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ABSTRACT. - In the first section of this paper we study the Dirichlet
problem for equivariant (rotationally symmetric) p-harmonic maps from the
Euclidean ball B’n to the closed upper ellipsoid E+ (b) (p > 2, m > 3):
in particular, we establish a condition which is necessary and sufficient for
the existence of an equivariant smooth solution with prescribed boundary
values. In the last section, we obtain existence results for equivariant
p-harmonic maps between spheres and ellipsoids. © Elsevier, Paris

Key words: p-harmonic maps, existence and regularity, equivariant theory.

RESUME. - Dans la premiere partie de cet article nous etudions un

probleme de Dirichlet pour les applications p-harmoniques, equivariantes
(rotationnellement symetriques), de la boule euclidienne a valeurs dans
la partie superieure fermee de l’ellipsoide E+ (b) (p > 2, m > 3) : en
particulier, nous determinons une condition necessaire et suffisante pour
1’ existence d’une solution equivariante de classe C°° avec donnees initiales
au bord. Dans la derniere partie de 1’ article, nous obtenons des resultats
d’existence pour les applications p-harmoniques equivariantes entre spheres
ou ellipsoides. © Elsevier, Paris
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26 A. FARDOUN

0. INTRODUCTION

In this paper we study p-harmonic maps in several equivariant contexts. If
f : (M, g) --~ (N, h) is a smooth map between two Riemannian manifolds,
its p-energy is defined by

The p-energy functional (0.1) includes as a special case (p = 2) the energy
functional, whose critical points are the usual harmonic maps (see [5] for
background). We say that f is a p-harmonic map if it is a critical point
of the p-energy functional, that is to say, if it satisfies the Euler-Lagrange
equation of the functional (0.1), that is,

density is p-harmonic for all p > 2. By the theorem of Nash, we can
suppose that the target manifold N is isometrically embedded in 
where n = dim N and k is large enough. Let F = i o f, where i denotes
the embedding of N into The p-energy of F is still defined by (o. i )
and equation (0.2) becomes equivalent to

where A denotes the second tundamental torm ot lV in We can then

consider the Sobolev space

If F E H 17 P (M, N ), we say that F is weakly p-harmonic if it is a weak
solution of (0.3): that is, if -

When p = 2, a key regularity theorem [5] says that any continuous weakly
harmonic map is smooth (thus harmonic). But, if p > 2, the regularity of
weakly p-harmonic maps is more difficult to obtain because equation (0.3)
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27ON EQUIVARIANT p-HARMONIC MAPS

is not elliptic at points where |dF| = 0 (for instance, see [4], [8] for more
general results on the regularity of p-harmonic maps).

It is well known that, in some favorable cases, certain geometrical
symmetries allow us to reduce the existence of harmonic maps to the study
of an ordinary differential equation (equivariant theory, see [6]). In this

paper, we apply the equivariant methods to p-harmonic maps: in general,
we can say that the reduction technics are easily extended to the case that
~ > 2. By contrast, the resulting ordinary differential equations are more
difficult to handle.

Our first results concern the Dirichlet problem for maps of the Euclidean
ball into an ellipsoid: these are stated in Section 1 and complement the
analysis of Baldes [1] and Jager-Kaul [11]. Section 2 contains the proofs
of the results stated in Section 1. In Section 3, we obtain existence results
for p-harmonic maps between spheres and ellipsoids. Some of the results
of this paper were announced in [7].

1. DIRICHLET PROBLEM: NOTATION AND RESULTS

We assume that m > 3 unless otherwise specified. For b > 0, let

For x E we set r = ~~~ and say that F = B~ -~ B+ (b) is

equivariant (or rotationally symmetric) if

In particular, the equator map u* (x) == ( r , 0) belongs to

E+ (b~) and is weakly p-harmonic if p  m. In the quadratic
case (p = 2), Baldes [1] obtained the following results (Theorem [1]).

(i) If b2 > 4 "2-1, and B"2 -~ E’~’2 (b) is an equivariant weakly
harmonic map such that u* on then Fe, = u* on B"2.

(ii) If b2  4 (~ 2~~ , then there exists an equivariant harmonic map
Fc. E E+ (b)) such that u* on 
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we generanze this result to tne case p > >: maeea, our first resums are

THEOREM l. - Suppose 2  p  m.

(i) If b2 > 4 (,m P~.~ and B"2 -~ E+ (b) is an equivariant weakly
p-harmonic map such that u* on then Fa - u* on B’n.

(ii) If b2  4 (~ p~.~ , then there exists a unique equivariant p-harmonic
map Fa E C°° (B"2, E+ (b)) such that Fa - u* on and

u equivariant and u - ~c* on 

THEOREM 2. - Suppose p > m > ~ and b > 0. Then there exists a unique
equivariant p-harmonic map Fa E C°° E+ (b)) such that u*

on and which satisfies ( 1.2).
We can extend c~ to [0, in such a way that Fa extends to a

map Fa: ~ E’n (b). We shall study the asymptotic behavior of
solutions ~x. In a similar spirit, let p E (0, ~-~ : we also state the following
Dirichlet problem Dir (p, m): Does there exists an equivariant p-harmonic
map Fa : ~ E"2 (b) such that a (0) = 0 and c~ (1) = p ?

If we set r = et and A (t) = cx (et), our results in this context are stated
in the following propositions and generalize the analysis of Jäger-Kaul for
p = 2 and b = 1 [11].

PROPOSITION 1. - Let 2  p  m.

(i) Suppose b~ > 4 (,m P) z :
If  p  ~r, then Dir (p, m) has no solution.
If 0  p  ~r/2, then Dir ( p, m) admits a solution: the function A (t)

associated to this solution satisfies A (t) > 0, lim A (t) _ and

lim A (t) = 0. In the phase plane (A, A), the point (~r/2, 0) is an
t->+oc

improper node if b2 > 4 (~ ~~.~ , a proper node otherwise. Then the image
of the extension -~ (b) coincide with the interior of E+ (b).

(ii) Suppose b’  4 (,n’~ p~., : then there exists ~ E ll~ such that

~r/2  ~  ~r and Dir (p, m) admits at least one solution if 0  p  ~, while

Dir (p, m) has no solution if p > ~. Moreover, if A (t) _ ~ t E is

an extension of a solution of Dir (p, m), then 0  A (t) lim A (t) _

~/2 and lim A (t) = 0. In the phase plane (A, A), the point (~r/2, 0) is

a focus and then ..:4 (t) oscillate around ~r/2 when t tends to 
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29ON EQUIVARIANT p-HARMONIC MAPS

PROPOSITION 2. - (i) Suppose p = m > 2. Then Dir (p, m) admits a
solution A (t) = a for all 0  p  ~r. Moreover, 0  A (t)  ~r, the

function A is increasing on R and lim A (t) _ 03C0. In particular, the images

of the extensions ~ E"2 (b) coincide with E"2 (b)-~South Pole~.
(ii) Suppose p > m > 2. Then, for any 0  p  ~r Dir (p, m)

admits an infinite number of solutions A (t) = c~ (et). Moreover, the

function A is increasing on R and lim A (t) _ Then the extensions

-~ Ern (b) cover (b) an infinite number of times.
Remark 1. - The conclusion lim A (t) _ -f--oo in Proposition 2

(ii) shows that for all p > m > 2 and b > 0, the Dirichlet problem
u : B"2 --~ E"2 (b), South Pole, admits an infinite number of
nonconstant solutions (whose homotopic classification can be found in [ 15]
Lemma 4.1, Corollaries 4.1 and 4.2).
The situation is completely different if p  m. Indeed, we obtain the

following generalization of a result of Karcher and Wood [10]:

THEOREM 3. - Let N be a Riemannian manifold of dimension > 2 and
suppose 2  p  m. If ~c : N is a p-harmonic map such that
u|~Bm = constant, then u is constant on B"2. 

