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74 D. CAO, E. S. NOUSSAIR AND S. YAN

RESUME. — On établit une correspondance biunivoque entre les points

critiques non-dégénérés de Q(x) en €2, et les solutions 2 un seul pic du
probléme

—€Au+u=Q(z)uP"! dans Q
u > 0 dans etu =0 sur 9N
o © est un domaine borné, 2 < p < (N +2)/(N —2),¢ > 0, et
Q(z) € C(Q) N C*Q). -
En particulier, nous démontrons 1’unicité de la solution de moindre

énergie lorsque @Q(z) achéve son maximum dans {2 en un seul point
critique non-dégénéré. © Elsevier, Paris

1. INTRODUCTION
In this paper we consider the problem

—EAu+u=Q(z)uP~t inQ
u>01in Q and u =0 on 9N (1.1)

where Q is a bounded domain in RY, N > 3, with a smooth boundary
0Q,¢ > 0 is a parameter, 2 < p < (N + 2)/(N — 2), and Q(z) €

C(Q) N C*(Q) has nondegenerate critical points at al,...,a’ € €,
ie., D;Q(a’) = 0 and det D?Q(a’) # 0, where D; = ai and
L
*Q(x)
D2Q(z) = i=1,..0k=1,....Nij=1,..N.
Q) (fhkaa:j)N i henb Ny g =1,

The case of degenerate critical points is also considered.

Problem (1.1) arises in various applications, such as chemo taxis,
population genetics, chemical reactor theory, etc. In applications, it is
important to locate the maximum points of solutions in 2, since these

may correspond to locations of higher chemical concentrations, certain
population, etc.

When Q(x) is a positive constant, problem (1.1) has been considered
by several authors. In these studies both the topology of {2 (see Benci and
Cerami [3]), and the geometry of 2. see [5], [6] play an important role in
the existence and multiplicity of solutions of (1.1). Recently, Ni and Wei
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 75

[9] and Wei [12], constructed solutions with “single-peak”> 204 the shape
and peak location of “least energy” solutions were studied. Specifically, let

L= [ @aup i) - [ Qu

where u; = max {u,0}, for u € H}(Q). The well known Mountain-Pass
Lemma implies that

ce = infrer maxo<i<y I(h(t))

is a positive critical value of I, i.e., c¢. = I.(u.) and u. is a solution of
(1.1), where T" is the set of all continuous paths joining the origin and a
fixed e € H}(Q) with e > 0 and I.(e) = 0. It can be shown, see [9], that
ce 1s independent of the choice of e. A critical point u. corresponding to
ce 1s called a least energy solution (or a Mountain pass solution).

For () a positive constant Ni and Wei [9] proved that u. has at most one
local maximum and it is achieved at exactly one point p. € Q,u.(.4+p.) — 0
in CL (2 — p\{0}), and d(p., IQ) — max,eq d(p, 9N) as ¢ — 0.

DEFINITION. — We say that a function u defined on ) is single-peaked, if
u has only one local maximum point in .

The aim of this paper is to show how the nondegenerate critical points of
Q(z) play a dominant role (compared to the geometry and topology of Q)
in the existence and the multiplicity of single peaked solutions. In particular,
we establish a one-to-one correspondence between the nondegenerate
critical points @' of Q(z) in € and single peaked solutions.

It will then follow that if maxg Q(2) is attained at only one nondegenerate
critical point in €2, then problem (1.1) has, for sufficiently small €, a unique
least energy solution, regardless of the shape or the topology of €2.

The case of degenerate critical points is more delicate. We establish the
existence of a single-peaked solution for each strict local maximum point
a of Q(x), and if a € 2, we show that the peak point p. of such a solution
converges, as € — 0, to a. However the question of uniqueness of such
solutions is still open. That is, it is not known if there is one or more
single-peaked solutions whose peak points converges, as e — 0, to a.

Our procedure is based on arguments similar to that used by Rey [11],
by A. Bahri, Y. Li and O. Rey [2], and a degree argument similar to
that used by L. Glangetas for a nonlinear elliptic problem involving the
critical exponent [8].

In Section 2 we introduce our notations and establish a result on the
profile of single-peaked solutions and the locations of their peaks. In
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76 D. CAQ, E. S. NOUSSAIR AND S. YAN

Section 3 we establish the existence and uniqueness of single-peaked
solutions concentrating at any given nondegenerate critical point of Q.

In Section 4 we consider the case when () has local maximum points in

Q. We are only able to establish the existence of single-peaked solutions
and study their profile.

2. NOTATIONS AND PRELIMINARY RESULTS
Let V be the unique positive solution of
~AV +V =VP"! inRY
V e HY(RY)

It is well known that V is radially symmetric about the origin, decreasing

and
N

| llirn V(z)ell || = =¢>0.
For a smooth bounded domain D C RY, PpV is the unique solution of

—Au+u=VPl inD
u=0 ondD (2.1)

It follows from the maximum principle that PpV (y) < V(y) for all y € D.
For v € HY(RY),y € RV, and € > 0, let

ey (.) = v((. = y)/e) (2.2)

Let P v denote the unique solution of

—Au+u=|f? inQ
v € Hy(Q) (2.3)

Notice that, in our notation, Po; = Po.

Let
(u,v)e :62/VU.VU+/UU,

llull? = (u. u)e.

for u.v € HE(Q). All integrals are Lebesgue integrals over ) unless
otherwise stated.
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 77
For y,z € RN define

E.,(Q)={ve HOI(Q) : (Pﬂ,evé,y"”)e = (——‘,_E’yav)e =0,5=1,...,N}

Qy={zeRY ez +yeQ}
B.(z¢) = {r € RN : |z — x| < 7}

C will denote a positive constant.

PROPOSITION 2.1. — u. is a single peaked solution of (1.1) which satisfies
[uclle = O(N?) (2.4)

if and only if
Ue = acPo Ve, + we (2.5)

for some o, € Rz, € Q, and we € E. ., satisfying

e td(z.,00) — o0 (2.6)
l[welle = o(e?), (2.7)
e — (Q(x0)) MY, (2.8)

as € — 0, where x¢ = lime_,¢ . = lim._,o pe, where p. is the peak of u..

Proof. — Let u. be a single-peaked solution satisfying (2.4). Let p. be
the point in © where u. achieves its maximum value on 2. Following the
same argument as in Ni and Wei [9], we have

e 'd(pe,00) — 00, ase — 0 (2.9)
Suppose po = lim._op. € Q. Let

ve(y) = uE(ey + pE), y € Qe,p€

Then v, satisfies

—Ave + v, = Qey + p)vP~ ! in Q.
ve = 0 on 0% .,
lvl> < C (2.10)
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78 D. CAQ, E. S. NOUSSAIR AND S. YAN

for some positive constant C, where the last inequality follows from (2.4).
Therefore

ve — v weakly in H'(RY),
ve — v in CE_(RM), (2.11)

from standard regularity results for solutions of (2.10). In the above we
used v, to denote the extention of v. to RY which is identically zero
outside 2 ..

