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ABSTRACT. — We are concerned with the multiplicity of positive and
nodal solutions of

— Au+ pu = Q(z)|ulP~>u in RV
u € H'(RM)

2N
where 2 < p < N3’ N>3,u>0,Q¢€ C(RY) and Q(z) > 0 for

N
x € RY. We show how the “shape” of the graph of Q(z) affects the number

of both positive and nodal solutions.
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568 D. CAO AND E. S. NOUSSAIR
1. INTRODUCTION

We consider the multiplicity question of both positive and nodal solutions
(solutions which change sign) of the following problem

— Au+pu = Q(z)|uff~>u in RN
u€ H!

(1.1)

H}(RN), and Q € C(RY) is assumed to satisfy the following condition:

2N
where N > 3, 2<p< N9 p > 0, H' denotes the usual Sobolev space

Condition (Q)

Q(z) > 0 in RN and there exist some points al,...,a* in RY such that
Q(a’) are strict maximums and satisfy

Q(¢?) = Qmax = Max{Q(z) : z € R¥} >0, j=1,...,k.

Our objective is to establish the existence of at least k positive solutions
and k£ nodal solutions of problem (1.1). Our main result is:

THEOREM A. — Assume condition (Q) holds. Then there exists pu, > 0
such that problem (1.1) has at least k positive and k nodal solutions for
each | 2 o

It is known that if () is a positive constant, (1.1) has a unique positive
solution for each y > 0 [10], and infinitely many radially symmetric nodal
solutions. When Q(z) is not a positive constant, the existence of a positive
solution has been established by several authors under various conditions.
We mention, in particular, results by A. Bahri and P. L. Lions [3], P. L.
Lions [13], Yi Li [11], A. Bahri and Y. Y. Li [2], D. M. Cao [6]. In [2],
[3], [11], [13], Q(z) is required to satisfy

Q(z) - Q as|z| — oo and
Q(z) - Q 2 ~Cexp(=8lz]) as |z]— oo,

for some constants C,6 > 0.
In [6], Q(z) is required to satisfy

Qz) > 22-P/20 for z eRY.

Regarding nodal solutions we mention a result by X.P. Zhu [17] where
existence of at least one nodal solution is established provided Q(z) satisfies

mm—@zil

o as |z| — o
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MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 569

for some constants C,m > 0.

In this paper, we do not require Q(z) to satisfy any asymptotic property,
all of the above conditions may fail in our case. In fact, it is easy to construct
examples of Q(z) for which none of the above criteria are satisfied and
condition (Q) holds. When Q() is a positive constant, RV is replaced by a
bounded or an exterior domain, V. Benci and G. Cerami [4], G. Cerami and
D. Passaseo [7], A. Bahri and P.L. Lions [3] have considered the effect of
domain topology on the existence of positive solutions. Roughly speaking,
if Q2 has a “rich” topology then the problem

—Au+tpu=uf 'y  z€Q
ulaQ =0

has many positive solutions for larger .

In this paper RY has a trivial topology. Our emphasis here is on the
“shape” of Q(z). Our result shows how the “shape” of the graph of Q(x)
affects the number of both positive and nodal solutions.

Our arguments are based on a combination of the concentration-
compactness principle of P. L. Lions [12], and Ekeland’s variational
principle [9].

In Section 2, we give some notations and preliminary results. In Section 3,
we first establish two results concerning the compactness of minimizing
sequences and then give a proof of Theorem A.

2. NOTATIONS AND PRELIMINARY RESULTS

. N .
For a > 0, let C,(a’) denote the hypercube [](a] —a, al +a) centred at
=1

o =(a), j=1,...,k; i=1,...,N. Let éa(aj) and 0C,(a?) denote
the closure and the boundary of C,(a’) respectively.

1
Set A = —, v(z) = A¥®P"2y(A\z). Then (1.1) becomes
7 (z) (Az)

1) { CAvtv=QOD)P % i RY

ve H.

Set Qx = Q(\z).

Vol. 13, n° 5-1996.