’

Remark 2. - The conclusion of Theorem 3 is still true if we suppose 

equipped with a metric of the form g = f2 go, where go is the Euclidean

metric and f a positive function which satisfies ~~ (r f (~)) > 0 for all

x 6 

Remark 3. - The conclusion of Theorem 3 is still true if p = 2 = m (see
[ 14]). It would be interesting to extend this result to the case p = m > 3.

2. PROOFS OF THE RESULTS STATED IN § 1

In order to study equivariant maps as in (1.1), it is convenient to introduce
the following function spaces:
(2.1)

The p-energy of Fa is given by
/ ~! /1 . T / T 1 7 
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30 A. FARDOUN

wnere

Proof of Theorem l. - We denote by a.~~2 the constant critical point
cx - ~r/2. Theorem 1 is obtained essentially by minimisation of the

functional Jp (a) on Xo. More precisely, assertion (i) follows from the
fact that, if b2 > 4 (m P~ ~ , then is the absolute minimum of Jp
on Xo. In this case, a priori estimates allow us to exclude the existence
of other equivariant solutions. As for part (ii), we first prove that the

minimum cxo is different from cx.~~2 (indeed, if b2  4 ~,m p~.~ then cx~~2 is
an unstable critical point). Next, we prove that ao is smooth on (0, 1] ] and
lim ao (r) = 0. Finally, we prove the regularity of through the origin
r-~0

of B"z : to this end, we need a sharp analysis of the asymptotic behavior of
solutions of the Euler-Lagrange equation associated to the functional (2.2).
The proof of Theorem 1 is divided into 9 steps. The first seven steps

lead us to the proof of part (ii), while the last two steps prove part (i).

STEP 1. - There exists a map ao E Xo which minimises Jp on Xo and
satisfies

, _ _ ?~ - 2

(For ( e Co ~ ~0, 1]), (2.3) is the weak Euler-Lagrange equation
0

associated to (2.2). We will need (2.3) for ( eA in Step 3 below)

Proof - We observe that ~IP {c~)  oo for all a Moreover, the
functional Jp is lower semi-continuous. We set c = Inf ( l; b2 ) . For all
cx E Xo, we have

/*1 1

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



31ON EQUIVARIANT p-HARMONIC MAPS

It follows that the functional Jp is coercive on Xo. Then, there exists a
map ao E Xo which minimises Jp over Xo. Set Xl = ~ cx EX: a (1) ==
~/~ ~ : we will prove that ao is a critical point of Jp on Xi. For any
03B1 E Xi, define 03B1* E Xo by

Let

Also, let

ana

For all 03B1 E X1 and r E [0, 1], we 03B1*) = G ( r, =: 03B1*). it
follows that, for all cx E ~l, Jp (rx* ) _ ~Ip (c~* )  ~Tp (a) which implies

Now, be a minimizing sequence in X ~ for J;: by passing if

necessary, we can suppose that cxi E Xo. Since ~.T~ (ai) -~ co and ai E Xo,
the inequality (2.4) shows that {03B1i} is bounded in Xi. Therefore, there
exists a subsequence which converges weakly in X~ to some ao G Xo. The
semi-continuity of ~I~; yields ~Tp (ao) = co ; then ao is a critical point of ~I~
in Xi . To prove (2.3), a short computation leads us to the Hardy inequality

It follows that

15, n° 1-1998.



32 A. FARDOUN

1 ~ we get

where

Finally, by using the fact that ( satisfies (2.6) and the Holder inequality,
we can easily see that

is dominated independently of 03BB by a tunction in 1]). by tne

Lebesgues dominated convergence Theorem, we have

And, since ao E Xo, we conclude that ao satisfies (2.3). This completes
the proof of Step 1.

Annales de 1 ’Institut Henri. Poincaré - Analyse non linéaire



33ON EQUIVARIANT p-HARMONIC MAPS

STEP 2. -  4 ~~ then cxo ~ 
Proof. - First, we calculate the second variation,

i~ , B 

We note that

where

If t is sufficiently close to 0, there exists ~; > 0 such that cos2 (t () >
cos2 ~ > 0. Thus we get Fp (r, ; + t(, t 03B6) ~ 0. Next, we can easily see
that d2 dt2 Fp (r, ; + t 03B6, t 03B6)| is dominated independently of t by a
function in L~ ([0, 1]). By the Lebesgues dominated convergence Theorem,
we have

In order to end Step 2, it is enough to find a function ( E A such that (  0

and Q (()  0 if b2  4 (m p)2 . Indeed, the fact that a.~~2 is a critical point
of Jp togeher with Q (~)  0, imply that

, ~ ~ ~- r’l ~ T ~ ~, ,,-. l

provided that t > 0 is sufficiently small. It follows that the map a~.~2 is not
the minimum of Jp over Xo, that is ~xo 7~ cx.~~2. To define (, let

, where 6- is small enough as to have v  0.

’l’hen we set

and

Vol. 15. n° 1-1998.



34 A. FARDOUN

A direct computation shows that Q(03B6)  U, so the proot ot Step 2 is

complete.

STEP 3. - C~p E C%°~ ((0, 1]).
Proof. - On any compact set [a, 1] (a > 0), ao e ( ~c~, 1]). It follows

from the Sobolev embedding Theorem that ao is continuous on [a, 1~, then
on (0, 1]. Next, we set

We first suppose that r = 0: then Oo (r) > 0 for all r E (0, 1].
To simplify the notations, we set

and

We know that c~o satisfies (2.3)

Now, there exists Na > 0 such that ao (r) > Na for all r E [a, l~ .
Next, for all ~ E R, tc > Na and x E [a, I], a short computation
tell us that the functions bi and b satisfy the conditions (3.1), (3.2),
(5.7) of Theorem 5.2 in [12]. Then ao E ((a, 1)) for all a > 0. It

follows from the Sobolev embedding Theorem that ao E C1 ((0, 1)). Now
we will prove that ~xo E C~ ((0, 1]). To this end, we set r = et and

A (t) = ao (et) (t E ( - x . 0]). We calculate the Euler-Lagrange equation
Annales de l’Institut Henri Poincaré - Analyse non linéaire



35ON EQUIVARIANT p-HARMONIC MAPS

associated to (2.2) in terms ot A (t) and we get
a 2 ~ I t ..~.

where

Let H (A; A) be the right hand side ot ror all a  U, a short

computation tells us that H ( ~; ~l ) G L~ ((a, 0)). For all t  0, we have
the following equality

by passing to the limit when t ~ U in (2.9), we find that hm A (t)
t->o

exists and is finited. Thus the map C1 ((0, 1]). Finally, since the

function A E C~ ( ( - oo, 0]) and is a solution of (2.8), we conclude that
A E C°° ((-oo, 0]) and so ~xo E Coo ((0, 1]). Now, suppose r ~ ~ and
let ro = sup r (ro  1 because = 2 ~ . An argument similar to
the previous case shows that the map ao E Coo ((ro, 1]). Since cxo is the

minimum of Jp over Xo, it follows that ao (r) = 0 for all r  ro. Since
lim ~4 (t) exists and is finited, we conclude that 6~0 (ro ~ exists and

t~Log r0
is finited. Now we will prove that = 0. Because the map cxo is

solution of (2.3), we can choose a test function ( E Co ([0, 1]) such that

After an integration by parts, we find that (2.3) is equivalent to
--- 1. , .- ., ~ ~ ~ - _

Vol . 15. n° ° 1-1998.



