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ABSTRACT. - We study the ergodic problem for the first-order Hamilton-
Jacobi-Equations (HJB s), from the view point of controllabilities of

underlying controlled deterministic systems. We shall give sufficient
conditions for the ergodicity by the estimates of controllabilities.

Next, we shall give some results on the Abelian-Tauberian problem for
the solutions of HJB s. Our solutions of HJB s satisfy the equations in the
sense of viscosity solutions. © Elsevier, Paris

RESUME. - Nous etudions le probleme ergodique pour les equations
de Hamilton-Jacobi-Bellmans (HJBs). Nous utiliserons les notions des

controlabilites dans les systemes deterministes controles pour donner des
conditions suffisantes pour la convergence ergodique.

Ensuite, nous donnons des resultats du probleme de Abel et de Tauber
pour les solutions des HJBs. Nos solutions des HJBs satisfont les equations
au sens de la solution de la viscosite. @ Elsevier, Paris

1. INTRODUCTION

The so-called ergodic problem for the Hamilton-Jacobi-Bellman

equations concerns in studying the convergence of the terms 

(as A goes to +0, T goes to +x respectively) in the following
equations.

(Stationary problem - infinite l2or-i:,on control problem)
m l = 0 . :r F {1 .

Vol. 15/9$/01/~ Elsevier. Paris



2 M. ARISAWA

( lime dependent problem - finite horizon control problem)

with either one of the following boundary conditions.

(Periodic B. C. )
SZ is assumed to be a n-dimensional torus

wnere z 2 ~ n) are real numbers, in which case 03B1) are
periodic in xi ( 1  i  n) with the period Ti ( 1  ~i  n).
(Neumann and oblique type B. C.)

wnere is a smoom vector neia on pointing outwaras, i.e. aenotlng
n(x) the unit outward normal at x E satisfies

(State constraints B. C. )

(5) ~c~ (x) , u(x, t) are viscosity supersolutions of (1), (2)
in x (0, oo) respectively.

Here, S~ is a bounded, connected, open smooth subset in R~ ; 
(A > 0) and u(x, t) are real-valued unknown functions defined in ~,
n x [0, oo) respectively ; A is a metric set corresponding to the values
of the controls for the underlying controlled dynamical system ; b(x, a)
is a continuous function on S~ x A with values in Rn which is bounded,
Lipschitz continuous in x uniformly in is bounded continuous

on Q x A with real values.

The relationship between the convergence of 

T) and the notion of "ergodic problem" was mentioned
in our previous paper [1]. Here, we only note that the unique viscosity

Annales de l’Institut Poincaré - Analyse non linéaire



3ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. II

solutions (for the definition of the viscosity solution, we refer M.G.

Crandall, P.L. Lions [5]) u(x, t) of the equations (1), (2) are the
value functions of the following control problems. (See P.L. Lions [6], [7],
I. Capuzzo-Dolcetta - P.L. Lions [3], I. Capuzzo-Dolcetta - J.L. Menaldi
[4], H.M. Soner [9]).

wnere 03B1(.) is any measurable tunction "called control trom [0, oo ) to

A, is the solution of the following ordinary differential equation
corresponding to of(’) : :

(Controlled deterministic system - Periodic B.C.)

(Controlled deterministic system - Neumann and oblique type B. C. )

. is continuous and nondecreasing.

(Controlled deterministic system - State constraints B. C.)
- ~

paper [I], we recall them here.

15. n° 1-1998.



4 M. ARISAWA

THEOREM A. - Let f (x, a) in ( 1 ), (2) be of the following form f (x, a) _
g(x) ~-- h(x, a), where g(x) is an arbitrary real-valued Lipschitz continuous
function on S2 and h(x, cx) is a bounded continuous function in SZ x A. If for
any Lipschitz continuous function g(x) there is a constant dg such that

then there exists a subset Z of SZ which satisfies the following properties
(Z), (P), (A).

(2~ Z is non-empty and z E Z if and only if for any y E SZ and for any
~ > 0 there exist TE > 0 and a control 03B1~ such that

(P) Z is closed, connected and positively invariant, i.e.