570 D. CAO AND E. S. NOUSSAIR

For u € H', ¢ € R and nonnegative bounded functions b € C(RY),
define

1 1
Iy (uw) = 5 / [Vul? + u? — ;/b(m)|u|”
Mgy ={ue€ H':w#0and (I{)(x)(u),u) =c}
Ly = inf{ly)(u) :u € M,f(m)}

(2.2)

where I{,(z) denotes the Fréchet derivative of I,).
We will write Iy(,)(u), Mgy, Iy, and Ié(x) simply as Iy(u), Mg, If
and I; if there is no confusion. We will also write My, I{) as M; and I;.
Choose numbers K, £ > 0, so that C(a’) are disjoint, Q(z) < Q(a’)
k . N
for x € 0C,(a’) for j = 1,...,k, and |J Ce(a?) C [[(~K,K). This is
=1 =1

]:
possible by the assumptions on Q).

Define ¢\ € C(R,R), g\ € C(H',RN) by

% t > g
A
(2.3) oa(t) = ¢ —?g t< 2—f—
2K ; 2K
DY DY
J ox(@i)|ul?

: A(u) = i =1,2,...,N d
(24) g)\(u) flu‘p ? 34y ’ an

9r(w) = (gi(w))-

All our integrals are over RY unless otherwise stated.
Let C;/A = Cg/,\(%\J-), and for j = 1,...,k, let
N{={u€ H':ue Mg, and g)(u) € C’Z/A}
(2.5) O ={u€ H' :u€ Mg, and gx(u) € 9C},,}
A, ={ue H :u* € Nj}
N ={ue H' :u* € N} UO] and ut or u™ € O}}

where vt = max{u,0}, u= = ut — w.
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MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 571

It is easy to verify that N{ ,Oi,Ai and BAi are non-empty sets for
3 =1,...,k. Define for j = 1,...,k

Ji =inf{Ig, (u) :u € AJ }
(2.6) J] = inf{Ig, (u) : u € IAL}

P} = inf{Ig, (u):u € N’}

P = inf{lg, (u) :u € O}

The main results of this section is included in the following proposition:

PROPOSITION 2.1. — Assume condition (Q) holds. Then there exists Ao > 0
such that for each A € (0,)), j =1,...,k ‘
(¢)) J’ < 3Ig,,., and J} has a minimizing sequence {ul} C A, satisfying

IQA (ufz) - ‘])]\

0, W) —0 in H!
as n — oo. . _

(2) P < 2Ig,.,, and P} has a minimizing sequence {vi} C Nj

satisfying . _

IQA ('ng) - Pi

I, (v) —0 inH?
as n — 0o.

The proof will be accomplished by a series of lemmas.

Lemva 2.2. - If = g for ¢ > 0, and

-2
I,;’g[,f+[b—c—pp le| forany ceR

where b is bounded, b € C(R™) and b(z) > 0 in RN.
Proof. — Let w € My and ¢ > 0. Then

/]Vu|2—|—u2 =/b|u|p+czc
I(u) = </|Vu12 b ) +2

> - = —,
% c+p 2

Vol. 13, n® 5-1996.



572 D. CAO AND E. S. NOUSSAIR

To show that equality holds, let v € H*, [|Vv|? = ¢, and define

Uy (z) = oWV 2(az), w,(z) = (1+ 6)u,

with § > 0 being selected so that w, € M.
Since [ |Vu,|? = ¢, [|us|? = oW =29/2=N [|y|9 = 0 as 0 — +oo0,

for g € |2, N_3) it is easy to see that such a § = §(o) exists and

6 — 0 as 0 — 4o00. Therefore
1 9 s 1 c
Ij(ws) = 5 |[Vwe|® + |we]* = = [ bjlw,|P — 5 as 0= oo
p

Hence I} =

To complete the proof of Lemma 2.2, let ¢ > 0 and u € M, °. Then

‘/x|Vu|2 +u? = /b|u|p —c< /b|u|”.

Let v = tu, where ¢ > 0 is selected so that v € M. It is easy to see
that ¢ € (0,1). We have

Li(v) = (% - %) /|Vu|2+v2
= G— - %)ﬁ/lw]? + u?
(o))

p—
2p

= Ib(u) + Ig —

The required inequality then follows by taking the infimum over M, °.