36 .FARDOUN

where Fp yr, x, y) = y- fi sm -.

We observe that the integrand vanishes because ao E C°° ( (ro, 1~ ) and
so ao is a strong solution on (ro, l~. It follows that {2.10) reduces to

and then Qo (ro ~ = 0. Now, we let t tend to Log ro in (2.8) and we note that
v ~B r* ~y ~.~"~

Next, there exist two constants Ci, O2 > 0 such that any solution Z of
(2.8) satisfies the following inequality

Since the function A (t) is a solution of (2.8) for t E (Log ro, 0] and
A 0 on (-oo, Log ro~, we deduce that A satisfies (2.11) on I~. By
the unique continuation principle, it follows that A 0 on (~. This fact

contradicts A (0) = Tr/2. (Because the function H (A; A) is not of class

C1 in a neighborhood of (0, 0), it seemed to us preferable to use the unique
continuation principle rather than the Cauchy uniqueness Theorem.)

STEP 4. - c~o (r) > 0 for all r ~ (0, 1] and lim c~o (r) = 0.
~-~o

Proof - (We develop ideas of [6].) Set

ditterential equation (~.~) becomes equivalent to

According io Step j, me solution A(t) = cxo (e) satisnes
n . ~ A 

J’ 
l’ 11 1 I - / ~i 1 , i 

"

We first prove that the zeroes of A are isolated. We note that A (o) ~ 0;
for otherwise ~4 = ~ by the Cauchy uniqueness Theorem. Let to  0 be such

that A (to) = 0. Then A (to) 7~ 0 and A (to) f ; (for otherwise A - ~ ) ;
we deduce by (2.8) that 7~ 0. Then there exists a neighborhood J
of to which contains no more zeroes of A.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



37ON EQUIVARIANT p-HARMONIC MAPS

Now we prove that A (t) > U (which ot course implies ao (r) > U). We

argue by contradiction: let t  0 be the first point such that A (t) = 0;
set I = (t, 0] and

Since A is a solution of (2.12), we have PA - QA on I. We consider
the following first order linear differential equation

The constant function y 1 is a solution of (2.14) and we note that

Let T  t be the first point (if it exists) such that A (T) = 0. Thus (2.15)
holds on (T, t) . Direct integration of (2.15) gives

where

CUiH

ror all t E (1 ~, t), we nave

Vol. 15, n° 1-1998.



38 A. FARDOUN

and

We claim that ~==201400. ror otherwise, since i~ (~ ) = 1~ (~) = U we would
get N (T) == N (~) = 0. Then (2.16) implies that N must have a maximum
on (T, F), a fact which contradicts (2.17). Moreover, since 0  ~4(~)  ~
there exists ~ e (-00, ~) such that A is close to 0. So D (t") and then
N (t") would be arbitrarly close to 0. If follows from N (~) == 0 and (2.16)
that TV has a local maximum on (201400, t), which again contradicts (2.17).
Then ~(~) ~ 0 for all t e (-00, 0]. We conclude then that A(i) > 0
because 0  A(~)  ~ and A(0) == ~. Finally, lim -A(~) exists and is2014~ " 

~,

finited. Now, there exists a sequence ~ 2014~ 2014oo such that A 2014~ 0 and

~4 -~ 0- By passing to the limit in (2.8), we get lim A (t) = 0. This
achieves the proof of Step 4.

STEP. 5 -  4 .~JB2. then (0) exists and is positive.
Proof - The qualitative study of the autonomous equation (2.8) is

simplified by the observation that the following function

... , .. p~2 ._~..’~ , , . ~,...

is a Lyapunov function (see [13]) associated to (2.8). Indeed, if A is a

solution of (2.8), we have

For future use, we note that (2.18) is equivalent to

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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it follows that limInfe(m-p)t k (A (t)) = 0. Next, by using (2.19), we have

-

and

From the Lyapunov functions theory (see [13]) and (2.21), we get A (t) --~ 0
when t ~ - oo . Next, it is convenient to set

Then equation (2.8) becomes equivalent to
l~ ~~l

ror tuture use, we note tnat implies

wnicn in turn yems

First, we prove that lim G (t) = 1. For this purpose, we compare
~2014~-201400

solutions of (2.22) with solutions of the following differential equation

inus we neea to investigate tne qualitative behavior 01 solutions to

(2.25). This equation has two constant solutions 61 - 1 and G2 = ~~5~-
Vol. 15. n° 1-1998.
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Let Gr De a nonconstant solution or as for nonconstant solutions,

there are two possible cases:

1 ) There exists t e I~ such that Gr (t) > 1. Then, we get Gr (t) > 1 for
all t e !R. For otherwise, there would exist to such that G.~ (to) = 1

and so Gr - 1 (by the Cauchy uniqueness Theorem). The function

V (Gr ) _ ( G~ - 1 ) is a Lyapunov function associated to (2.25) because
at V (G~ (t)) = G~ (t)  0 for all t E tR. It follows that lim G~. (t) =

t->-~

and lim Gr (t) = l.

2) There exists t E R such that Gr (t)  1. Then, we get

- 

p-1 
 lr (t)  1 for all t E R (by the Cauchy uniqueness Theorem)

Next, because of (2.25), it follows that Gr (t) > 0 for all t and so

Gr is increasing; then lim Gr (t) exists. Moreover, for any ~ > 0 and

C  0, there exists tl  C such that Gr (ti)  ~ (that is, there exists a
sequence tn --~ -oo such that Gr (tn) --~ 0). For otherwise, we have
(2.26) there exist two constants Ai > 0 and T  0 such that G~. (t) > Ai

for all t  T.

If t « 0, we can write

From (2.26) and (2.27), it follows that Gr (t) = -oo. This

contradicts the fact that the function Gr is bounded. Now, using (2.25)
and since Gr is increasing we get lim Gr (t) = -m-1p-1. Similarly, we getP"-~

lim G~ (~) = 1. Now we use these qualitative facts about (2.25) to show
t2014~-)-00

that lim G(t) = 1. We argue by contradiction: then there exist ~ > 0
t2014~201400

and a sequence 2014~ 2014oo such that either
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If (2.28) is satisfied, then by (2.24) we can take tn  0 large enough
such that

so t~ would ne approximated in a compact set ny a solution or 

which satisfies Gr (tn ) > 1 + ~. By 1 ), we have lim Gr (t) = -I-oo, so

there would exist t’ such that G (t’) is arbitrarly large. This contradicts
the fact that (? is bounded. Similarly, using 2) we find that (2.29) is not

possible, so lim (? (t) = l.