(A) h has the following time averaged attracting property, i.e. tor any

open neighborhood U of Z,

THEOREM B. - Let f(x, a) in (1 ), (2) be in the form of f(x, c~) _
g(x) -~ h(x, cx) where g(x) is an arbitrary real-valued Lipschitz continuous
function on SZ and 03B1) is a bounded continuous function in 03A9 x A.

Assume that there exists a maximal subset SZa of SZ such that for any Lipschitz
continuous function g(x) there exists a constant number d9 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire



5ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. II

Then, there exists a subset Zo of SZ which satisfies the following properties
(Zo), (Po), 
(Zo) Zo is non-empty and z E Zo if and only if for any y E no and for
any ~ > 0 there exist T~ > 0 and a control such that

_ _ - , , .~. , , I

(Po) Zo is closed and positively invariant, i. e.

ror any open nelghborhood u uJ Z/o,

where ~U(U c 03A9) denotes the characteristic function of the set U.

Roughly speaking, Theorem A (resp. B) asserts that the convergence

property (11), (12) (resp. (15), (16)) in 03A9 (resp. in no) leads to the existence
of the ergodic attractor Z (resp. Zo). In other words, the existence of such
a subset Z (resp. Zo) is a necessary condition for the convergence property
(11), (12) (resp. (15), (16)).
Our first goal in this paper is to study the converse, i.e. does the existence

of Z leads the convergence (11), (12) ? For this, we introduce a notion of
controllability (the exact controlability and the approximate controllability).

Next, we shall study the equivalence between the averages :

and

which can be called an Abelian-laubenan problem. More precisely,
in the linear case, i.e. b(x,a) = b(x), V x E SZ, f(x, a) = f(x),
V x E 0, it is known that if for a continuous function f (x) there exists
lim03BB~0 03BB ~0 e-03BBt f {xo(t)) dt at some point x0 ~ 03A9 (x0(t) denotes the

solution of (8), (9), (10)), then Jo f (xo (t)) dt exists and
-- _ T

Vol. 15, n° 1-1998.



6 M. ARISAWA

holds, which is called the Abelian Theorem ; on the other hand, if for

a continuous function ~f (x) there exists ~’o f(xo(t)) dt at some
point Xo E 0, then lim03BB~0 03BB ~0 e-03BBt f(xo(t)) dt exists and (19) holds,
which is called the Tauberian Theorem. We refer for instance to B. Simon

[8] for these results. Here, we generalize these relationships in a nonlinear
case when b(x, a), f (x, a) possibly depend on a E A. These results will
be given in section 3.

Finally, we shall see the relationship between the convergence property
(11) of Theorem A and the following first order partial differential equation

with the same nounaary conaition as lor ( 1 ). We shall call the equation
(20) the equation of first integrals by analogy with the dynamical systems
case, i.e. b(x, a) = b(x), d ~ E Q. Roughly speaking, we shall assert

that the convergence (11) implies that the unique viscosity solutions of the
equations of first integrals are the constants, and the converse is also true.
These results will be given in Proposition 9, Theorem 10 in section 4.

In the following, we use the notations Z, N for the sets of real,
integer, natural numbers respectively. The usual distance between two

points is given by the usual scalar product of nxn is
denoted by ~, >. We use the letters C(Ci, C2, ...) for positive constants.
We shall write the solution of the ordinary differential equations (8) or (9)
or (10) as x~ (t), y~ (t), t > 0, etc... which correspond to the initial value
xa (0) _ x, y~ (0) _ ~. We denote by A the set of all measurable functions
from ~0, oo ) to A; by Ax the subsets of A such that

We shall sometimes write

where the right-hand side appears in ( 1 ), ~~).

From the Lipschitz continuity of b ( x ; a) in x E Q and a E A, in Periodic
B.C., and Neumann B.C. cases, we have

V V a control , V t > 0 Ao > 0 is a constant,

Annales de l’Institut Henri Poincaré - Analyse non linéaire



7ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. n

and in the State constraints case, we nave for any x, ~ ~ a c, ana for

any cx ( ~ ) E Ax, there exists ,Q( ~ ) E Ay such that

To be more specific, in the Periodic B.C. case Ao is given as follows (see
P.L. Lions [6])

For Neumann type boundary conditions, (21) is proved in P.L. Lions [5]. In
the case of State constraints boundary condition, we refer to M. Arisawa-
P.L. Lions [2]. In particular, if Ao = 0 in (22), we have respectively in
place of (21) (in Periodic and Neumann type B.C. cases)

and in place of (21’) (in State constraint B.C. case) for any 
a(.) G Ax, there exists ,~( ~ ) E Ay, such that

where Co is a constant in each cases, we shall call that the system is

Lipschitz continuous.
The author is very grateful to Professeur Pierre-Louis Lions for his

constant encouragements and helpful advices.