From (2.10) and (2.11) we have

—Av+v=Q(p)v""! inRY
v>0
v e HY(RY) (2.12)

Since v, is single-peaked, the set {z € €., : v.(z) > 6} has only one
connected component for any 6 > 0, the argument of Proposition 3.4 in [9]
may be employed to show that ( for any § > 0)

ve(y) < Ce_(l_é)lyl’ Y€ Qe

Hence

/|w€|2+v3=/ Qley + p)e?,
RN RN

and by taking the limit as ¢ — 0, we have

[awo+ot= | o,
RN RN
which together with (2.11) yield

ve — v strongly in H'(RM).

Since v satisfies (2.12), the uniqueness of solution of (2.12) and the
definition of V implies that

v = (Qpo) VDV
But it is easy to see from the definition of V' that

|V = Pq,, V|| — 0, ase — 0.
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 79
Hence v, — (Q(po)) ™/ ®~2 Py .V — 0 strongly in H}(R"), and therefore
¢ Mlue = (Q(po)) TP Po, V|2 — 0, (2.13)

as ¢ — 0. Using an argument similar to that used by A. Bahri and J.M.
Coron [1], we then have that u. can be uniquely written in the form

Ue = CVEPQ,E‘/G,re + we

for some a, € R,x. € Q, and w. € E,,_, satisfying (2.7) and (2.8). It
remains to show that (2.6) holds. This can be shown by the same argument
as in Ni and Wei [9].

Now suppose that
Ue = aePQ,e‘/s,xe + we

is a positive solution of (1.1), where «., z., w, satisfy (2.6), (2.7) and (2.8).
We show next that u. is a single-peaked solution of (1.1).

We proceed by contradiction. Suppose u. has two local maximum points
pl, p? in Q. We notice first that if z¢ = lim._,o ., then for any fixed § > 0,

/ Alvupris [ vl
Q\Bs (o) Q\B%(l‘e)
ZGN/ |V'U€|2+'U?
eac\B g (0)

= [ vulee
RN\B ;5 (0)
2e

=o(1)e", as e—0. (2.14)
We consider now the following two cases:
Case 1 : e pl —p?| — 00 as e — 0.

In this case, we have
[ Avupra=e [ gupaplf, (219)
Bre(pl) Br(0)

where L X
v (y) = uc(ey + pe)

v} — v in CI.(RV),

Vol. 15, n° 1-1998.



80 D. CAO, E. S. NOUSSAIR AND S. YAN

as in the first part of the proof, with v satisfying

—Av+v=Q(pM)w ! inRN

v>0
v e HY(RY),
where p! = limopi. Thus
€ —
/ €| 7 ue|* + u? > CeV (2.16)
Bre(pl)

for some positive constant C' > 0, and, similarly,
/ €|V uc|* + u? > CeN (2.17)
BR( (pf)

From (2.14), (2.15) (2.16) and (2.17), we see that

. 1_ 2 _
lim p, = lim p: =z,
e—0 e—0

But
tw) =5 [ Evul - [ Qe
= [ 090 +07) - 2@l + o(l)}
_ (% - %)EN (Q(:co) /RN W+ 0(1)), (2.18)
and

o> (-2, o [ otone)

11
N (5 - 5) { /BR(0> Qew +peelley+20)

+/ Q(Ey+pf)vf(6y+pf)}
BRr(0)

= <% - %)eN{ZQ(:ﬂo) Beo) VP + 0(1)},

which contradicts (2.18), and hence case (1) is impossible

Case 2 : elpl —p?| — L < o0, ase—0
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 81

In this case we may establish a contradiction using a similar argument to
that in Ni and Takagi [10].

The fact that lim._,o p. = lim._,¢ z. follows by similar argument as in
case (1).

PrOPOSITION 2.2. — Let u, be a single peaked solution of (1.1) of the
form v. = o Pe o, Ve . + we, where z.,w., ac satisfy (2.6), (2.7), (2.8),
and g = lim._ oz, € Q. Then VQ(zo) = 0.

5 Proof. — Since u, satisfies (1.1), multiplication of the equation (1.1) by
53 and integration by parts yield

Vi
€2 Ou.\ 2 1
o < = — ¥4
2 /aQ ( an) ndo » /Q uf vV Q(y)dy. (2.19)

0
since on 9N, Yu = (Vu.n)n = (—E)n Here n denotes the exterior unit
normal to 0€). We estimate next the right hand side of (2.19):

B
/ ut (y) 822_ dy

0
= /Q[aepe,ﬂ‘/e,ze (y) + wE(y)]p 85 dy

i

=V /Q [Py, ,. V(z) + we(ex + 2 )]p Q(ea: +xz.)dz  (2.20)

€xe

0
Since we(exz + x.) — 0 strongly in H&(RN),g is bounded, and
. — (Q(z0))"Y/?=2), we deduce form (2.20) that 1

P Q(y) _ 6NaQ T ap o
[Ty = e 4o, @221

where ap = lim o = (Q(z0)) Y P2 Now let ¢ € C°(RN) be such
that
p=1ondp=0forze{yeQ:d(y,o0) > 6}

Then ¢u, satisfies the equation

“GZA(‘PUE) = Lp(Q(I)uE_l - ue) = 62(2 V-V ue +uAp) = fe (2.22)

Vol. 15. n® 1-1998.



82 D. CAO, E. S. NOUSSAIR AND S. YAN

Since the embedding W12(Q) — L= (09) is continuous, we deduce
from (2.19) and (2.22) that

duc’ A(pue)\? ) c
€ d = T e < C 2o < Z i 22
,/,99 <8n) o /aQ ( on ) < Cllpue|liyee) < Ezllf 220
(2.23)

The last inequality follows from the Schauder’s inequality.
Since wu. is single peaked, we may use the argument of Ni and Wei
[9] to show that
’ll/e(fli) < Cef(l—a)kr-wq/e
for any a > 0, where C' = C(«) is a positive constant.

But z. — z¢ € Q,¢ — 0, and therefore for sufficiently small 6 > 0
we have

uc(z) < Ce /¢ (2.24)

for some positive constants C, 7, and for all z € {y € Q : d(y, 9Q) < §}.
Since p(z) = 0 for d(z, ) > 6, we have

C _
Ej“@(@“f '—u) — CucAp|iaq) — 0 (2.25)

for any A > 0, as ¢ — 0 We estimate next the term f V-V u.. Multiply
(1.1) by p?u. and integrate by parts to obtain

62/wzlvue|2+2/wuevw-vue+/<ﬂ2ug = /Q(:L’)<PQU’Z, (2.26)

for any ¢ € C5°(R™). Set ¢ = 0 in Bs;2(z0); ¢ = 1 in Q\Bs(zo). Then
we have from (2.24) and (2.26) that

62/<P2lvue|2 < Ce—T/e

for some positive constants C, 7. Thus,

67‘4/ | vV ue|? — 0,
Q\Bs(z0)

as ¢ — 0, for all A > 0. Hence

e v eV tel2@) — 0, (2.27)
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 83

as e — 0, for all A > 0. From (2.22), (2.23), (2.25) and (2.27) we obtain

e A /
a0

as ¢ — 0, for all A > 0, and hence by (2.19), (2.21), and the hypotheses
on u., we have

2

Ou,
on

._,(),

Bu,
20 Qan) [ V74 o(1) =¥ [(Feynds —o,
RN 871,
as ¢ — 0. We conclude that

VQ(zo) =0
This completes the proof of Proposition 2.2.