Now, we need to prove that G" (t)  1 for all t E (-ao, 0~. To this end,
we note that G (0)  0 because i (0)  0 (by (2.8)). And using (2.23),
we get the following

Next, we have to consider the following two possibilities:
1) suppose G (0)  1: if there exists t’  0 such that G (t’) > 1, using

lim G (t) = 1, we find that there exists t"  0 such that G (tll) > 1

and G (t" ) = 0. Then, simple inspection of (2.30) and (2.22) leads us to
a contradiction;

2) suppose G (0) > 1: then, since G (0)  0 and lim G (t) = 1, there

exists t’  0 such that > 1 and G (tf) = 0. This fact contradicts
(2.22) and (2.30).

By way of summary, the function G satisfies G (t)  1 for all

t E (-00, 0].
Next, we prove that there exist two constants C2 > 0 such that

Coming back to c~o (r), (2.31) takes the form

15, n’ 1-1998.
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To prove (2.31), write G (t) = 1- 03B3(t) with 03B3 (t) > 0 and lim 03B3(t) = 0.
Then equation (2.22) becomes equivalent to

and

N > 0 such that

A/r n_ ~-~ 1 ~ AT t~r n~~ -E ~ ~-M nl

exists a function g such that

Thus there exist 1’ « 0, two constants K 1, 1~2 > 0 and a function

c3 such that

7~ ~- ~ /jA ~ 7~ r-- __ _ ~ ~ ~ ~ m

Since lim A(t) A(t) = (t) = 1, it follows that for any ~ > 0 there
~-~-00 ~~~ t-~-00

exists ~’~  T such that

h ~.v B

integrating (Z.35) between 1 i and t, we hnd that there exist and

a constant C > 0 such that the function A satisfies

Annales de l’Institut Henri Poincaré - Analyse non linéaire



43ON EQUIVARIANT p-HARMONIC MAPS

rrom ana m louows mere exist 3  u, a constant

K3 > 0 and a function c4 such that

and 03B3 is a solution of the following ditterential equation

An explicit computation gives

Taking T3 sufficiently large and using the fact that lim c1 (t) = m and

(2.37), it follows that there exist two constants C2 > 0 such that (2.31 )
is satisfied for all t  T3 . Next, it is easy to show that (2.31 ) is satisfied for
all t E (-oo, 0] provided Cl is large enough. Finally, using (2.32) we will
prove that cxo (0) exists and is positive. For this purpose, it is convenient

to write down the primitives I (r) of the function a° ~ {~° ~ . Setsin 

If b2  1,

11 o- = 1,

11 ~- ~ 1,

Vol. 15, n~ 1-1998.
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Now, we choose U  ~  1 and we write

eI(r) = where U is a positive continuous function
on [0, ~~ . We integrate (2.32) between ~ and r, and by passing to the
exponential, we obtain the following inequality

Let us ~o  1. Since U is a positive continuous function on
[0, U is bounded on this compact set. Then there exist two constants

Mi, M2 > 0 such that

Now, suppose that lim 
Sin 

does not exist: By (2.43) it follows
~

that there exist two sequences (Ri) and (Ti) tending to 0 as i 2014~ +00

and two real numbers l1, l2 > 0 (li 7~ ~2) such that 
Sin 

and
(Ti ) 

-~ l2 . Next, from (2.42) we get, the following inequality

Since U is continuous on [0, ~0], U (o) > 0 and sin 03B10 (~) ~ is bounded,
we conclude that when i ~ +~ the left hand side of (2.44) tends to

U (o) ~ ll - l2 ~ while the right hand side tends to 0 when c -~ 0. This is

a contradiction and so

lim = ~o (o) exists and is positive by (2.43).
7*

STEP 6. 2014 F03B10 is a weakly p-harmonic map.
Proof. - A short computation gives the following equality
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Set B~ _ ~x E ~~!  ~~ : is a weakly p-harmonic map if
satisfies (0.5) or equivalently

Now, we observe that

Lagrange equation associated to (2.2), that is (2.47). From (2.45) and

(2.47), it follows that (2.46) becomes equivalent to

Let v be the unit normal to Using the Stokes Theorem and the
fact that § is compactly supported, we see that the left hand side of (2.48)
is equal to

r

Now let M = sup ~~ (x) : x E We obtain the following inequality

The right hand side tends to 0 when c tends to 0, thus (2.48) is satisfied.
This completes the proof of Step 6.
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STEP 7. - We are now in the right position to proceed to the proof of part
(ii) of Theorem 1. The map F03B10 is of class C1 on B"2 because ao (0) exists.
Moreover |dF03B10| ] > 0 on because of Steps 4 and 5. Therefore, using
Lemma 2.1 of [3], we conclude that F03B10 is of class C°° on Finally,
suppose that there exist two maps Fal and which satisfy (1.2). Set
Al (t) = al and A2 (t) = c~2 (e~). Their p-energy calculated in (2.20)
is an increasing function of the variable A2 (0~. Then Fal and satisfy
{ I .2) if Al (0) = A2 (0) = 2 and Al (0) = A2 (0) > 0. Since A~ and A2
are solutions of (2.8) we use the Cauchy uniqueness Theorem to conclude
that A1 ~ A2 and then Fa 1 = Therefore the proof of part (ii) of
Theorem 1 is complete.
Now we prove part {i) of Theorem l. For this purpose, we need the

following two steps.

STEP 8. - F03B1 ~ u* is an equivariant weakly p-harmonic map such
that Fa u* on then c~ (r) > 0 on ~0, 1J, c~ (0) = 0 and

F~ E E+ (b)).

Proof - Since Fa is weakly p-harmonic, then it satisfies (0.5). Now, we
want to prove that ~ satisfies (2.3). To this end, let x = ~8, r) be the polar
coordinates in B’n and consider in (0.5) the following type of test-functions

I --~ 

We deduce that a is a weak solution of the following equation

where K (r, c~ ; ~ ) = a 2 + sin2 ( cx ) . Similarly, if we consider in (0.5)
the following type of test-functions
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Multiply (2.49) by b~ sin c~ and (2.50) by cos a, then sum these two

expressions. The result is that c~ is a weak solution of the Euler-Lagrange
associated to (2.2). Now, by using (2.5) and by density, we prove that a
satisfies equation (2.3). We now study the qualitative behavior of a. For all
compact sets [a, 1] (a > 0), cx E ([a, 1]). By the Sobolev embedding
Theorem, it follows that ~x is a continuous function on [a, 1] and then on
(0, 1]. From equation (2.49), it follows that the function defined on [0, 1] by

belongs to H~ ~ 1 ( ~0, 1]). So, by the Sobolev embedding Theorem there
exists a continuous function f on [0, 1] which satisfies