2. CONTROLLABILITY

We recall the definitions of the exact controllability and the approximated
controllability.

DEFINITION 1 (Exact controllability). - A point x E S~ is said to be

exactly controllable to a point y E S~ if there exist a control tx ( ~ ) E Ax and
T(x; y) > 0 such that y)) _ y.

DEFINITION 2 (Approximated controllability). - A point x E SZ is said to
be approximately controllable to a point y E SZ with the estimate 03B4(~; x, y)
Vol. 15, n° 1-1998.
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-* ~ ~ ~-*

x. ~)) - ~I  ~~ ~, y)  s(~~ ~, ~).
From the above definitions, one sees that the properties (Z) and ( Zo )

of the ergodic attractors Z and Zo in Theorems A,B mean that all points
in SZ (resp. are exactly or approximately controllable to any points in
Z (resp. Zo). That is, the convergence ( 11 ), (12) or (15), (16) implies the
controllability of the system towards Z or 20. In the rest of this section, we
shall study the converse, i.e. does the exact or approximated controllability
imply the convergence ( 11 ), (12) or (15), ( 16) ? We present two results in
Theorems 1 and 2 in this direction.

THEOREM 1. - Assume that any point x E SZ is either exactly controllable
or approximately controllable with some estimate b(~; x, y) to any point
y E Q, and that the controllability is satisfied in the following uniform
sense, i.e. either one of the following conditions (i), (it ), (iii) holds.

(i) (Uniform exact controllability). There exists a number T > 0 such
that any point x E SZ is exactly controllable to any point y ~ 03A9 with
T(x, y) c T.

(ii) (Uniform approximated controllability). There exist some ~y E ~0,1)
and some C > 0 such that any point x E S~ is approximately
controllable to any point y E SZ with the estimate b(~; x, y) such
that

(iii) (Uniform approximated controllability for the Lipschitz continuous
system). Let the system be Lipschitz continuous ((23)). There exists
a continuous function 03B4(~) defined in ~ > 0 such that lim~~0 03B4(~) =

and any point x E SZ is approximately controllable to any point
y E S~ with the estimate ~(~; x, y) such that

Let f(x; ~x) be Lipschitz continuous in ~2 x A uniformly in a E A. Then,
for any such function f (x, a), there exists a constant d f such that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire



9ERGODIC PROBLEM FOR THE HAMILTON-JACOBI-BELLMAN EQUATION. II

Next, we shall consider the situation such that any point x E S~ is exactly
or approximately controlable to any point y E Z1, where Zl is strictly
contained in Q.

THEOREM 2. - Assume that there exists a nonempty closed invariant subset

Zl c SZ which satisfies the following properties.
(Ao) For any point x E Q, for any cx(~) E > 0) is

attracted to 21 in the following sense.

(i) (General case of (21) or (21’)). For any point x E S2BZ1, for any
03B1(.) control in Ax, and for any ~ > 0, there exist z~ E Zl and a
number T~ > 0 such that

where C > 0, ~y E [0, 1 ) are constants depending on x.
(ii) (Lipschitz continuous case of (23) or (23’ )). Let the system be Lipschitz

continuous. For any point x E 03A9BZ1, for any 03B1(.) control in Ax, and
for any ~ > 0, there exist z~ E Z1 and a number T~ > 0 such that

(C) Any point x E is approximately controllable to any point
z E Zi with the estimates $(~; ~r, ~), in each of the following cases.

(i) (General case of (21) or (21’ )).

where C > 0, ~y E [0,1) are constants depending on x, z.
(ii) (Lipschitz continuous case of (23) or (23’)).

where 03B4(~) is a non-increasing continuous function defined in ~ > 0.
(UCZ) Any point z E Zl is either exactly controllable or approximately

controllable with some estimate b(~; z, w) to any point w E Z1, and
the controllability is satisfied in either one of the following uniform
sense: (i) uniform exact controllability, (ii) uniform approximated
controllability, or (iii) uniform approximated controllability in the
Lipschitz continuous system in Theorem l, where in the statement
S~ is replaced by Zl.