ProposSITION 2.3. — If ue is the least energy solution of (1.1) then

@) Juel? = ¥ {A/QYY ) +o(1)}

where Qn = max,5Q(r), and

a= [ v
RN

(11) ue is single peaked and the peak p. — xo, as € — 0, where,

Qzo) = Qum

Proof. — Let & € Q be a global maximum of Q(z) on €. Choose . — &
and e~ !d (z.,9Q) — oo (if € Q, we may choose z. = Z). Then,

[Jue 2727 = IIUEIIE/(/ Qy)u)*'”
IlPQ,e‘/;,xé 2

€

O AASDED

2/p
:eN“-?/mnPQE,yVHZ/{ / Q(6y+xe)IPns,yle}
Qe,y

— (N-2/p) A+o(1)
(Q(w0)A + o(1)]?/7”
as ¢ — 0, and (i) follows. To show (ii) we proceed by contradiction.

Assume u. has two local maximum points p!,p?. Then as in Proposition
2.1, we have two cases to consider:

Vol. 15, n® 1-1998.



84 D. CAO, E. S. NOUSSAIR AND S. YAN
Case 1.

€ !pe —pZ| — 00, as e — 0.

In this case, we have

ucll? > / (@] uel? + )
BRre Pi

+/ (62IVU5|2+uf)
BR:(P?)

N - i|2 i\2
2SI
where vi(y) = uc(ey +pi), ¢=1,2, and v; — v* in C}(RY), where
v* solves the problem
—Av+v = Q(p*)v?
v>0,v€ HYRN),
where p' = Eli_r)n0 pi. Therefore, we have

v N A A
Il 2 € (Q(pl)(p_i'?) LG +0(1))

2A
M

This contradicts (i).

Case 2. ¢ 1|p. — p?| < £. We may argue as in Proposition 2.1 to show
that this is impossible. Hence u,. is single peaked. To show that the peak
pe — Tg, as € — 0, we first notice that if p. — % # o, then

nuen%/ (e2|vue|2+uz>:eN/ 7 el 4+ 02,
Bch() BR(O)

where v.(y) = uc(ey + p.), and v, — v in CZ_(RY). Arguing as above,
we may choose R large enough to obtain

A A
l[uell? > €V ((—QW + 0(1)) > €V (bT]\é(pTQ) + 0(1))

Contradicting (i).

Remark 2 4. — The hypotesis that o = lim.__,gz. € €, in Proposition
2.2, is satisfied if we assume, for example, that €2 is convex and —Q < 0.

. _ . Oy lea
This can be shown by an argument similar to that used in Gidas, Ni,
Nirenberg [7], using the moving planes method.
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3. EXISTENCE AND UNIQUENESS
IN THE NON-DEGENERATE CASE

In this section we assume zg € €2 is a nondegenerate critical point of
Q(z). The main results of this section are:

TuEOREM 3.1. — If Q has k-nondegenerate critical points o', ..., a* in
§), then the problem (1.1) has exactly k single peaked solutions of the form

i i ;
Ue = aePQ,€‘/;,EZ + we,
i=1,...,k, where o € R*,z! € Q and w! € E,:, satisfy

al — (Q(a*)) V=
xz —a

llwille = o(eM?),
as ¢ — 0.

THEOREM 3.2. — The problem (1.1) has, for small ¢, a unique least energy
solution of the form

Ue = aePe,Q‘/;,z( + we,

ac € Rz, € Q and we € E., , provided that MaxgQ(x) is uniquely
attained at o € ), and xy is a nondegenerate critical point of Q.
Furthermore, x. — xo.

Let u. be a single-peaked solution of (1.1) of the form

Ue = O‘e-PQ,ere,ac6 + we, (31)
z. € Q,we € F, ,,, and

e —> (Q(a))—l/(p—‘z)

. — a

lwelle = o(™?), (32)

as ¢ — 0, where a is a nondegenerate critical point of @ in . We assuzrcne
for simplicity of notations that ¢ = 0. By changing the variables y = — ,

€
we see that @.(y) = uc(ey) is a solution of

—Au+u=Q(ey)uPt in Q.
©u>0 inQ, andu=0 ondf, (3.3)

Vol. 15, n° 1-1998.



86 D. CAO, E. S. NOUSSAIR AND S. YAN
where Q. = {y : ey € 2}, and Q has a nondegenerate critical point at
a = 0.

Now

'&e(y) = aePQCVyE (y) + we(ey)v (3-4)

T
where y, = =, and z. — 0 as ¢ — 0.
€

We shall use the notations ( , ) and || || to denote the standard product
and the norm in Hj(Q.). Define

K(u) = (/ vl +at) / (/ Q(ey>|ulp)2/p

for u € H (.

)
{ve H{ () : (Pa.Vy,v) =0,

<%,v>=0,j=1,...,N};
Ay,

Je(y,v) = K(Po Vy +v), vEeEF,,.

We notice that . is a critical point of K. in H(Q,).

ProposiTioN 3.3. —  There exist ¢¢ > 0,69 > 0, such that for
y € Bs(0), € € (0,€0],6 € (0, 6], there exists a unique C*—map : y — v,,
from Bs(0) to F.,, such that

aje(yavy) _
< v V)T 0

for all w € F.,. Furthermore,

llvyll = O(e?)
as ¢ — 0

Proof. — The argument is very similar to that used by A. Bahri and J.
Coron [1], and O. Rey [11]. We will be sketchy.
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EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 87

Expand
Je(y,v) = Je(y,0) + fey(v) + Gey(v) + Re y(v), (3.5)
where
_ | Po, VI P vt 3
e = e Pa v, |, cnrrpe o
||P05Vy!|2
Gey(v) =
) = o @) B, VyP o
| Pa. Vs |I®

llvll* ~

Jo Qex)|Pa,V, | (r— 1)/Q Q(ex)|Po,V, [P~ %0?
Q. v, E

U, c;LP;))KD” rrpe o]/ Q(“)(P“‘Vy)p_l”}z}

and R.,(v) satisfies

Reyy(v) = O(|[ofM"CP)

R, ,(v) = 0([ju] =0

R, (v) = O([jo|M"P=2)
fe,y is a continuous linear form over F, , equipped with the scalar product
(,) of Hy(S). Therefore 31f., € F., such thatf.,(v) = (fey,v) for

all v € F . Furthermore, G, , is a continuous quadratic form over F .
Moreover, there exists p > 0 such that for ¢ small enough

Gey(v) 2 pllv|?, v € Fey (3.8)

A proof of the above inequality was given in [4]. This implies the existence
of a unique symmetric and coercive operator A., from F, , onto itself,
such that

Gey(v) = (Acyv,v)

for all v € F,.
Using these notations, we have

0J.
ov Fe,y

(y’ 'U) = fe,y + 2Ae,yv + Rls,y(v)

Vol. 15, n® 1-1998.