LemMmA 2.3. — Assume condition (Q) holds. Then for any € > 0, there
exists a A\ > 0 such that

(1) Ji < 2Ig,. +e
() P} < Ig,., +e
forj =1,...k, and X\ € (0,),)

Annales de IInstitut Henri Poincaré - Analyse non linéaire



MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 573

Proof. — We prove (1) by constructing functions wy, A > 0, with wy, € Ai

such that Ig, (wy) — 2Ig,,., as A — 0. Let j be fixed and « denote the
ground state solution of

— Au+u = Qupax|u[f?u in RV
(2.7) u>0 in RV

u e H!
Define for small A > 0 such that 2/ < 1

1 |zl < 1~ -1

2Vx
Pa(z) = .
0 l.’L" > m
1/1)\(117) c CI(RN) and IV'(/})\I < 2in RYN.

Let 2t = m(1,1,...,1) € RN and

) J
wx(x) :tf{u(x - % + x")z,b)\ <x - ay + x")

_ a’ a’
—t)\u(x— Y ——xk)z,b(x— Y —:c)‘),

where t£ > 0 are selected so that (Ig, (w¥), wi) = 0. That is

{ JIV(u(z = § £ ) (@ - § £22))P }
Hu(z — & £ )Pa(z — & £ 3|2

(tit)p_2 - al A al YIS
TR0~ 2 2 (= L L o]

It is easy to see from the definitions of u,, and z* that tf exist and
tf - 1as XA — 0.

We show next that gy(wy) € CZ/)\ :

{(wt) = AT ¢ M) l(z — & 1)
P Jur(z - £ £ 2)h(z — & £22)

Since Y (z— % +2*) = 0 if |z;— %l > = by the definition of 15, we have

- Jor Aa@i)ur(a — & + )z — 2 £ o)
g;‘(,w;i\:) — 2/

Jop @~ 5 £ Z £ o)

Vol. 13, n°® 5-1996.



574 D. CAO AND E. S. NOUSSAIR

1
rovided —— < —,
i A S |
gi(wi) € Cy/- Thus wi € Ni.
We also have

and from the definition of ¢, we conclude that

()’

@8) fa(w) = BE| [96 - £ + s - L 4o

+ [ e =5+ Ayinta = %+
e YNE

L) [ [ - % -~ %~

+ [ Ju(z — — — 2M)ha(z — ol )2
e o]

- (t;_)p /Q(/\x)l’LL(a: _Y ) x(x — a-j — )P
+ 2
(t ) /|V 2402 — (t/\) /Q(A:c +a? — Az?)|uf?

(tm/lv 2 4+ 02 ("T)/Q(/\m+aj+)\x)‘)|u|”
+ 0o(A)

where o(A) — 0 as A — 0.

Since Az* — 0 as A — 0 we see from (2.8) that Ig, (wy) —
215 i) (u) = 21g,,,, as A — 0. This completes the proof of (1).

The proof of (2) is similar. We can simply replace wy by wy and
prove (2).

LemMMA 2.4. — Assume condition (Q) holds. Then there are numbers
€,Ac > 0 such that for j = 1,...,k

) J>2q, +¢€ for all /\ € (0, ),

) PJ > Iogy.. € forall X € (0,)).

Proof. — Fix j. Assume to the contrary there is A, — 0 as n — oo, such
that J; — ¢ < 2Ig,,,,. Consequently there exists {u,} C A} such that

(29) / IVt + 2 = / QD)

Annales de UInstitut Henri Poincaré - Analyse non linéaire



MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 575

IQA,, (un) —c< 2IQMax7

and either g, (u}), or g, (u;;) belongs to 603/)\", as n — 00.

It then follows that {u,} is bounded in H'. Let pf = |uZ|P, applying
the concentration-compactness principle of P.L. Lions [12] to pZ, we obtain
a subsequence of {uX} (still denoted by {uX}, and hereafter, we always
choose subsequence and denote it by the same sequence if necessary) such
that one of the cases (i) Vanishing, (ii) Nonvanishing occurs. If (i) Vanishing

N _3 it follows from P.L. Lions [12] that

J |uf]? — 0. By Holder inequality and the boundedness of {u} in L2(RN)
we have [ Q(Anz)[uf|P — 0, which leads to [ |VuZ|? + |uf|> — 0, a
contradiction, since from (2.9) we can find a number v > 0 such that
J1Vut|? + |uf|? > v for all n. Hence (ii) Nonvanishing occurs: there are
R > 0,a > 0 and {y*} C RN such that

occurs, then for ¢ € | p,

/ |u;t|1’ >a forall n,
Br(yd)
where B,(z9) = {z : |z — 0| < r} for zo € RN, r > 0.