Moreover, integrating (2.49) between s and t we get

Now, by means of a study of the zeroes of the function f, we analyse
the behavior of the function c~. Suppose that there exists So E (0, 1] such
that f ( so ) = 0. If follows by (2.51) and (2.52) that c~ is nonincreasing on
(0, so] and is increasing on [so, 1]. The function a being continuous on
(0, 1], we can consider the following cases: = 0 or a (so) ; o. If
a 0, then 03B1 (s) ~ 0 for all s E (0, 1]. Since cx is a solution of (2.3),
different from cx~~2, then by Steps 3 and 4 > 0 for all s E (0, 1].
This contradicts the fact that the function c~ is nonincreasing on (0, so], so
c~ (so) = 0. In this case: we set,

a is a positive function on (b‘, 1]. An argument similar to Steps 3 and 4
above shows that c~ E C°° ( (b‘, 1]) and is increasing on (b‘, 1]. Set

suppose that a ~ u: accoraing to me definition or a’ ana since tne

function a is nonincreasing on (0, a’ ), the function a has no zero on ( 0. a’ ) .
15. 1-1998.
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Now, an argument analogous to Sep 3 aDove snows tnat 

Next, it is convenient to set A (t) = a (et), t E (-00, Log a’). Since the
function A is a solution of (2.8) on ( - oo, Log a’ ), as in Step 4 one shows
that A (t)  0 for all t e (-00, Log al). Since A is a solution of (2.14)
and has no zero on ( - oo , Log a’ ) we get

Now, we set

anu use me expuciL expressions of N ana D. inns we find that

It follows from (2.53) that w is a positive, nonincreasing function. So,
lim w (t) = l exists (0  l  +00). Now, we prove the following

assertion: 0  l  +00 is not possible, so a’ = 0. For otherwise, from
0  l  +00, it follows that there exist C  0 and C’ > 0 such

that w (t) > C’ > 0 for all t  C. Then, since A is a nonincreasing
function and 0  A (t)  7r/2 for all t  Log a’, it follows by (2.8) that
lim A (t) = 7r/2 so lim sin A (t) = 1. Then there exist Co > 0 and

To  0 such that A satisfies the inequality

Now, we prove that there exist two constants B  0 and ,~ > 0 such that
we have the inequality

rur otherwise iui all u and 03B2 > u, there exists  such that

From this inequality, it follows that
..... ~ ~, ., .
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Next, take j3 = 2 ~~ P ~ and B  0 large enough as to have

we get

This contradicts (2.54). Now, if we integrate (2.55) between B and t,
we get A (t)  A (B) - ~° ~e-~t - e-B~~ so A (t) _ -oo which is
a contradiction. Then the function cx vanishes on [0, b’~, and is increasing
and smooth on (b’, 1]. An analogous proof to the one given at the end of
Step 3 shows that a - 0. This contradicts the fact that a (1) == Tr/2. Next,
the function f has no zero on (0,1]. And since f is a continuous function,
then f has a constant sign on (0, 1]. If f is negative, then the function
a is nonincreasing on (0, 1]. This contradicts the fact that c~ ( 1 ) = Tr/2
and F~ 7~ ~c* . Finally, the function f is positive so a is increasing on
(0, 1]. The above study shows that cx has no zero on (0, 1]. An argument
similar to Steps 3, 4, 5 shows that ~ (r) > 0 on [0, I], ~x (0) = 0 and
Fa E C°° E+ (b)), so ending Step 8.
Remark 4. - Since the function A is a solution of (2.8) on (-oo, 0],

a similar proof to that of Step 8 shows that lim w (t) = 0, so that

lim f (r) = 0.

STEP 9. - (A priori estimates)

(A) If Fa is a weakly p-harmonic map and Fa - u* on then

Ep (Fa) (~*).
(B) If Fa = h* on and if b2 > 4 then, we get the following

inequality:

In particular, Ep (F03B1) ~ Ep (u*) and equality holds if ana only 2c-w.

Vol. 15. n° 1-1998.
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associated to (2.2) (by Step 8), a satisfies the equation
rl

~

Multiplying (2.37) oy cotg o;, we gcL ine loiiowing equauon

(2.58)

Set

~ 

r2014~0

function ~ satisfies the following inequality
/~ 

Since the left hand side of (2.59) is in L~([0, 1]), integrating (2.59)
between 0 and r, we find
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g (r) cotg a (r) = 0. Next, integrating (2.58) between 0 and 1 we get

Young’s inequality gives

Finally, by using this inequality in (2.6U), we get ~p (~a )  ~~c~ ).
As for assertion (B), set J (c~) = ~o F2 (r, ~x (r), c~ (r)) dr. First,

we get easily the inequality
n.1

1 . i/L1..’ 

~1 1 ~ ~1

using me inequality, ab ~ 2 + 2 it follows tnat

bo, suppose that b > 4 ~m‘ p)~ . then (B) tollows trom and 

Part (i) of Theorem 1 is an immediate consequence of (A) and (B).

Vol. 15, n° 1-1998.
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Remark 3. 2014 Step 2 snows that u is an unsiame critical pom if

b2  4 (,m P~., . On the other hand, it follows from Theorem 1 (i) that

if b2 > 4 ~,mz ~~2 , u* is the minimum over the class of equivariant maps F~
such that u* on However, if b2 > 4 "2-1 Z we proved that
i~* is a strictly stable map. 

- 

-P

Proof of Theorem 2. - The proof of Theorem 2 follows from the ideas
of 1-7 above. The only relevant difference concerns Step 5 and moreover,
Step 2 is unnecessary. Let us then show how to modify Step 5 in this

context.

Suppose p = m. Set r = et and A (t) = c~o (et) (-oo, 0]). Thus

rt

The Hamiltonian

associated to the functional (2.62) is constant on each solution A because
the integral (2.62) does not depend explicitly of t. This Hamiltonian is

identically equal to zero, so A is different from the constant map equal
to 7T/2. Then ~c*. From Steps 3 and 4, A does not vanish on

( - oo, 0] and A (t) > 0 on ( - oo, 0], and A is a solution of the following
differential equation

From (2.63), it follows that the map ao is a solution of the following
iifferential equation

In Step 5, we calculated the primitive of the left hand side of (2.64)
and wrote it in the form eI {’~~ = sin ~xo (r) U (r) where U is a positive
continuous function on ~0. ~~ where 0  ~  l. We integrate (2.64) and
pass to the exponential to obtain

= where C is a positive constant.
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Since rxo = u, oy lemng r go io u, we nno that 03B10() exists anu

is positive.
Now, suppose p > m. First, we note that u* because

Ep (~c*) _ As for Step 5, the Lyapunov function associated to (2.8) is

~P (A) = 1~ (A) ~ 2 2 ~ {p - 1) h2 (A) A2 - (m - 1) sin2 
and is increasing on solutions.

Now, since Yp (A (t)) > 0 for all t.E (-o0, 0], it follows from the theory
of Lyapunov functions that lim A (t) = 0 or +00. We want to prove
that this limit is equal to 0. For this purpose, we use a method similar

to Step 8 and find that 
.

Since p > m, it follows that lim ~4 (~) == 0. Next, in order to prove

Step 5, we set, as in the case p  m,

so Lr is a solution or But tne assertion (2.24) is not necessarily
satisfied because ~ (A (t) ) > 0 so (3~ (t) > for all t E (-00, 0].
However, Taylor’s expansion centered at A ( - oo ) = 0 shows that there
exists a function g such that

rrom this equality, it follows tnat (2.24) is satlshea. lVow, we want to

prove that

G2 ( t ) > p - I , for all t E (-00, 0] we get the inequality

Consider the following two possibilities: G (0)  1 or G (0) > 1.