Vol. 15, n° 1-1998.
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J l~(. DID Vt U /W 11 Y 4I1. l..(. ~ l1. 1 

for any such function f (x . 03B1) there exists a constant d f such that
._ _, __ . , . _ .. ---

The followings are simple examples of the systems satisfying the

assumptions in Theorems 1 and 2.

Exampl.e 1 (for Theorem 1). - Let H(x, p) = a), p> -
f(x, 03B1)} = |p| - f (x), where f (x) is an arbitrary Lipschitz continuous
function in ~ E n. Consider the equation (1) with this Hamiltonian and
either one of the boundary conditions of Periodic B.C., Neumann and
oblique type B.C., or State constraints B.C. Then, this is the case of

the uniformly exact controllability in Theorem 1, (i), and we have the
convergence property (25), (26).

Example 2 (for Theorem 2). - Let 03A9 = (-1,1) x (-1,1) C and

put = + ~p2~ - f (~)~ where ~ _ E Q,
p = ~2, and f (x) is an arbitrary Lipschitz continuous function
in SZ. Consider the equation (1) with this Hamiltonian and either one of the
boundary conditions of Periodic B.C., Neumann and oblique type B.C., or
State constraints B.C. Then, we can apply Theorem 2, because the system
satisfies (23) and Zi = ~ (0, ~2 ) ~ ] -1  x2  1 ~ satisfies (A), (C) and
(UCZ).
The proof of Theorems 1, 2 are based on the following two Lemmas.

LEMMA 3. - Let dl, d2 be the real numbers, and assume that 
are respectively a viscosity subsolution and a viscosity supersolution of the
problem 

-+- d~ _ ~ . ~ F Q .

boundary conditions of Periodic B. C., Neumann and oblique type B. C., or
State canstraints B.C. Then, dl  d2.

LEMMA 4. - Let cx~ in (1 ), (2) be Lipschitz continuous in x E SZ

uniformly ifi cx E A. Let ~o > ~ be the number given in (21 ), (21 ’). Then,
we have the following.

(i) (In the case when ~o > 0)
.~_~ ,. , , , . , " _ _.., , a ... ~ .. , =

w~here C~’ ~ U is a constant.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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(ii) (In the case when ,~o = 0)

where C > 0 is a constant.

Proof of Lemma 3. - Let dl > d2, and we shall look for a contradiction. If
necessary, by adding a positive constant to we can assume that ~cl > ~c~.
Let ~ > 0 be small enough such that dl - ~u1 > d2 - ~u2 holds in H. Since
u2 is a supersolution of the above problem, u2 is also a supersolution of

with the corresponding boundary condition. Since ~cl is a subsolution of

with the same boundary condition, the standard comparison theorems of the
viscosity solution theory (for the periodic B.C. case, see P.L. Lions [6]; for
the Neumann B.C. case, see P.L. Lions [7] ; for the state constraints B.C.
case, see H.M. Soner [9], I. Capuzzo-Dolcetta, P.L. Lions [3]), we have
ui  u2, S~, which is a contradiction. Therefore, dl = d2.

Proof of Lemma 4. - (i) In the state constraints case, the estimate (31 )
on follows from I. Capuzzo-Dolcetta and P.-L. Lions [3]. In the other
cases, the proof is straightforward and we reproduce it here for the sake

of completeness. So, in order to prove (31) for Ao > 0 (for the cases of
Periodic B.C. and Neumann B.C.), first we shall prove

Let be arbitrary, ~ > 0 be an arbitrary small number, and take
a control /~o of y such that for any T > 0, any A > 0, the following holds

Vol. 15, n° 1-1998.



12 M. ARISAWA

1 nen, oy me aynamlc programming principle we nave

~~c, ~ml - 

By the continuity (21) ot the system,

and putting this into (35) we have

ana since c > u, c are aronrary, we get

(36)
w n 0

where t,’ > U is a constant, = YI + G a . It is easy to
see that G(T ) (T > 0) takes its minimum at To = ~o 
provided that ~~ - ~~  ÀOÀ’ Inserting To in (36), we have (34).