Suppose gy, (uf) € 9C7,, (gx.(u;) € 9Cj,,, can be considered
similarly). Denote y;" by y,. Let 4, = u}(z + y,), then

Up — U, weaklyin H' as n — oo,

Up — U, a.e.in RY as n — 00,

/ |tin [P — [uolP > >0, as n— oco.
Br(0) B (0)

Set v,, = @, — u,. By Brezis-Lieb lemma [5] we obtain
210) [ QU+ At )fial? = [ Q0 + Al

+/Q®w+%%m#+db

Since %, converges weakly to u,, we have
@11) [ 1P + il = [ 196+ + [ 90, 4 ol +001)
It follows from (2.9) that

(2.12) ‘/W%PH%V=/QQJ+&MM%V

Vol. 13, n® 5-1996.



576 D. CAO AND E. S. NOUSSAIR

Combining (2.10), (2.11) and (2.12) we have
(2.13) /|V’un|2 + v |* - /Q(/\n:c-’r M) [Un|P
= (190l + ol - [ Q2+ Dl ) +o(1)

We consider the following two cases

Case (I). — ||va|| — 0 as n — oo.
By condition (Q) we can choose § > 0 so that

(2.14) Q@) < Quax  for  z€Th,\Ci,
We complete the proof by establishing the contradiction that
lim IQAn (un) > 2IQMax'

Consider the sequence {\.y,}. By passing to a subsequence if necessary,
we may assume that one of the following cases occurs:

@ {Aayn} C Cg_—Q—Z\C;—é

® {Awa} C Cry

©) {Ayn} CRV\Cj 5, and {A,y.} is bounded.

(@) An(yn)i — 00 as m — oo, for some i € {1,2,...,N}.
Let ¢ > 0 and R, > 0 be such that

(2.15) / |Un|p//|”n|p Se
[z|>Re

In case (a) we may assume \,y, — ¢ € UZ%\CZ_&, and Q(9) < Qmax-
Consequently

lim IQ)\n (’U,I)
= tim {5 [1vut+ 1t - 3 [ QOuatutl
1 1
lim {5/1Vﬁni2+ fin? — I_)/Q(,\nx+,\nyn)|ﬂn|p}
=5 [ 17l + 1w = 2 @@t
2 (e o p o

> IQMnx’

Annales de I’Institut Henri Poincaré - Analyse non linéaire



MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 577

since we also have
[Vl 2 = [ Q@

In case (b)

J O, (@i + (Yn))|in P

) +y —
g)\n(un) - f |,[//n|p
f|xi|SRe ¢/\n (iL', + (yn)z)lﬂ'nlp + jizi|ZRe ¢)\n (xi + (yn)z)lﬁ'n |p
J liinl?

In the region |z;| < R., we have

T_(-¢ Y ()
vt (o) € (—i—) R GR) +R€)

(2K 2K

o ) for sufficiently large n.

It then follows from (2.15) and the definition of ¢, that
J
i+ a; —(£-9) _ 2K
9, (un) > ( A, R, (1 6) M €,
, T4(-6 2K
9, (ur) < (aL—L;—) + Re) (1-¢)+ WL

It is clear from the above inequalities that we can choose € > 0, § > ¢
sufficiently small such that

‘ I al 44
g, (ul) € ( a')\ ) a’;_ > for sufficiently large mn,

contradicting g, (u}) € BCZ/AH'

In case (c), we may assume that \,y, — geﬁi 160 @S M — 00,
al +£+6/2

% > al + £+ 6 for some i, and (Yn): > 3 for all n. For
|z;] < R. we then have "
T4i+68/2
i+ (yn)i > &i;—/ —-R.

Vol. 13, n° 5-1996.



578 D. CAO AND E. S. NOUSSAIR

: al +0+6/2 2K
g5, (uth) > <——)\—/— —Re>(1 ~€) — 3¢

S al +¢
An
for sufficiently small €,6 > €, and n large enough. This contradicts
g,\n (u’;l‘_) € aCZ/}\n
Case (d) is excluded by assuming A, (y,); > 2K (or A, (gn): < —2K)
for some 4 and for all n, and using a similar argument to that of case (c).