88 D. CAO, E. S. NOUSSAIR AND S. YAN

Using the implicit function theorem and arguing as in [11] we establish the
existence of a unique C'—map y — v,, such that

0J.
< 9v (y’vy)aw> =0 (3.9)
for all w € F.,, and

lloyll < Cllfeyll (3.10)

for some positive constant C. We estimate || fe || next:

] [ atiravp
Q.

/ (Q(ex) — Q0))| o Vy [P~ v

—o(e [ )

= 0()loll (3.11)

where we have used the identity
0= (Pa,V,,v) = / |Po.V, [P~ 0,0 € F,,,
Qe

and the hypotheses on Q. From (3.6) and (3.11) we deduce that
lfeull = O (%),

and the conclusion follows from (3.10).
From Proposition 3.3 we may define

L (y) = Je(y,vy) = K (Pa, Vy + vy), (3.12)

for y € B, where ¢ is small enough such that Proposition 3.3 holds.
Define
M. ={(y,v) : y € Bs(0),v € F.y}

Remark 3.4. — (y,v) € M, is a critical point of J, if and only if y is a
critical point of L in Bs and v = v,, where v, is given by Proposition
3.3. Furthermore, for small €, (y,v) € M, is a critical point of J, if and
only if u = Po_V, 4 v is a critical point of K. this may be proved as in
[11]. We further notice that

OL(y)

(9139e Vy + %
0y;

y; 0y;

= (K{(Pa.Vy +vy), ) (3.13)
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LEMMA 3.5. — Let g, g be as in Proposition 3.3 Then
deg (0, VL, Bs(0)) = (-1)",

where 1 is the number of negative eigenvalues of the matrix (D*Q(0). In
particular, \7Le(y) = 0 has a solution in Bs(0).

Proof. — We first approxiamate /L.. Let vy,y € Bs(0) be as in
Proposition 3.3. Let us write
Y 9P, Y,

avy
=w; +a; Po V, + Yij g, 3.14)
Ay; e JX; ! Oy; (

. . L 0
¢t =1,...,N, where w; is the orthogonal projection of avy

%

in F,,. The
following estimates are established in Appendix A:
a; = O(e™*/¢), for some £>0

Yij = 0(62)»
[lwil] = O(e?), (3.15)

i,7 =1,...,N. By (3.9) and (3.12) we have
(Ki(Pa.Vy +vy),w) =0 (3.16)
for all w € F¢,. Hence by (3.13) and (3.14) we have

N
O0Pa V, 0PV,
= ’KQ(PQéVy-‘rvy),aiPQEVy_FZ%.j aVy | 97ty
dy; Oy;

J=1

OL(y)
0y

_ 2<PQ€Vy + vy, +O¢,'PQSVy +Z;-V=1 ’)’ij%ﬁ>

(fq, Qex)|Pa,Vy + v, |P)2/P
2|| Po, Vy + vy |7
fn Q(ex)| P, Vy + vy|P

% / Q(ex)| P, Vy + vy [P2(Pa,V, + vy)
Qe

dPa,V, " 8PV,
hull 11 04°) ; P, » €
X{ Ay e Q‘Vy+th 9y,

J=1

A
Ay;

N
=IL+ 1
From Appendix A, we have

BPQEVy _ —l/e
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APq_V,
for some £ > 0. Thus (noting that (v,, %)
Yi

= 0)
|I1] = O(e~%¢) for some £ > 0,ase — O.
We estimate I, next: We first notice that for some ¢ > 0,

|Pa, Vy(2) = Vy ()| < Ce™¢

(3.18)

for all z € Q.. This follows easily from the Maximum principle. We

further notice that
[1Pa Vy + v |2 _ A+o(1)

(f Q(ex)|Pa, Vy + 0, [P) 3T [Q(0)A + o(1)] 7!

(3.19)

This follows easily from the estimate on v, in proposition (3.3) and the
hypothesis on Q(z). Here A = ||V, ||?. We also have, by Proposition 3.3, that

Yy

OP,
A e A

i

_, 0PV, : 0PV,
= [P PR s =) [ R v
Q. Yi Q.

Y |m‘m(2,p~1)) — 0(62),

and

L (Qex) = Qey)IVy + vy P7*(Vy + v

- / (@Qez + ) — Q(ey))
Qc+y

[V + vy (z+y)l~

ov
=¢ D;Q(e vl
L Z (ny 3%

+y]1

_, 0V
) D% Q(ey)y;yxV? 18—‘
Q. +yJ k=1 Y

ov
= DQe) [ WV ole)
RN 8951-
= eBD;(ey) + o(€?),

+ o(€?)

ov
where B = [, y; VP! is independent of 7, by symmetry.
R 9z y

K

M +o(e)

—l/e)

Uy
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Hence A+ o(l)
2 = ° ——BeD,;Q(e o(€? 3.20
GO T B o) (320)

Thus B
e = —————€D; Qe o(€? 3.21
o FAE P Q) ol (3.21)

Since det D?Q(0) # 0, there is § > 0 such that
| v Q(ex)| > Coe (3.22)

for some ¢, > 0 and for all z € dBs(0).
We see from (3.21), (3.22) that

deg(ov VLe, Bs (0)) = deg(07 \V4 Q(Ey)a B&(O))

Be
(Q(0))»*1 42/
= deg(ov VQ($)7 B&e(o))
= sign det D*Q(0) = (-1)"

This completes the proof of Lemma 3.5.
PROPOSITION 3.6. — There exists €y, 6o > 0 such that for 0 < € < €9, 0 <
§ < 8o, Le has a unique critical point in Bs(0).

Proof. — We argue as in Glangetas [8]. We have the following uniform
estimate for all z such that \7L.(z) = 0 :

9?L.(z) 2 AP

dx0x;  p(Q(0))2/r €2D;;Q(0) + o(e’) (3.23)

The proof of (3.23) is given in Appendix A. Hence any critical point of L.
is an isolated point, for ¢ sufficiently small.

Now choose ¢, 8 such that Lemma 3.5 holds. Then L. has, for any
0 < § < 8, a finite number, say ko, of critical points in Bs(0) at
Z1,...,Tk,- On the other hand, (3.23) implies that

L(x)\ (2 A% \V,
det( d:01, ) = (1_)—_(Q(0))2/P) 2N det D2Q(0) + o(e2N),

and hence

sign (det( %ZL;(;”]))) =(-1)" (3.24)
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for all critical points = of L. in Bg(0). Using Proposition 3.3 and a
classical property of the degree, we have

ko
(_l)n = deg(07 vLev B5(0)) = Zdeg(()) vLﬂBﬁ(xi)) = ko(_l)n’
=1
and therefore ko = 1. This completes the proof of Proposition 3.6.

The proof of Theorem 3.1 will follow if we show that y. in (3.4) satisfies
y. — 0 as ¢ — 0, since this implies that y. is a critical point of L. in
Bs for e sufficiently small 0 < § < &.