Vol. 15. nO 1-1998.
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For otherwise, let f be the first point where t’  0 and G (t’ ) = 0. So,
G (t’)  1 (because G (0) > 0) and a simple inspection of (2.22) and (2.65)
shows that this is not possible. Finally, the function G is increasing and then
lim I (t) exists and is finited because G is bounded below by ~/~2014.

~ 

p_1 .
From (2.22), this limit is equal to 1 or - P-1 ; then lim G(t) = l. It

follows that there exists t" E (-oo, 0) such that G (t") = 0 and then we
contradict (2.66). Therefore, we must have G (0) > 1. In this case, we

consider the following two possibilities:
1) suppose that I (t) > 0 for all t e (-oo, 0). A study similar to the

previous one gives lim G (t) = 1 and G (t) > 1 for all t E (-oo, 0];

2) let t’  0 be the first point such that (? (t’ ) = 0. Now, we study the
behavior of G in a neighborhood of a point u  0 such that G (~c) = 0.
A short computation gives

A simple study of G shows that there exists E > 0 such that

(2.67) G is increasin g on ~~c; u + ~~ and G is nonincreasing on ~~c - ~, ~c~ .

We claim that G (t) > 1 for all t e (-oc, 0]. For otherwise, let t"  0

be the first point such that = 1. If t"  t’ , then there would exist
to such that t"  to  tf and G (to) = 0. The function G is increasing
on ~t", to] and nonincreasing on [to, t’~. This contradicts (2.67). If t" > t’,
then G (t’)  1 and a simple inspection of (2.22) shows that this is not

possible because G (tf) = 0. Moreover, we have G (t)  0 for all t  t’

(for otherwise, we would contradict (2.67)) so lim G (t) exists and is not
finited (for otherwise, by (2.22), this limit would be equal to 1, a fact which
is not possible because there would exist T  tf such that G (T) = 0).
Now, we write equation (2.22) in the following form
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where

and

From (2.68), it follows that there exists T C ~ such that

Integrating (2.69) between T and t (t  T), we get
1 1 .

Set u = 2Cr j. )}  j., so that iim G(t) = +00, This leads

us to a contradiction because the function G is continuous on (201400, 0].
Finally, G(t) == 1 > 1 for all t ~ (-00, 0]. Next, we write

G(t) == 1 + 03B3(t) with 03B3(t) > 0 and  03B3 (t) = 0. Similarly to the proof
of Step 5, we show that there exist two constants (7i, ~"2 > 0 such that

. ~ ~ ~ ~ ~ ~-~. /~*~~ ~. ~~ ~ ~-.

We conclude as in Step 5 that cxo (0) exists and is positive. This achieves
the proof of Theorem 2. D

Proof Proposition 1. - If the map Fa is a solution of Dir ( p, m), then
the study of the Lyapunov function Vp (A) shows that

Vol. 15, n° 1-1998.
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r = A and X = A - 7r/z. Since A is a solution or (2.8), iayior s

expansion centered at the point X = 0, Y = 0 shows that (2.8) becomes

From the study of the eigenvalues of the matrix associated to the linear
part and from the general theory of perturbed linear systems (see [9]), it

follows that: if b2  4 t,m P)2 , then the eigenvalues are complex with
negative real part, and so the point (0, 0) is a focus; by contrast if

b2 > 4 m-1 (m-p)2 then the eigenvalues are real and negative, and so the

point (0, 0) is an improper node (if b2 = 4 m-1 (m-p)2, there is a double

eigenvalue and the point (0, 0) is a proper node).
Case (i): suppose that Dir (p, m) admits a solution Fa for p > 7r /2. Then,

A (t) = 03B1 (et) is a solution of (2.8) with A (0) = p and lim A (t) = 0.
Let t’ be the first point such that A == x /2 and set B (t) = A (t + t’),
c~l (r) = B (Logr). It follows that Fal is a solution of Dir (Tr/2, m). This
contradicts part (i) of Theorem 1.

Now, suppose 0  p  ~r / 2. A similar study to Theorem 1 shows

that Dir (p, m) admits a solution F03B1 (03B1 minimises Jp over {03B1 E X : 0 
cx (r)  p; c~ (1) = p~ ) . Moreover, the function cx is increasing on [0, +oo).

Case (ii): let Fao be the solution of Dir (x /2, m) which satisfies (1.2)
and set Ao (t) = cxQ (et), t e (~. Let Fa be another solution of Dir (p, m)
and A (t) = c~ (we can suppose that t = 0 is the first point such that
A (0) = ~r/2). Set M = sup ~A (t), t e I~~ (~r/2  M  Let t" such
that A (t" ) = M. Since F~o satisfies (1.2) it follows from (2.20) and the
fact that the Lyapunov function is nonincreasing that

On the other hand, from A ~t" ) == 0 and (2.70), we deduce
.

Then M cannot be close to vr, a fact which implies the existence of
the required a. D

Proof of Proposition 2. - Let F~ be the solution of Dir (~r/2, m~ which
satisfies (1.2) and set A (t) = a (et).

(i) From the equality
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it follows tnat A(t) > u ana u  A(t)  7r lor all (for omerwise,

there would exist t’ > 0 such that = 0 and so A (tf) = ~r. Next,

replacing A by A - 7r, it is easy to check that our solution satisfy the unique
continuation principle, so A = 7r). Then, lim A (t) = L  7r and since

-

there exists a sequence tn -~ +0oo such that A (tn) 2014~ 0 and A (tn) -~ L,
it follows from the previous equality that L = 7r.

(ii) From the inequality Yp (A (t)) > 0 for all t E (~, we deduce that
A (t) > 0 for all t e (~ (the proof is similar to the case (i)). Now, suppose
that lim A (t) = L  +00: then there exists a sequence tn 2014~ +00

such that -~ 0 and A (tn ) --~ L. This contradicts the fact that

Vp (A) is an increasing function and lim Vp (A (t)) = 0. It follows that

lim A (t) = +00. D

Proof of Theorem 3. - The proof of Theorem 3 is based on the Karcher-
Wood identity (see [10]), for a I-form w on B’n with values in u* T N and
which is not necessarily harmonic. Keeping notation as in [ 10], we let V be
a vector field of class C1 defined on its tangential component
on the unit normal vector. The relevant identity is

where div denotes the divergence.
The p-tension of u is the field Tp (u) given by

where grad is the gradient and T2 (u) is the usual tension field of u. The

map u is p-harmonic if and only if Tp (u) = 0. (By the Nash Theorem,
the target manifold N can be isometrically embedded in where n is
the dimension of N ; let A be the second fundamental form of N in 
then (0.3) is equivalent to Tp (u) = 0.)

Vol. 13. n’ 1-1998.
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Now, we take w = ~’ ~ L du and V = r tr (where r, 8 are the polar
coordinates on From (2.71) and (2.72), we get the following equality

r

consequence of (2.73) and the following equality: i +

~d~ ‘c~r l Ir=1~ 2 . D

3. p-HARMONIC MAPS BETWEEN SPHERES AND ELLIPSOIDS

In this section, we establish sufficient conditions for the existence of a

p-harmonic map between spheres or ellipsoids. For a, b > 0 and m, q > 1,
we introduce the ellipsoids

We parametrize the points of (a, b) by

The Riemannian metric on (c~, b) induced from its embedding in

where

h2 (s) = a2 cos2 s + b2 sin2 sand gn denotes the standard metric of Sn.