Case (II). — ||lvn]| = L > 0, as n — oo.
Set

J 19wl ol = [ QO+ Dl = 4+ o(1),

then by (2.13)

/ |Vv"|2 + |’0n|2 - /Q(’\nx + )‘nyn)lvn|p =—-A+ 0(1)

Suppose A > 0 (A < 0 can be considered similarly). We can find ¢, — 1
such that w, = t,v, satisfies

/|an|2 + |wn|? - /Q(/\nx + Antn)|walP = —A.

. A+o(1)
Since u, € MQ(AMH"%), we have

1 1
Tow, (1) = 5 [ IV + 42 = = [ Qs + )l

1 1
+ 2 / Vo, |2 + |un|? — ;/Q(/\nm + AnYn)|vn P + o(1)
> A+ 0(1)
- 2
1
— ;/Q(z\nw + Antn)|wnl? + o(1)

1
+ g [Vl + fu

_ 74 ~A
= 15002430 T 1Q0matAnya) T 0(1)

1/1 1
> Inatanyn) T 2 (5 - 5) |A| + o(1)

1/1 1
2 IQM“ + 5(5 - 5)‘14' + 0(1)

Annales de UlInstitut Henri Poincaré - Analyse non linéaire



MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 579

Thus
lim IQ,\n (un) = lim (IQxﬂ (’u‘:) + IQAn (U'T_l))

1/1 1
> 2Igy.. + > (5 - ;)|A[

a contradiction.
If A=0, we can find s,, t, >0, s, = 1, t, = 1 as n — oo such
that v, = t,v,, W, = S,U, satisfy

/ VT + [0 = / QO + Aug) T ]?
/|vmn|2 + [@a|? = /Q(Anrp + AnYn) [Wn|P.

Hence

lim Ig, (un)= lim IQx (uh) + lim IQA (uy)
= lim [ /!anlz + [w,)? - - /Q(Anm + An¥n)|[Tn [P

+5 (192 + 5 = 5 [ Qs + Aol |
+ lim IQ/\n ('U,;;)
Z 3'[QMax'

Thus, we have completed our proof of (1) in Lemma 2.4.
The proof of (2) of Lemma 2.4 is similar and is omited here.

Lemma 2.5. — For any u € Ai, there exist € > 0 and differentiable
functions
ty =ty (w) >0,
_=t_(w)>0
defined for w € H', |lw|| < € such that t+(0) = 1, the functions
z =ty (w)(u — w)*t — t_(w)(u — w)~ belongs to A}, and

(2.16) (t.(0),v)
_ 2 [ VutVo + utv — p [ Q(OAz)[ut[P~2utv

1
TIVeEE + [P = (p— 1) [ QO T eltv e i

Proof. — The proof is similar to that of Lemma 2.4 in [16].

Vol. 13, n° 5-1996.



580 D. CAO AND E. S. NOUSSAIR

Define F* : R x H! — R by
Ftw) = ¢ [ (90 w) 4 () - e uyp.
Since u € A} we have F*+(1,0) = 0 and

%FJF(I,O) = /IVu+]2+ [ut]? — (p— 1)/Q(Arv)lu+|" # 0.

Therefore we may apply the implicit function theorem to get a function
t4+(w) defined for ||w|| < €, € > 0 such that ¢, (0) = 1, (2.16) holds and
F*(t4(w),w) = 0 which is equivalent to

(I, (b (w)(u = w)*), t4(w)(u - w)*) = 0.
Furthermore, _
gt (w)(u —w)*) € C}

still holds if e is sufficiently small by the continuity of the map gy.
Employing the same argument to the functional

Ftw) =t [ [Fu=w) P 4 fa=w)F - [ Q0a)jw—w) P
we obtain the second function ¢_(w) with analogous properties. Therefore
z =t (w)(u—w)t —t_(w)(u—w)” €A}

for any w € H', with sufficiently small norm. This completes our proof
of Lemma 2.5.

For the set Ni, by a similar argument, we have

Lemma 2.5°. - For any u € N {, there exist € > 0 and a differentiable
function t(w) > 0 defined for w € H*, ||w|| < € such that t(0) = 1, the
Junctions z = t(w)(u — w) € NJ and

(2.16) (£(0),0)
_ 2 [ VuVo +uv — p [ Q(A\z)|uP~2uv
JIVul> + uf? = (p - 1) [ Q(Az) ul?

forallve HL.