LemMA 3.7. — Let u, be a single-peaked solution of (1.1) of the form (3.1)
with ., T.,w. satisfying (3.2), and a = lim.__,oz. is a nondegenerate
critical point of Q in €). Then

|ze — a| = O(?)

Proof. — From (2.19) we have

VQ(ey +z)|acPa, . V(y) + we(ey + x) P

e Te

Ou.
— e (N-2) / (2¥ey2pd5 — O(e) (3.25)
aQE,we 67?/
Expand the left side of (3.25) to obtain

VQ(ey + z){of|Pa, o VIP + o2 7 P, o VIP lweley + @)}

Qe,xe

+ O(lwellZe™™) = O(e?),

and since |Pqo, , V(y)—V(y)| < Ce~"/< forall y € Q. by the Maximum
principle, where C, 7 are positive constants, we have

€.T¢

+ O(|lwellée™™) = O(e?). (3.26)

/ VQey + ) {PVP + a2 VPl (ey + 2.)}
Q .

Since w. € E.,., we have

/ VP (g(ey + 2.) = (PacVes.swe)e = 0
Q. .x.
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Therefore
VQ(ey + z) VP we(ey + z.)
Qe
= / (VQ(ey + z.) — VQ(z)) VP 'we(ey + z.)
= O(0)l|weflee™™7? (3.27)

We estimate ||w,||? next:
We notice first that (z., aiwe) is a critical point of J. defined by

je($7w) = f((PQ,e‘/e,z + w))
in E, ., , where K. is given by
Kw = ([ @1vup+a) /([ Qi)
Q Q
By following the argument in Proposition 3.3 we obtain

lwelle < Cllfe.q.

€
where f., is given by

| Po,eVe,all2
2
(fg Q(x)IPQ,e‘/;,zlp) » 11

foalw) = - /Q Q@)|PaVe a0

By estimating fem as in Proposition 3.3, we obtain

w12 = O(eN+2) (3.28)
We also have »
A vQ(ey + z)V?
= [ Qv+ / [VQey + 7.) — VQz)]V”
Qe ,xe Qe e

— v 2 D 2

=vQ@) [ Vr+e [ DQuinyr+0(e)

- vQ(z) / VP4 0(e2), (3.29)

RN
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where we used the fact that

[ D) =o,

by the radial symmetry of V.
Combining (3.25)-(3.29) we obtain

Q) [ V=0
RN
But detD?Q(xg) # 0, and therefore we conlude that
|ze — z0| = O(€?)

Proof of Theorem 3.1. — Let a be a non-degenerate critical point of Q).

We may assume that ¢ = 0. Now wu, is a single-peaked solution of (1.1)
of the form

Ue = a€PQ,e‘/e,x€ + we (330)

with
o — (QU) /@

. — 0

llwelle = o(e¥?),
as € — 0,w. € E, ., if and only if y. = Te is a critical point of L.,
€

we (€
and v.(y) = # € F.,..

By Lemma 3.7, y. — 0 as ¢ — 0, and therefore y. € Bs(0) for any
small 8, provided e is sufficiently small. Since L. has a unique critical point
in Bs(0), for small §,(1.1) has a unique single-peaked solution of the form
(3.40), and Theorem (3.1) follows.

Proof of Theorem 3 .2. — By Propositions 2.1, 2.3, u. is a least energy
solution, and is a single-peaked solution of the form

Ue = aePE,Q‘/;,mE + we,

where Te — Lo, Qg — (Q(J,‘O))_l/(p42), Hwe“e — 0, and we € Ee,l‘e7
as ¢ — 0.

Since MaxoQ(x) is uniquely attained at zg, the conclusion follows from
Theorem 3.1.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



EXISTENCE AND UNIQUENESS RESULTS ON SINGLE-PEAKED SOLUTION 95
4. EXISTENCE IN THE DEGENERATE CASE

In this section we establish the existence of single-peaked solutions when
Q(x) has strict local maximum points in €, which are not neccessarily
nondegenerate critical points, as required in sections 2 and 3. In fact, we
will only require that Q is Lipschitz continuous on  , and so it may have
no critical points in 2. The main result of this section is the following.

THEOREM 4.1. — Assume Q is Lipschitz continuous in . Let zo € Q
be strict local maximum point of Q(z), that is, Q(zo) > Q(x) for
x € Bs(zo) N Q\{zo} , for some § > 0. Then (1.1) has a single peaked
solution of the form

e = @ Pe Ve o, + we, (4.1)
where
e — (Q(mo) ™V #=2), (4.2)
Te — T,
e td(z.,0Q) — oo,
llwell? = o(e¥)
we € B 5,

Furthermore,
A
[luellZ < EN(W + 0(1))‘

We will prove Theorem 4.1 when zo € 92 . The case xo € ) can be
discussed in a similar way.

An example will be given to show that, contrary to the case of
nondegenerate critical points in 2, a nondegenerate critical point on 99
doesn’t correspond to a single peaked solution of (1.1) with its peak
tending to xzo as € — 0.

Let zo € 02 denote a point where () has a strict local maximum.

Define

A= {m € QU Bgs; d(z,00) > %eln e} (4.3)

where H is a large positive constant to be determined, and ¢ is a fixed small
positive constant such that Q(zo) > Q(z) for all z € Bs(zo) U Q\{zo}.

Define
R = ([ elvur+ /([ Q(w)l'ul”)z/p

Vol. 15. n® 1-1998.



96 D. CAO, E. S. NOUSSAIR AND S. YAN

for u € H}(Q); let

je(ilf, CIJ) - -f(e(PQ,E‘/E,E + (U),

w € Eeg,.

Consider the following minimization problem:
inf{J.(z,w);z € A, ||w||? < 6V, w € E. .} (4.4)

It is easy to show that the infimum in (4.4) is achieved, since 2 < p <

2N/(N — 2). We now state a proposition which is crucial in the proof
of Theorem 4.1.

ProrosiTION 4.2, — Let
M = {(z,w): 7 € A,,w € E.,, and ||jw||? < 6%}
Then for sufficiently small € > 0,
u=PoVe,+w

is a critical point of K. if (x,w) is a critical point of J. in M.
The proof is very similar to the proof given in [4], [11]. We omit it here.