A map u : -~ is an eigenmap with eigenvalue ~~, if ~, is

harmonic and = a.~ . It is well known that the components of ~c.
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homogeous polynomial of a common degree k; so its associated eigenvalue
is = 1~ (k + m - 1). Examples are the Hopf 6’~
with eigenvalue A = 8, the identity map Idsq : 5’~ 2014~ 5q and the map

~1 -~ s~ (ei8 -~ Z) (see [6] for a more complete list of

examples). Let cx : [0, ~r/2~ -~ [0, ~- f 2~ be a smooth function satisfying
the boundary conditions

For given a, b, c, d > 0, the equivariant a-join of two eigenmaps
u : 6~~ -~ and v : ~S’~’ --~ ~~ is the map

~~~TH2014t2014~2014t20141 ~ tB B /-1 ?" -~ C ~ ~ / JB B

4ur main result in this context is the following Theorem

THEOREM 4. - Suppose p > 2. Let u : Sm ~ Sr and v : Sq ~ Ss be two

eigenmaps with eigenvalues ~u and ~v respectively. If one of the following
hypotheses (i = 1, 2) hold

then there exists an equivariant p-harmonic a-join Fa = ~c * v :

( a, b) --~ (c, d).
Remark 6. - The hypotheses and (H2 ) are independent. Indeed, if

a = b = c = d = 1, p = 2, q = 3, m = 2, Au = 2 and A~ = 8 (for
example, take v equal to the Hopf map h : ,S’3 ~---~ ~’2 and u = Ids2 ) then
(H ~ ) is satisfied but (H2) does not hold. By contrast, if m = 7, Au = 55,
q = 7, = 7, a = b = 1,  = 2 P~ 1 and p = 2 (for instance, this

situation occurs when u : ,S’7 ~ ,S7 is the gradient of Cartan’s harmonic

Vol. 15. n ’ 1-1998.
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satisfied but (Hi) does not hold.

By using the different eigenmaps, we can deduce from Theorem 4 the
existence of new p-harmonic maps. For instance, if we take the join of ~c~
and Idsq and Theorem 4, we get the following
result which generalize the results of Smith [16] (p = 2) and Xu and

Yang [17] (p = q + 2).

COROLLARY. - Suppose q > l. If p > 2 and p > ( ~ - 1 ) 2, then there
exists a p-harmonic a-join u~ * Idsq : ,S’q+2 -~ 

(This p-harmonic map represents the element k E ( ~S’q+2 ) - 7~ . )

Proof of Theorem 4. - The p-energy of the a-join is equal to
B m, i rr ~ B 1 T f - B

where

with

function spaces

We denote by c~~.~2 (respectively ao) the constant critical point c~ - x /2
(respectively c~ - 0). Theorem 3 is obtained essentially by the minimisation
of the functional Jp ( cx ) on Yo. We prove that if one of the hypotheses (Hi)
(i = 1, 2) is satisfied, the the minimum a is different from c~~~2 and c~o.
(Indeed, if (Hl) is satisfied then a.~~2 and c~o are unstable critical points.
If (H2) is satisfied, then Jp (c~.~~~) > Jp (ao) and cxo is an unstable critical
point.) Next, we prove that 03B1 is smooth on (0, Tr/2) and lim 03B1(s) = 0,

s->o

lim a ( s ) == 7r/2. Finally, we prove the regularity of for this purpose,
s-~T,/2
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we neea to stuay tne existence or tne first oraer derivative or a at Lne points
0 and ~/2. The proof of Theorem 4 is divided into 7 steps.

STEP I. - There exists a map a E Yo which minimises J~ on Yo and
satisfies

where

Proof - The proof of this step is similar to the proof of Step 1 of
Theorem 1 and so we omit it.

STEP 2. - Suppose p > 2. If one of the hypotheses (z = 1, 2) is

satisfied then a ~ cx.~~2 and ~x ~ ao.

Proof - First, we note that if p > q + 1 (respectively p > m + 1) then
Jp (ao) = +0oo (respectively Jp (a.~~2) _ -f-oo). Therefore, we may restrict
attention to the case that p  q + 1 and p  m + 1.

Now, suppose that (Hi) is satisfied. If we prove that ao and are

unstable critical points then 03B1 ~ 03B103C0/2 and 03B1 ~ ao. For this purpose, let
~ (s) = sinn s cos-r s where n > 0 is to be taken sufficiently large and
r E (0, g-2+1 ) is to be determined. Set

( ~_~I ~B, so (3.6) is not necessarily satisfied for variations of the form (3.7).)
We study
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as a function of t. A short computation shows that

and

are dominated independently of t by functions in L~ ( (0, ~ / 2~ ) . It follows
by the Lebesgues dominated convergence Theorem that

and

Now, a short computation shows that if c (q - p + 1)  2 d ~v, and if
r tends to g ~ ~+ ~ then Q (() tends to - oo . By the monotone convergence
Theorem, we get lim Q = Q (~) and so we take M large enough
to insure that Q (~~,~ )  0. Finally, for t positive and close to 0, Y~;
and we obtain > Jp (t (M ). So, cxo is an unstable critical point.
Similarly, we prove that if d ~m - p + 1)  2 c then c~~~2 is an

unstable critical point. Now, suppose that (.,~I2 ) is satisfied. As it has been

shown in the previous case, cx~ is an unstable critical point. Now, it suffices
to prove that Jp (cx~~2) > ~Tp in order to conclude that ~x is different

from and Towards this end, set f (s) = sin-2 s s. Thanks

to Holder’ s inequality, we get
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an integration Dy pans gives

Finally, if ( q - p + 1 ) > (m - 1) we get the inequality

This completes the proof of Step 2.

STEP 3. - cx E C°° ((0, ~~2)). Moreover a (s) > ~ for all s E (0, ~/2)
satisfies the boundary conditions (3.3).

Proof. - A straightforward modification of the arguments used in the
proof of Theorem 1 permit us to show that cx E C~ ( ( 0, ~r / 2 ) ) . Now, since
~’2 (s, a (s)) > 0 for all s E (0, ~r/2) and a satisfies strongly the
Euler-Lagrange equation associated to (3.5) on (0, Tr/2), that is

It follows by simple inspection of (3.10) that a E C°° ((0, Tr/2)).
Vol. 15. n° 1-1998. -
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muw, we will suppose iur simplicity that a = u = i general case

is similar). To prove that 8 (s) > 0 for all s E (0, ~-/2), we proceed
similarly to [17]. Set s = Arctg (et) and A (t) = a (Arctg (e~)). Then
(3.10) becomes equivalent to the following differential equation

where

Now, an analogous proof to mat or [i/j snows mat u on )T5.

Finally, lim A (t) and A (t) exist and are finited. Since there

exist two sequences tn ~ 2014oo and tn ~ +00 such that ~ 0 and

A (tn) ~ 0, by passing to the limit in (3.11), we get that A (t) = 0
and lim ~4 (~) = Tr/2. This completes the proof of Step 3.

Proof - We rewrite the equation (3.11 ) as

A simple inspection of the explicit expression of H (t, A, A) shows that
there exist three constants Ci, C2, C3 > 0 such that

Set

and note that
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oince = U, WC see that iui any ~ > u there exists ~ m u

such that 0  A (t)  ~ for all t  T~. Now, suppose that the hypotheses
" lim A (t) = 0" is not satisfied: then there exist a nonincreasing sequence