Having established the preliminary lemmas, we are now ready to prove
~ Proposition 2.1.

Annales de IInstitut Henri Poincaré - Analyse non linéaire



MULTIPLICITY OF POSITIVE AND NODAL SOLUTIONS 581

Proof of Proposition 2.1. - If Ki denotes the closure of Ai, then we
first notice that, A} = A} U A, and OAY, is the boundary of A3 for each
Jj=1,...,k. This easily follows from the observation that any u with u*
or u~ equals to zero can’t be the limit of a sequence of functions in AJ.

Using Lemma 2.3 and Lemma 2.4 we see that there exists Ay > 0
such that

(2.17) JI < min{3lg,,..,Ji} for A€ (0,X), j=1,...,k.

It follows that for A € (0, Ag)

(2.18) Ji =inf{I, (u) s u € K}

Applying the variational principle of Ekeland [9] to (2.18) we obtain a
minimizing sequence {u,} C Ki for each fixed j = 1,...,k, with the
properties

o1
Ig, (un) < JS+ —
(2.19) "y i
Ig, (un) < Ig, (w) + EHw —ul| for any w € A},

Using (2.17) we may assume that u, € A{\ for n sufficiently large.
Applying Lemma 2.5 with v = w, we obtain ¢, > 0, two functions
th(w), t*(w) defined for w € H', |lw| < €,, such that ¢%(w) (un —
w)+—t"(w)(u—w) €A Choose0<6<en Letu e H', v #0 and

|| ||
Since zs € A’ by Lemma 2.5, using (2.19) we obtain

let ws = Fix n, and let z5 = 7 (ws)(un — ws)™ — ™ (ws) (us, —ws) ™.
1
I\ (25) = Iy (un) 2 = |25 = unl|

and by the mean value theorem, we then have

1
(1o, (un), 25 = un) + o(l|2zs — unl|) > = llzs = uall.
Therefore

( /Q (un) (un - w6)+ - (un - ws)~ A
+ (t (ws) = 1)(up — ws)* — (¢ (ws) — 1) (un — ws) ™ — uy)

2 —EII% = tnl| + o(]|zs — unl|)

Vol. 13, n° 5-1996.
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Since (un — ws)t — (4, — ws)™ = u, — ws, we have

(2:20)  (Ig, (un), —ws) + (t}(ws) — 1)(Ig, (un), (un —ws)™)
= (82 (ws) = 1)(Ig, (un), (un —ws)™)

1
> s = | + o[ = o)

From % (ws)(un — ws)* € Mg, we obtain

(Ig, (26), i (ws)(un — ws)*) = 0.

Thus it follows from (2.20) that

~6(1 (un), Y+ EED) =D i -
o0, i) + g ) 2

_ %(be (zb‘)?tﬁ(um)(u" - wé)“>

+ (% (ws) — 1){Ig, (un) — I, (25), (un —ws)™)
= (2 (ws) = 1)(Ig, (un) — I, (25), (un —ws)™)

1
2 = llzs = unll + o(llzs — unll)
Hence

(2.21) <I&A (un), ﬁ>

< Llizs = unll , ofllzs = wl)

< 5
+ ﬂ:(w—g)_—l(lbx (un) - be ('Z‘S)’ (u" - w6)+)

(T () — T (), (e — w5)°)

But
llzs = unll <6+ [[t} (ws) — 1] + [t (ws) — 1]]C

for some constant C' > 0, independent of §, and

o 12 (ws) = 1]

lim 2 < o)) < ©

for some constant C' > 0, independent of §, as can be easily verified
from (2.16).
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For fixed n, let § — 0 in (2.21) we obtain
C
2.22 I (un), L>5 =,
(222) (Foutun) )<
where we have used the fact that zs — u, as § — 0, and Ié;,x (zs) —
0, (un) as 6 — 0. (2.21) implies

IIG, (wa)llz-1 =0,  as n— oo

Thus, we have proved (1) of Proposition 2.1.
Similarly, by using (2) of Lemma 2.3, (2) of Lemma 2.4 and Lemma 2.5,
we can prove (2) of Proposition 2.1. We will omit the detailed proof here.