For x, y E SZ such that |x - y| ~ 1 03BB0-03BB, since .

where the right-hand side converges to 1 0,

and (31) is proved.
(ii) The inequality (32) is proved by repeating the preceding proof by

taking T = -E-oc in (35). The relationship (33) is also quite similarly shown.

Now, we shall prove Theorems 1 and 2.

Proof of Theorem 1. - First, we shall prove

tor each cases ot (i), (11) and (111).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In the case of (i), for an arbitrary pair of x, y e f2 there exists T > 0
such that for a control a of x, = y, T(x, y)  T. Thus, by
the dynamic programming principle

and by tne bounaeaness ana Aux,

where C > 0 is a constant. Since x, y ~ 03A9 are arbitrary, by letting A - 0
we get (37).

In the case of (ii), there exists a number 1’, 0  1 which satisfies the

statement. Let x, y ~ 03A9 be an arbitrary pair of points, ~ > 0 be arbitrary,
and take a control 03B1 of x such that  ~. Then, by the
dynamic programming principle

where C > 0 is a constant independent of the choice of x, y E > 0,
A > 0. From this and Lemma 4, we have

Now, we recall the estimate (24). Then, putting

in (38), we have (37).
In the case of (iii), from the same argument as in the case of (ii), by

using Lemma 4, we have

Vol. 15, n° 1-1998.



14 M. ARISAWA

where (~’ > U is a constant. And smce 1 x ; y ) = U ~b (~) ), b (~) _
+oc, we have (37).

Therefore, in each cases of (i), (ii) and (iii), we have proved (37).
Now, from (37) there are a subsequence A’ -~ 0 of A - 0 and a number

d~ such that

(39) lim = dl , uniformly in x E SZ .

We shall prove the uniqueness of the number dl. For this purpose, suppose
that there are another subsequence -~ 0 0 and a number d2
such that d2,

(40) lim (x) = d2, uniformly in x E SZ .
~.~->o

Assume that di > d2, and we shall look for a contradiction. If d1 > d2,
by the uniform convergence of for c > 0 small enough we
can take A’, small enough such that

is a viscosity subsolution of

+ di  ~ , x E SZ ,
and a viscosity supersolution of

H(x, + d1 ~ -~ , x E SZ ,

u~~ is a viscosity subsolution of

+ d2  ~ , x 
and a viscosity supersolution of

H(x, V u~~ ) + d~ > --~ , x 

where H(x, p) = f (x, a) ~, with the appropriate
boundary conditions. Then, by Lemma 3, since E > 0 is arbitrary we have
di = d2. Therefore, we have proved the convergence property (25). We
do not give the proof for the convergence property (26), here. This can be
obtained from (25) by using the Theorem 5 below in §3.

Proof of Theorem 2. - First of all, we remark that from Theorem l,
the assumption (U C Z) leads the following : for any bounded continuous
function f(x, a) in Q x A, Lipschitz in x uniformly in a E A, there
exists a constant d f such that .

(41) lim = d f , uniformly in z E Zl ,

(42) lim 1 u(z, T) = df , . uniformly in z E 2"i .

Annales de l ’Institut Henri Poincaré - Analyse non linéaire
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In the following, we only prove the statement for the general case of (21)
or (21 ’), for the Lipschitz case can be proved similarly. Let x E ~, and
choose a(.) so that for arbitrary c > 0, T > 0,

Then from the condition (Ao), (i), for any 8 > 0 there exist zs E Z1,
Tb > 0 such that

where C > 0, ~y E [0,1) are constants depending on x. From Lemma 4,
by putting T = T8 in (43) we have

_ . , _ ~ ~ _ ~.. ~ ’It. -- / 1 T _ _ v . "" ~ B ~-~~BB"~ 1

and trom me estimate or 1 b, we Know mar me ngm-nana siae or me aoove

inequality converges to 0, provided that we take

for some 0  w 1. Since é > 0 is arbitrary, from (41) we have

Next, we shall prove the converse relationship

Let x E E Zi be arbitrary, £ > 0 be arbitrary. By the assumption (C),
there exist a control ~x of x, ~, z) > 0 such that x ,  ~,

~, z)  b(~; ~, z). Therefore, as in the proof of Theorem 1, by using
the dynamic programming principle, we have
(46)

here we used Lemma 4.