To prove Theorem 4.1 it is enough to establish the existence of critical
points in M. We need the following estimates. First we introduce the
functions @ p, e p; as in [9]: For p € Q,y € Q. ,, set x = ey + p,

Cep(y) =V(y) = Pa_,V(y)
we,p = —¢ln Qoe,p(y) (45)

LemMa 4.3. — Assume OS) is of class Cl. Let p. € Q satisfies

€/d(p.,00) — 0 as € — 0. Then for any co > 0 there is €y such
that for ¢ < ¢

2P 09) < e (p) < cad(pe, O) (16)

Proof. — The inequality 1., (pc) < cod(pe, 92) is proved in Lemma 4.6
of [9]. We prove the other inequality.
Let p, € 9Q be such that d(p..00Q) = |p. — P.|. Let y. be a point on

the ray p.p. such that lye — pi| = (1 + n)|pe — D.|, where > 0 is small
enough so that B, —5.) N2 = {p.}.
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Set ‘
ve(z) = (1 — n)(|pe — D] — nlye — =)

We now use Lemma 4.5 of [9] to obtain

Yep. > (1= )|z — pe| > 1 = n|lpe — B.|
> (L= n)(|pe = Pl — nlye — z|) = ve(2) (4.7)

for sufficiently small e.
But simple calculations show that

—Ce

2 2
=0 (1=n)"+1
nlyG _pel

—Ce

~ (14 n)lpe — el

€Ave — | Vv > +1>

-n*(1-n)*+1>0

since ¢/|p. — .| — 0, as ¢ — 0, by hypothesis. Hence by the Maximum
principal, we conclude that

Yep. (Pe) > ve(pe) = (1 = m)(Ipe — el — nlye — Pel)
= (1 —=n)[ —n(1 4+ n)]lp. — P.|
> %d(Pe,BQ)

This completes the proof of Lemma 4.3.
LEMMA 4.4. — Let g € OS2 denote a point where Q) has a strict local
maximum. Let z. € {xo + tv : t < 0} be a point such that

|ze — 20| = €ln —,
€

where v is the unit outward normal to OS2 at xo. Then
N (1—-2/p)
(Q(z0)A)/P

for some positive constant .

je(ze, 0) < {A+ 2761/2 + 0(61/2)}

Proof. — The following estimates were established by Ni and Wei [9]:

1PeaVes |2 = ¥l Pa,- VII?

_ 6N(zél _ 2")’6_%1’/)"25(4) + 0(6_%‘/’“2‘(2‘))) (48)
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[1PaVeep = [ ipo v
Qe,ze
= eN(A - 2’ype_%d’"z‘(z‘) + o(e'%‘bf’z‘(z‘))) (4.9)

But

| [@) - Qopip.av... 4
<0 [lo-sollPaaVir

—c / ly — 2ol PogVi. [P
B 1, %(zf)

+C |y — xo|| P, Ve 2. |
Q\Be In —2-(25)

1
< C(eln (—) + |z — xol) / |PeaVe,:. [P
€ Beln%(ZQ)

+ C |P5,Q‘/e’z€ |p
Q\Be ln(%-)(ZE)

< C’leln(l)AeN + CGN/ Ve
€

R¥\B,, 1 (0)

< CeN (Ae In (%) + e”)

= CeNo(e¥?) (4.10)
Using (4.8), (4.9) and (4.10), we obtain

Tz ) = et LAZ DT B0 4 ofe P )
{Q(20)(A — 2ype™eVese ()
{ to(e™ ez 4 63/2)}2/;»}
N(1=2/p) g1-2/p
T T Qzo)r
x {1 + 2’76—%"1)":5(25) + O(e—%we.q(ze) + 63/2)} (4‘11)

By Lemma 4.3, we have
e—%wmc(ze) < 6—2—1€-d(z£,8§2) — e—%]n(%) — (l/2
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Therefore,

7 eNU=2/p) 1-2/ 1/2 1/2
Je(ze,0) < _———Q(x L AYTAP(1 4 2ve' /% + o(€77)),
0

which completes the proof of Lemma 4.4.

Proof of Theorem 4.1. — We first derive a lower bound for je(:ce,we),
where

je(asﬁ,we) = inf{J.(z,w) : z € A, ||w||f <éeV we E..}
we have

1Pe@Vere, + well? = €V [P, .V + weley + zo)|I”
= " (|1Pa. . VIP + llwe(ey + z)lI*)  (4.12)

€, Te

/ QW)|PeaVeu. +wel?

= [ Qe iPo., Y e+ )P
Q

€,T¢

= Ny / Qley +2)(\Pa,. VI + plPa,. VI weley + )
Qe,:t:6

—1
+ 20D, | vty +20)
+ llweley + zo) @D}
— Q)] / ([Pa.. VI +plPa.. VI ey + 2.)

-1
S22 (py | vyt +20)

+ ||lwe(ey + )| ™P3) + O(e)}
_ pp—1) [(Pa,, V)P 2wi(ey + xc)
=eVNQ(x.) o (Pa..,.V)P{1+ 2 fQE,xe (Po, . V)

Ye,xe (Te)
€

+0(e” 3+ we(ey + o)l
+0(€) + llwe(ey + zo) [ ® D} (4.13)

where ¢ is some positive constant.
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Combining (4.7) and (4.8) we obtain

2
i
Jo. (Pa.. VP 2w.(cy + z.)
o P VP
T 0(e) + O~ Hbene GO u ey + )|
+ O(flweley + z)mm® )

llwe(ey + ze)“2
Pe.. VI

Jo(@e,we) = €1 IN(Q(x.) 7P
Jo

€T

-(p-1)

I Po... VII?
To 1Po. VI
+0(6) + O(e Ve ) o (e + 2,
+ O(”we(fy + xe)”min(p’g))}

> 1IN (Q(z) M

{1+ ¢ |lwe(ey + =)

From the above inequatity, (4.12), and (4.13), we obtain

Je(xeywe)

> NO=2/P)(Q(x,))T2/P{AHP + 2ye~ s Yew (#) 4 O(e—%zbe,ze(me)}

x {1+ p'llwe(ey + @) [I” + O(e) + O(e™ FHever ) Jwe(ey + 2|
+ O(|lwe(ey + 3™ **)} (4.14)

We are now ready to prove that z. € A, and |lwe(ey + zc)|| — 0 as
e — 0.

Claim 1. ||we(ey + z.)|| — 0 as € — 0.

In fact, since ||w||> < 8¢V, we have |jw.(ey + zc)||* < 6. Therefore,
for small 6, we have

1+ pllwe(ey + 3| + O(e) + O(e”GF e @)l (ey + )|
+ O(flwe(ey + o) )™
> 1 4 p"||we(ey + z)||? + O(e + e~ AH2) e (=)

Thus, from Lemma 4.4, (4.14) and the fact that (z.,w.) is a minimizer
of J., we get

NO=2/P)(Q(x0)) TP AN TP (L 4 p|lwe(ey + w)|I* + o(1))
< js(‘re,wé) < je(ZE,O)
< 6]\'(1—2/1.))(Q(IO))—Q/PAI_Q/P(]_ +0(1))
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Therefore, ||we(ey + z.)|| — 0, as ¢ — 0. In particular, if ¢ > 0 is
small enough, :

N

€
lwell? = eVllwe(ey + z)|I* < 56

Claim 2. z. € A, for small ¢ > 0.