3. EXISTENCE OF SOLUTIONS

In this section we establish the existence of at least k positive and k

nodal solutions of problem (1.1) for each p € ( +oo), where Aq is

1
A2’
as in Proposition 2.1.

For fixed j and X € (0, A¢), we have the following compactness results.

LemMa 3.1. — Assume condition (Q) holds, and that {ui} C A3 is a
sequence satisfying

(3.1) I (ul) = JI  as n— oo
(3.2) o (ul)—0inH™'  as n—oo
(3.3) Ji < 3Ig,..-

Then {ul} has a subsequence (still denoted by {ul,}) satisfying
ul —u, stronglyin H' as n— oo,
and ur # 0.
Proof. — since {ul} is bounded in H!, we can assume

ul — u, weaklyin H' as n — oo,

(3.4) wl - u, ae.in RY as n— oo,

for some u, € H!.
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We will show that

a) uf 0, u;y 0

b) ul — u, stronglyin H! asn — oo.

We proceed by contradiction. Assume to the contrary that

(3.5) ul = or u, =0.

Since {ul} is bounded in LP(RY), the concentration-compactness
principle [12] implies that {u’ } satisfies either vanishing or nonvanishing.
Vanishing can be ruled out by the same argument used in Lemma 2.4.
Therefore, nonvanishing occurs, that is, there are numbers o > 0, R > 0,
and a sequence {y,} C RY such that

(3.6) / |l (z + y,)P > a >0, forn large.
Br(0)

Set @i, (x) = vl (x + yn). Since {i,} is bounded in H', we may assume
(3.7 Uy — G, weaklyin H' as n — oo.
From (3.6) we see that @, Z O.

Case 1. — 47 # 0 and u; # 0,

Case 2. — either 47 = 0 or a; = 0.

We show next that each of the Cases 1 and 2 leads to a contradiction
to either (3.5) or to (3.3).

Assume Case 1. Set v, = U, — U,. If ||v,]| — 0 as n — oo, and
{yn} is unbounded, we employ the argument in Lemma 2.4 to obtain

) 3 ; -1
gi(uf) > al + 5 Of auf) < al — o for large n and for some
i € {1,2,...,N}, contradicting u, € A}.

If ||va]] — 0 as n — oo and {y,} is bounded, so y, — y, € RV as
n — oo, we would have

Un — Uo(- —yo) stronglyin H' as n— oo

which implies that v — 4% (- — y,) Z 0 (since ||uf|| > v > 0 for some
constant v > 0), contradicting (3.5).

On the other hand, if ||v,|| > & > 0 for large n and some constant § > 0,
we notice first that (3.2) implies

/ Vit P + (a2 ]? - / QO + Aga) [P = o(1)

(3.8)
/|v12,,|2 + |in]? = /Q(/\a: + Ayn)|in|P =0
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By (3.8) and Brezis-Lieb lemma [5] we obtain

(3.9) / |V, |* + [vn|? — /Q(/\CC + Ayn)|vn|? = o(1).

since ||lvn|| > & > 0 for large n, it is easy to find s, > 0, s, — 1 as
n — oo such that s,v, € Mg(rxs+ry,), and to show that

1 1
310) 5 [ 90+l = > [ QO+ Ml 2 L, +0(0).

Similarly

1 1 -
1) g [IVaEP+ [P - 2 [ Qe+ Al > Lo, +o(D).

Thus by Brezis-Lieb lemma [5] we obtain

1 . N 1 _
Tos (i) = 5 [V 4 [ = > [ QU + Al
1 1 -
=5 [P +1ar - [ Q0w+ dwia
1 PR | -
+ 5 IVUO | + |uo | - ; Q(/\IU + )‘yn)luo |
1 1
43 190+l =~ [ QO+ 2o+ 0(1)
which implies that
(3.12) lim Ig, (un) > 3lgy.,
contradicting (3.3).

In case 2, we may assume, without loss of generality, that &, = 0.
First notice that we must have 4} — 4} strongly in H' as n — oo,
otherwise ||u} — @f|| > 6 > 0 would lead to the contradiction (3.12), as
above. Next, by the concentration-compactness principle, applied to {&,, },

and by ruling out vanishing as before, we obtain « > 0, R > 0, and a
sequence {¥n} such that

(3.13) / ™ (z 4+ ga)[P 26> 0
Br(0)
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Set ﬁn(:p) = Un(T + Jn) = Un(Z + Yn + Jn), by the boundedness of
{u;} in H', and (3.13) we may assume that

Uy, — Wo weakly in H' asn — oo

a4, — wy (Z 0) weakly in H' as n — oo.