tn and l > 0 and a natural integer N such that A (tn) > for all n > N. Set

I’ T_ .

~~ ~~ /T~ fl - -- G~ c.

Moreover, we take E close to 0 such that M ~  l . Next, fix n such that
t2n  tn  Te. If we prove that I (t)  ~M~ on [t2n, T~.~, then we would
contradict the fact that > l. Since the function A is continuous on

~t2n, then its maximum is achieved at a point T1 of this compact set.
If ~4 (Ti)  I 

 ~M~, this leads us to a contradiction. For otherwise, we
claim that there exists t 1  T~ such that

But we have

We integrate this inequality between t and T~ and let t tend to -~ we
get: lim A (t) = -oo. This is not possible. Now, it follows from (3.13)
that there exists t’  T~, such that A (t’) = I (we will suppose that t’ is
the first point having this property such that t’  Ti). From the definition
of t’, we have the following inequality

Thanks to the inequality ~ ~’ ~~  A and to (3.14), we get

Finally, using that ~l~’(~£~ ~~’ ~~h (il~ ~~ ~~~ 

and since uJ is an increasing function, it follows that A (Ti)  )M]. This
completes the proof of Step 4.

STEP 5. - If 03BBu = rn (respectively hv = q) then £ (0) (respectively
03B1 (x /2)) exists and is positive.

Vol. 15. nO 1-1998.



66 A. FARDOUN

y m (respectively 03BB03C5 > q) then cx respectively 03B1 (03C0/ 2)) exists

and is equal to o.

Proof - We shall prove the results stated at the point 0. By symmetry,
we get the same results at the point 7T/2. A simple inspection of the explicit
expression of H (t, A, A) shows that when t tends to -oo, H (t, A, A)
tends uniformely to H ( A, A), where

Then, the solution A satisfies

Similarly to Step 5 of Theorem l, set
I 7 / i B

J. tA-/

~ 171

iayiors expansion centerea = u snows tnat mere exists a

function g such that
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From (3.18) and lim 

From (3.19), it tollows that G is a solution ot the following differential

equation:

First, we study the asymptotic behavior of G. For this purpose, we
compare solutions of (3.20) with solutions of the following differential
equation

Thus, we need to investigate the qualitative behavior of solutions to

(3.21). This equation has two constant solutions  0 and

(~2 == a2 > 0 (if ~u = m then ~2 = c, and if A~ then

~2 > c). Let G~. be a nonconstant solution of (3.21). Then a study
similar to one which we performed for the differential equation (2.25)
shows the following statement: if there exists tl such that Gy. (ti) > ~~
(respectively Gr (ti)  a2), then G7. (t) > ~2 for all t e I~, moreover is

a nonincreasing function and lim lir (t) = +oo lim lir (t) = ~2
- 

(respectively   ~2, Gr is-- an increasing function and

lim = lim = ~2). Now we use these qualitative
facts about to (3.21) in order to show that lim G {t) = ~2 . We argue
by contradiction: then there exist ~ > 0 and a sequence --~ such

that either

~~
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nrst, suppose that (.3.22) is not satisfied. We claim that (~ is unbounded
on ( - oo, 0]. For otherwise, there would exist M > 0 such that G (t)  M
for all t E (-00, 0]. Let B  0. If Gs is a solution of (3.21) with
Gs (B) > a2 ~- ~ > ~2, then it follows, from the previous study of the
solutions of (3.21), that

US is a nonmcreasmg tunction, so

Now, a simple inspection of (3.21) shows that there exists C~ > 0 such that

We integrate this inequality between 1~ and lso, and we get

(in particular, we fix Bo = I3 - 

Next, we take B = tn and (?g ( B ) = G ( B ) > ~2 -~- ~ and we take n
sufficiently large such that (t) - G (t) ~  1 /2 (this is possible because
lim 03C62(t) = 0). Then we get G ( Bo ) > M + 1 / 2. This leads us to a

contradiction.

Next, we claim that lim G (t) = +oo. For otherwise, there would exist
a sequence tn -~ -oo where G (tn) = 0 and lim G (tn) _ If we

take t = tn in (3.20), a simple inspection shows that it is not possible.
Now, we write (3.20) as

rrom iim t~ (t) = +00 and (:~.~4), it tollows that tor any c > U there

exists T~  0 such that the following inequality is satisfied

For a fixed e (e  g ), Integrating (3.ZJ ) between ’lQ and t, we obtain

the inequality
, , , ,

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



69ON EQUIVARIANT p-HARMONIC MAPS

Then lim U (t) = +0oo. This leads us to a contradiction because C~ is
t-+C+

a continuous function on ~8. Now, suppose that (3.23) is satisfied. We fix
B  0 and Bo = ~ - ~-  0 (C~ = and a solution Gs of (3.21)
which satisfies Gs (B)  ~2 - ~  ~2. From the study of the solutions
of (3.21), it follows that

is an increasing runcuon, so

Then, a simple inspection of (3.21) shows that

We integrate this inequality between B and so we get Gs (Bo) -
G~ (B) -~ C~ (Bo - B)  -~. Finally, we take B = tn and Gs (B) = (9 (B)
and we take n sufficiently large such that Gs (t) - G (t)1  2 for all

t E B~ . Then, we get G(Bo)  - 2 . This contradicts the fact that
the solution G is positive.

Finally, if A~ > m we have

A short calculation gives

ir Au == m, an argument similar io that or Step 5 or Theorein 1

shows that a (0) exists and is positive.

STEP 6. - Fa is a weakly p-harmonic map.

Proof - Set ,5’~ be the manifold parametrized by

(a sin s. x, b cos s.y) where x E and 0  s  ~.

Similarly, let ,5’q be the manifold parametrized by

(a sin s. x, b cos s.y) wherex E E sq and ~r/2-~  s  n/2.

Yol. 15, nO 
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r~a 

w v .. 
v ~ aam . vi a.iiV 111V~.11V l! ~ 111V11 

p-harmonic map if it satisfies, 

Next, similarly to the equality (2.45) we get,
(3.271

Moreover, we have the following equality

because Q is smooth on ~~, 7r/2 - so ~x is a strong solution of the

Euler-Lagrange equation associated to (3.5), that is (3.28). From (3.27) and
(3.28), it follows that (3.26) is equivalent to

r

Let vi (respectively V2) be the unit normal to (respectively to 
and (respectively be the volume element of the metric of c~SP
(respectively of r~S’q ). Using the Stokes Theorem, the left hand side of

(3.29) is equal to
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let 1Vl = sup{03C6 (x) : x ~ Q (a, b)}, we get ine following

inequalities

and

If we let tend ~ to 0, the right hand side tends to 0; it follows that (3.29)
is - satis-fied. This completes the -proof of Step 6.

STEP 7. - (Conclusion of Theorem 4). - Using Step 5, it is easy to check

that the map Fa is of class C1 on Qm+q+1 (a, b) and since > 0

we conclude, thank to Lemma 2.1 that F~ is of class C°° on
(a, b). L7
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