  b  80. In

fact, from Wi e FE, y , and the estimate we have

But

Claim (1) follows by putting the above estimates into (A5)
Claim (2):
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in fact,

where
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Since V~ 2014~  (7 for 2  p  3,

Claim (2) tollows trom (A.5), ~A.t~), (A. ~), ~~.~~ ana t~.y~.

From (A.4), claims (1) and (2), and the estimate on ai, we obtain

Thus

This completes me proof ui Lemma A3.

LEMMA A4. - There is eo, bo > 0 such that

for 0  E  6o, 0  b  bo.

Proof - Arguing as in Glagetas [7], we get

From Claim (2) in Lemma A3, we have

Now we estimate 13 :
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13 consists of terms of the form

_.. _~__ .^ __ . ,

~et ~EC~) = 
Since POE Vx is a critical point of KE, we have

/ ~2 B

rrom me estimates in ~~ y, ana rrom ~~~~, we see tnat

Form (A.11), we have
J !~ T T T !1 T>

Ve also have

/ ;
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Combining the above estimates and Lemma Al, we easily obtain

But

Thus

Therefore

I B
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But

x -- x

Combining (A.14), (A.1 ~), and we obtain

Hence

Therefore,

1 ms completes cne prUUi 01 Lemma
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