If wg # 0, we have a situation similar to Case 1, which is impossible. We
may therefore assume wg = 0. In this case we can’t have |4, — w] || >
6 > 0 for some 6 > 0 and for large n, since otherwise we argue as before

to obtain (3.12), contradicting (3.3). Then we must have ﬁ; — wy strongly
in H' as n — oo. We are now left with

(3.14) af — 4  strongly in H' as n — oo
(3.15) ﬁ: — w, strongly in H' as n — oo

But (3.14) and (3.15) imply, as argued before, that {y,}, {y, + J.} are
bounded. We may assume y,, — Yo, Un — ¥o, a8 n — 00. Therefore

(3.16) uf — 4t (-—y,), stronglyin H' as n— oo

(3.17) u, =W, (-—Yo— o) stronglyin H' as n — oo.

Hence uf =af(z—y,) Z0, uy = w, (z—y,—Yo) Z 0, contradicting
(3.5). This proves the conclusion (a).

Using (a) we can show that u, — u, strongly in H' as n — oo,
otherwise, we may use a similar argument as above to reach the
contradiction (3.12).

This completes the proof of Lemma 3.1.

For the minimizing sequences of Pj, we have

LEMMA 3.2. — Suppose condition (Q) holds, and {vi} C Nj satisfies
Io,(v]) — P, and
Io,(vi)—=0 in H'asn— oo
Pi < 2Ig,,...
Then {v2} has a subsequence converging strongly in H'.

Since the proof is similar to that of Lemma 3.1, but simpler, we omit
it here.
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Proof of Theorem A.

It follows from Proposition 2.1 that there exists A, > 0 such that for
A€ (0,),), fixed j = 1,...,k we can find minimizing sequences {uJ }
and {vi} of J and P’ respectlvely {u?} satisfies the assumptions in
Lemma 3.1, {v{l} satlsﬁes the assumptions in Lemma 3.2. Therefore we
have, as n — o0,

ul — u; strongly in H'!
and u;t % 0,
v) — v; strongly in H'.
From I, (u}) — 0, I, (v3) — 0, as n — oo, and the strong convergence
of {ul}, {vi} we see that u is a nodal solution of (2.1), v; is a nontrivial

solution of (2 1). We next show that either v = 0 or v; = 0. Otherwise,
suppose v # 0, then(l/ A(vi), i) =0 leads to

P; = JLII()IO IQ,\ ('Un) = IQA (Uj) = IQA (Uf) + IQA (v]—) > 2IQMax

a contradiction. So we can assume v; > 0 in RV (otherwise, —v; > 0 in
RY). By a standard regularity argument, we can show that uj,v; € C?(R")
and v; > 0 in RV by the maximum principle.

Since gx(u;) € Ce/,\, a(vj) € Ce/x: and C[/A are disjoint, vj,u; are
distinct solutions of (2.1).

Let p, = A, Uj = pToou;(\/fix), V; = po-20;(,/ix), then Vj
and U; are k positive and k nodal solutions of problem (1.1). We thus
have proved Theorem A.

Remark 3.3. — By Lemma 2.3 and the proof of Theorem A, it is easy
to see that for any € > 0, there exists A > 0 such that for A € (0, )\.),
problem (2.1) has at least k positive solutions v;(j = 1, ..., k) and & nodal
solutions u;(j = 1,...,k) satisfying

IQA (Uj) € (IQMax, IQM,,X + 6) for j=1,...,k
IQx (U’]) € (2IQMax7 2IQMax + 6) for 7=1,...,k
provided condition (@) holds.

Remark 3.4. — It is easy to see from the proof of Theorem A that the
solutions V;,U; (j = 1,...,k) satisfy

D Vil @y, Ujllze@vy = +00 as p — +oo,

2) [IVVil®+ulVil?, [IVU;1? + ulUj)* — +o00 as p — +oo

3) [IV;%, [|U;j]* = 400 as p— 4oo provided 2 < p < 2 + %

4
4 [|V;]?, flUj|2—>Oasu—>ooprovided2+N<p<2+N—4—2
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