We procedd by contradiction. Suppose z. € 9A, for all small e. There
are two clases to consider:

(i) z. € 0Bs(zo) U 2. Then

Q(xﬂ) -T2> Q(xe)

for some positive 7. From Lemma 4.4 and inequality (4.14), we have

NO=2/P)(Q(zo) — 7) P AYTH/P(1 4 0(1))
< je((cs,we) < je(ze,())
< NU2/P)(Q(0)) P AP (1 4 0(1))

where o(1) — 0 as e — 0. This is a contradiction.
(ii) Suppose for any €, Ho > 0, there is 0 < € < €0, H > Hy, such
that z. satisfies

‘ 1
d(ze, 00) = Eeln(l/e)
But from claim 1 and (4.14) we have

js(a;eawe)
> €N(1—2/1z>)(Q(w()))—?/p{141—2/1» + 276—%1&5,26(15) + O(e—%we,ze(re)}
x {1+ o llweley +@)|I? + O e (H2E0es )}
> N2/ (Q(20)) T {ATHP 4 et Vere ()}
x {1+ O(e + e~ (F2)hesc(z)},

and from js(:rf,we) < J.(z,0), and Lemma 4.4, we then have
AL=2P e enc@) g™ t¥enc () £ O(e) < AP 42y /2 4o(e!?)

But o )
d)e,z( S COd(me, 69) = _06 11’1 —
H €
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by (4.6). Hence
6co/H +O(EC°/H) < 061/2

for some constant C' > 0. This is a contradiction if we choose
H > Hy = 2¢

From claims 1 and 2 we have that (z.,w,) is an interior point of M for
small €, and therefore a critical point of J in M. By Proposition 4.2 we
then have that u. = P, oV, + w. is a critical point of K., and Theorem
4. follows.

The following example shows that for a local minimum point of @),

a single peaked solution, with its peak approaching the minimum point,
may not exist.

Example. — Let Q be the unit ball B;(0) in RY. Let ¢(z) € CZ[0,0)
with ¢'(0) = 0,¢'(r) < 0,7 > 0, and ¢"(0) < 0. Thus ¢ attains its global
maximum at r = 0. Define Q(z) by

_JC—o(/(m1 -1 +af+...+2%) z1>0
Q(x)w{Q(—xliEm--lwa) i N xigo

where C is a positive constant large enough so that Q(z) > 1. Then Q(z)
is decreasing in the z;—direction.

Using the moving plane method in the x;—direction, as in [7], we see
that every positive solution v of

—EAu+u=Qz)urt, ze€
u(z) =0 on 9N
attains its maximum in the set {z; = 0} N B1(0). This shows that there

is no positive solution of the above problem with single peak near the
minimum point (1,0,0,...,0) of Q.

APPENDIX A

In this appendix, we provide some of the estimates used in sections 2.
3, and 4. We first state the following result, which is a direct consequence
of the maximum principle.
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LEMMA A.1. — There is a constant £ > 0 such that

IV, = P, Vol < e,
d
.—_(Vx ~ PQEVz)‘ <e e,

82

< —Z/e
dz.:0z; ©

i,7 = 1,...,N.
From Lemma Al we obtain

LemMA A2. — There exists a constant £ > 0 such that the following

estimates hold:

(Pa Vi, Po,Ve) = / VI P Ve = A+ o(e™¢)
Q.

where
A= V”

<PQEV1,8PQ > / Vp laPQ
:/ ‘/;Ep_l—:t_l_o(e_f
Q.

0V
= VP 1 -
L

:O(e‘f
8P V. dPo V,\ _ [ OVP-10P,V,
oz, ’ Ox;  Jo. Oz Ox;
v, 8V, /e
= (-1 [ Ve oy
i OLj
oV, OV,
-1 p—2 e te
= (v )/v o g ole™ )

oV, oV
O 8

—_ {O(e-é/e)) 0] 7é ]
LA+ O0(e ) i=j

=(-1 [ v -+ O(e™*°)
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LEMMA A3. — Let €g, 09, vy,y € Bs(0),0 < § < do, be as in Proposition
3.3. For 0 < € < €y set

N
dv, 8PV,
= w; + alP V + Yi __e__y’
Ay - 2 dy;

Jj=1

1 =1,...,N, where w; is the orthogonal projection of %%1 on F,,. Then
the following estimates hold:

a; = O(e” %), for some £ >0,
vij = O(e?),
lwill = O(e?),

i,7 =1,....,N,and 0 < € < €.

0
Proof. — We first consider the scalar product in H(€2) % with
Yi
0P,
Po,V,, A j=1,...,N:
O0y;

N
O0Pq V,
ai<PQ€VyaPneVy)+Z%j< = y7PneVy>

= Oy
_ B’Uy _ 8P95Vy _
= <8y1 ,PQEVy> = —<’Uy, ayj > = 0
aPQ > l <aPQ V, 9PV, >
ai P V € y’ e Y
< 2 2_: Jy; Oye

_ _<%y—> = 0 (o,

From (A1),(A2), (A3), and the estimate on ||v,|| in Proposition 3.3, we can
solve the above equations for a; and -y;; and show that

a; =0(e™*), forsome £ >0,

i = O(lloyll) = O(e?)
To estimate ||w;|| we follow the argument in [8, Proposition 3.2]
D2KE(PQ V, + vy){wi, w;) + D*K . (Pq, Vy + vy)

dPq, Y oap,V,
X P V ] Wi ) = 4
(ay + o Py, +;% 3o > 0 (A4
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Direct calculations show

D*K (u)(p, %)

2(p, %) 4u, n
(Jo. Qey)lulP)?/? — | Q(ey)IUI”) “/ e z{} )
A5

~a Q((;;)ﬁtlp (], et “‘b)(/ Qo)

2l 2(p .
Q(ey)|ulP~
o, Qep)luir)? “/ e

We have
Claim (1):

D*K(Pa,Vy +vy){wi,wi) > p/[lwill®

for some p’ > 0, uniformly for 0 < € < €, y € Bs(0), 0 < 6 < bp. In
fact, from w; € F.,, and the estimate of ||lv,||, we have

2 {joat - { (p- B bl
fQ €’y |PQ + »Uylp)Q/p ) fQé Q(Ey)lpgs‘/;, + Uy|p

x ( | atira v+ vylp-%f)} > pllwsl?
Qe

But
(Pa,Vy + vy, wi) = (Vy,w;) = o(1)][wll

/ Qey) | Pa. Vi + v, P2 (Pa. Vi, + vy )w;
Qe

| QewlPay, P~ w; + o(1) Jwi]

=/ (Qey) — Q@) Pa, Vy [P~ wi + o(1)wil

o()lwill
Claim (1) follows by putting the above estimates into (AS5)
Claim (2):