Then, by putting ~ = exp(-~-~~+w~), for some 0  w  ~-1 - 1 in
(46), from (41) we have (45).

Therefore from (43), (45), we have proved the convergence property
(29). The relationship (30) can be proved similarly, and we omit the proof.

Vol. 15. n~ 1-1998.
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J~ 1 1BVLLlal.1

In this section, we shall study the relationship between the two averages
and limT~~ 1 T u(x, T). The following result (Theorem 5)

concerns the case when one of the limits exists uniformly in x E S~, in
which case the two convergences are equivalent. Next, in Theorem 6 we
treat the case where the convergences hold, but not necessarily uniformly in
x E Q, in which case we can show that the existence of limT~~ T u(x, T)
implies = T u(x, T). We shall state the Theorems.
THEOREM 5. - Let ~ca (x, ) , u(x, t) be the solutions of (1 ), (2) respectively

which satisfy the same boundary condition, either one of Periodic B. C.,
Neumann and oblique type B. C., or State constraints B. C. respectively.
Then, the following holds.

(i) If converges uniformly in x E SZ to a real number d as ~

goes to 0+, then T u(x, T) converges uniformly in x E SZ to d as

T goes to 

(ii) If T u(x, T) converges uniformly in x E SZ to a real number d as

T goes to ~-oo, then converges uniformly in x E SZ to d as
~ goes to 0+.

For the case of pointwise convergence, first we shall give the following
Lemmas.

LEMMA 6. - Let t) be the solutions of (1 ), (2) respectively
which satisfy the same boundary condition, either one of Periodic B. C.,
Neumann and oblique type B. C., or State constraints B. C. respectively.
Then, the following holds.

LEMMA ./. - a) ln ( 1 ), (~) be ~n the form cx) _

f(x) + g(x, a), where f(x), g(x, cx) are continuous functions defined in S~,
SZ x A respectively. Let ua (t), u(x, t) be the solutions of (1 ), (2) respectively
which satisfy the same boundary condition, either one of Periodic B. C.,
Neumann and oblique type B. C., or State constraints B. C. respectively. We
denote
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And we assume

(51) H(x, p) is convex in p 

Then, there exists 0  T  1 such that the following holds

1

We tnen obtain the following Theorem trom Lemmas b and ’/.

THEOREM 8. - Let ua (x), t) be the solutions of (1 ), (2) respectively
which satisfy the same boundary condition, either one of Periodic B. C.,
Neumann and oblique type B. C., or State constraints B. C. respectively.
Then, the following holds.

(i) If at a point ~ E S2 u(x, T) exists, then 
exists and

(ii) Let in (1), (2) satisfy the assumptions in Lemma 7. Then,
we have

1

Now, se shall prove the Theorems and Lemmas.

Proof of Theorem 5. - (i) Let M = sup03A9 A|f (x, and let ~ > 0

be an arbitrary small number (which is fixed). Let x be an arbitrary
point and let T > 0. We choose 03BB = ~ . T -1. Then, by the dynamic
programming principle

Vol. 15, n° 1-1998.
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in 

and dividing the both hand-side of (55) by ~, letting T -~ oo, by the
uniform convergence of to d we get the following

Since c > 0 is arbitrary, we have proved

~ E n. And the proof of (i) is complete.
(ii) Let v(x, t) = t), d ~ E Q, V t > o. Since t) is the

viscosity solution of

with the appropriate boundary condition, v (x, t) is the viscosity solution of

with the same boundary condition as u(x, t). Therefore, by the dynamic
programming principle we can write
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Let M = sup03A9 A |f(x, 03B1)|. Since u(x, t) ~ Mt, we deduce

where C > 0 is a constant.

Hence, multiplying the right-hand side of (58) by A, letting t -~ oo,
we have

Let E > 0 be an arbitrary fixed number, and let A > 0, T > 0 satisfy
6 == AT. By the uniform convergence of § u(x, T) to d as T --~ oo, there
exists To > 0 such that

For an arbitrary T > To, we rewrite (59) as follows

We estimate the second and the third terms of the left hand-side of the

above equality.

s G , control .