Il

O(€) il

oFq.V,
DzKE(PKLVy + Uy)<—&—y‘~,wi> =

Ay;
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In fact,
OPoV, \ _
< oz, ’wl> =0
(Pﬂe Vy + Uy’wi> = (vwwi)
= O(llv )il
= 0()||wi]
OPq.V, 0Fq.V, —t/e
Qﬁ%+%,mh§=<au@<ﬂi>=me“> (46)
p—2 8PQ 2
Q(ey)|Po,Vy + vy|P 7% (Po, Vy + vy) =0(e*) (A7)
Qe i
Q(eyMPQsVy + vy|p—2(PQe Vy + ”y)wi (AB)
Qe
:Jm%wm+mm/|%Jme*an+%wi
Q.
=0@mwm+mmlgamm“wmimmmwm
— ()il
OP,
/ Q(ey)| P, Vy + v, P72 801/1 wi
dV
= [ @enlVy + 25 R+ ofe ) ]
Q. ayi
oV,
= QO [ 1V + 0,25 s+ Ol
Qe
_ 1 BVyp—l 2
-7:;mmLEQHM+R+O@mww
where

ov,
R:mmfuw+%w”—w*ylw
Q. 0y;
av, .
Gl itp<3

/ Vy—
|R| < CQ 79 ot
VP =2 | (Joy| + oy |2 |wy| if p >3

Q. 0y;
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)%
Vpio | < C for 2 <p <3,

Yi

Since

|R| < Cllvyllllwill = O(e")lwil,

oPq. V,
Qey)|Pa,Vy + v, [P =3 Jwi (A.9)
Q. y;
= O(e?)|wi|
Claim (2) follows from (A.5), (A.6), (A.7), (A.8) and (A.9).
From (A.4), claims (1) and (2), and the estimate on o;, we obtain
p'llwill> = O(e*)]lwill
Thus
[Jwill = O(e?)
This completes the proof of Lemma A3.
LEMMA A4. — There is €g,60 > 0 such that
PL(z) 2 AP
ox;0z;  p(Q(0))*/»

for 0 < € < €, 0 < 6 < do.

€2DijQ(0) + 0(62)

Proof. — Arguing as in Glagetas [7], we get
OFPq, V.
ij

N N
8PV, 9Po Ve 8PV,
+ ;:1 Yie 61172 5 8331 + ;:1 Yie B:U[

0*L.(z)
8$i8$j

= D?’K (PoVe + U$)< +a;jPo. V,

OPo V., < 9PV,
2 Qe Vax Q. Yz
+ D Ke<PQ€V$+Ux)<wj’T +;'Yik Oz >

2L+ (A.10)
From Claim (2) in Lemma A3, we have
Iy = O(%)|Jwill = O(e*)

Now we estimate I3:
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I3 consists of terms of the form

I(e) = D*K.(PqoV, + 'Um)<

Set 1o(w) = [[ulP/(f,, Qew)lul)

Since Pq, V, + v, is a critical point of K., we have

2
<PQEV33+’U198 9z, -Po V. > le(Pa,V,

O0FPq. V, 0Py V,
31']' ’ 8.’131

82P,.V,

p—2 z _
+vx)/m Q(ey)|Pa, Ve + vzl (PQSVm+vm)7axiaxj 0(A.11)

From the estimates in (A2), (A6), (A7), and from (AS5), we see that
1(e) 2 {<8PQ€V33 8PQ€V1.>
€) = ,
o, Qey)|Pa, Vi + v, [P]?/7 d dz;
—(p=1) l(Po, Ve + vz)
g/Q@Whm+%w2

2
o, Q(ey)|Pa, Va + vy |p]?/P

0FPq V, 0FPq. V,
83)i B:rj

+O(e* ) J(e) + O(e*) (A.12)

Form (A.11), we have
[/ O0Pq V, 0PV,
J(G) - < 89:1 ’ 3a:j >

2Py V,
P Vat T =
+ < e o 839181'] >

_ zE(PQEVHfum){(p—l) Q(ew)|Po, Vi + v, P2

Q—e
OPo, Vs 0Po, Ve 1 PP Ve
X oz, o, / Qey)lPa, Ve F vl 55
(A.13)

We also have

0Py V., 0Py V, 8%Po. V,
€ s € P Vz’ €
< 3.1’1 81']‘ > + < Qe 81']'8.’17]‘

av, av, 2V, ,
_ (%Y= OVa z —t/e

1
~2 O0z;0z;

9?Pq.V, %V,
Ve, —) = (Voo —t/e
< " Oz;0z; > < 8a:i8:1:j> +0(e™7)
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Combining the above estimates and Lemma Al, we easily obtain

0%V,
J(G) - <'U$, 8 8{17]>

oV, oV,
— _ 29V
+/ Qey)|Ve +v |p_1&_}+0(6—[/6) (A4.14)
RN * w Ox;0z; :
But
oV, 9V,
p—2 x x
/RN |Vz +’UII 8:61- Bwj
OV, OV, oV, dV,
= p—2 "% -9 yp-3Z7z %Yz ) . 9
/RN Vi Oz; Ox; +(p )/RN S &ij + O(||lvz %)
(A.15)
0%V, 8%V,
P_l—“” — p—1 z
o= LV e 3 vy + O(||va|?) (A.16)
Thus
oV, oV, 92V
— p—2 'z "% p—1 z
v 1)/RN Ve + vl Ox; O " /RN Ve + vl Oz;0z;
1 o2vep 92y r-1
I T . 0 4
P JrN 8.’1?181'3 \/RN axlaxj Uz + (E )
a2vp—1
= £—ve + O(e* A7
RN 8xi8xjv + (6 ) ( )
Therefore

Ve oV, av,
z _ _ p—2 z £
<vz, 0z;0z; > Ve + %)Q(O){(p b /RN Ve + vl Oz; Ox;

8%V,
V, P —=
+,/RN|$+U| Bxiazz]-}

A A+ O(e*) 2Vp-1 )
= /RN v Q(O)A+O(e2)Q(0) /RN Dw.0m; +O(eh)
_ O( 2)/82‘/;?—1 +O( 4) _ O( 4) (A 18)
- ¢ 8l‘i3.’ltj Yz €)= € .
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But

oV, oV,
(0-1) [ (Qer) = QONIVe + vef

dx; i 0%
0%V,
0x,;0x;

/ (Qey) — QUOY|V + v, vz

p—1 2/ 2OV, 9V,
- E D 0 Ve =P
2 € RN o le( )y[ykl +v | a 8.1']

9%V,
_6 . E:DekQ(O)yeyle + v [P 16 B -+ o(e?)
Ch=1

-1 oV, OV,
2/ Z D7, Q(0)yeyr VP2

Pyt 8 ; 0

/ Z D5.Q(0)yeyr VE~ 183;/ +o(€?)

£,k=1

oV, 9V, L 0?V,
= 2D2, / il (p—1)Vp 2222 2
€ UQ(O) RN Y y]{(p ) x a.’L‘, a.’L‘] + Vx a 8 } + 0(6 )

_ 1o / L OVE 2
= pe DiQ(O) y,y]a .07, + o(e”)

=__2 2 0. 1/P 2
peD Q(O)a 8 / ¥:y; VE + o(€®)

— 2OD3QO) g [ it ), + )V ol

= %803@(0) / VP + o(€?) (A.19)
RN
Combining (A.14), (A.18), and (A.19), we obtain
I =2 @DQ) [ V7o) (4.20)
RN
Hence
I(e) = 2 2eD20(0) + ofe?)
[QO) AP + o(1) p

Therefore,
8%L.(z) _ 2 Al-2/p
or;0z;  plQ(0)/»

’L. Al—2/p N
det (%—mza—(::}) = (%W) €2N det (D?Q(O)) +0(62N)

This completes the proof of Lemma A4.

e2D2, 5Q(0) + o(€?),
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