Vol. 15, n° 1-1998.
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rrom (b t ), (bz), (b~), we obtain

wnere ~ u as ~ ~ u. i nererore, we nave

ana irom tne aDove aiscussion, tne convergence is uniform in x E ~ l.

Proof of Lemma 6. - Let M = sup03A9 A f(x, cx), and x be an arbitrary
point in SZ. We write

First, for (47), we get the following inequality from (64)

Denote d(x) = lim T T), and for an arbitrary ~o > 0 choose To > 0
such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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In the inequality (65), we set T = To and we have

Now, ATo and we have the following

From (67), (68),

Since this inequality holds for any A > 0 independently of the choice of
6-0 > 0, To > 0 taken in (66), as E == 0,

and we have (47), for 6:0 > 0 is arbitrary.
Next, for (48), we get the following inequality from (64),

~~ ~

here we used the same estimate as in (68). Denote ~(~) ==
lim supT~~ 1 T u(x, T), and for an arbitrary number ~1 > 0 choose Ti > 0
such that

In the inequality (69), we set T = Ti and by (70) we have

Putting ~ _ we get

By the same argument as the one used to prove (47), we get (48) from
the above inequality.

Vol. 15, n° 1-1998.
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Proof of Lemma /. - == V A > U, V t 2; U, E 03A9.

Since is the viscosity solution of

with the appropriate boundary condition, va (~, t) is the viscosity solution of
(72)

__ -

there exists 0  T  1 with which the following holds : for any a > 0,
t > 0 such that At  T  1,

~ T T / rl ~ TT/ B . !~1 B T T / ~1 B

tience, rrom (50), (72), (73) 03C503BB(x, t) satisfies

theorem, we have

I B / ~B ~ / ~B ~ ~1 n . T

Proof of Theorem 8. - We have (i), directly from (47), (48) in Lemma 6.
For (ii), if f(x, cx) satisfies the assumption in Lemma 7, we can combine
(47) in Lemma 6 with (52) in Lemma 7, and we have (54).

4. FIRST-INTEGRAL EQUATION

In this section, we study the relationship between the convergence
for all x E SZ, T T), for all x ’E 03A9 and

the unique solvability (in the viscosity solutions’ sense) of the first-integral
equation

B ~__~ r ~1.1..._ ~ B c~. _/~~B~ 1 n ~- ~- n

mtn same bounaary condition as ( 1 ),(1,). Uur results are tne following.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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YROPOSITION y. - we assume that any continuous solutions of (LU) 1s

constant. Assume that for a bounded continuous function f(x, a), x E SZ,
03B1 E A, 03BBu03BB (x) converges to a continuous function uniformly in x E SZ as
~ goes to 0. Then

where d f is a constant.

THEOREM 10. - If for any continuous function f (x~ in ~2, for the solution
ua (x) of (1 ) with f(x,a) = f(x), there exist a real-number d f and a
sequence {03BBn} such that limn~~ 03BBn = 0,

then any continuous solution of (20) is constant.

The claim in Theorem 10 holds for more general controlled
system than stated above. In fact, let the Hamiltonian H(x,p), x E S~,
p E R" satisfy

where a ( 1~ ~ ~ 0, > 0. Let us denote by the solution of the equation

with an appropriate boundary condition of Periodic B.C., Neumann and
oblique type B.C. or State constraints B.C.

In this situation, if for any continuous function f (x) in S~, there exist a
real number d f and a sequence (An ) such that ~n = 0,

then any continuous solution of

with the same boundary condition to (76), is constant. An example of such
Hamiltonian is (m > 1).
VoL 15, n° 1-1998.
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d(x) uniformly in SZ. By the dynamic programming principle
~ ~~r ,

S w ? 4n1. / T 1 _ T ~~

i ms implies tnat is a solution or ana mus is a constant.

Proof of Theorem 10 and Remark. - Theorem 10 is a special case

of Remark, where = k in (75). So we shall prove the claim in

Remark. Let be a continuous viscosity solution of (77). Then, for
ux(x) = ua(x) is the unique viscosity solution of

with the same bounaary condition rrom tne statement, tnere exist

a real number dw and a sequence {03BBn}n~ such that 03BBn = 0,
limn~~ 03BBnu03BBn(x) = d03C9 = ~ x E 03A9. Therefore, is constant.
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