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ABSTRACT. — This paper is concerned with the problem

(+) { Au+a(:1:)u—u:rrg in Q
>0 in Q u=0 on 9

where ) is a bounded domain in R™ with n > 3 and a(z) is a nonnegative
function in 2. We give some conditions on the function a(z), sufficient
to guarantee the existence and multiplicity of solutions for the considered
problem without any assumption on the shape of (2.

Key words: Nonlinear elliptic equations. Critical Sobolev exponent. Positive solutions.

RESUME. — On considére le probléme (x) ol € est un ouvert borné de
R" avec n > 3 et a(z) une fonction non-négative dans 2.

On établit des conditions sur la fonction a(z) suffisantes pour assurer
I’existence et la multiplicité de solutions du probléme considéré sans aucune
condition sur la forme de €.
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186 D. PASSASEO

1. INTRODUCTION

Let Q be a smooth bounded domain of R", n > 3. In this papcr we
are concerned with the problem

(1.1)

u>0 in Q

{ ~Au+a(z)u=u¥"1 inQ
u=0 on 0f)

where a(z) € L™/%(Q) is a given nonnegative function, and 2* = 2% is

n—2

the critical Sobolev exponent for the embedding Hy'*(Q) — LP(RQ).

The aim of our investigation is to give conditions on a(z) sufficient
to guarantee existence and multiplicity of solutions for (1.1). Notice that,
through a lemma of Brezis and Kato (see [5]), the assumption a(z) € L"/?
ensures that the solutions v to the problem are in C1* V) € (0,1).

The first contribution to the study of this problem is the well known

Pohozaev nonexistence result: in [20] he proved that a solution u of
Problem (1.1) must satisfy the identity

(1.2) /OQ(Q: -v)(Du -v)3do + /Q [a(x) + %(m . Da(x))] uldzr =0

(where v denotes the outward normal on 9f), and this implies that (1.1) has
no solution if 2 is starshaped and a(z) is a nonnegative constant function.

The main feature of the considered problem is the lack of compactness
due to the presence of the critical exponent: in fact, solutions of (1.1)
correspond to critical points of the functional

(1.3) f(u) = /[ID’ILI2 + a(z)u?]dz
constrained on the manifold

(1.4) V(Q) = {u € HY (D) : /Q|u|2*dx = 1},

and, since the embedding Hy?(€) — L?"(Q) is not compact, the well
known Palais—Smale compactness condition does not hold.

Therefore the classical variational methods cannot be applied in a
straightforward way. In particular critical points cannot be obtained by
minimizing f on V(f2); in fact, f does not achieve its infimum on V' (2)
if a(x) > 0, as shown in [4].
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 187

On the contrary, if a(z) is negative somewhere, Brezis and Nirenberg
proved that the infimum of f on V() is achieved if n > 4 (see [6], [4]).

On the other hand, if €2 is an annulus and a(z) is radially symmetric, it
is not difficult to prove that (1.1) has solutions even if a(z) > 0 (see [11]
for example).

Moreover several results show that, when a(z) = 0, the existence of
solutions of (1.1) is strictly related to the shape of Q. Firstly Coron in [7]
proved the existence of a positive solution in domains {2 having a “small
hole”; then, in [2] this result was extended by Bahri and Coron to every
domain having nontrivial topology (in a suitable sense). More recently,
multiplicity results related to the shape of 2 have been stated, for instance,
in [21], [13], [16], [19], [18], [17]; furthermore existence results have been
obtained also in some contractible bounded domains (see [8], [9], [13]).

In [4] Brezis pointed out that in every bounded domain 2 (even
starshaped) one can easily exhibit a positive function u that solves (1.1)
when a(z) is a positive function suitably chosen: in fact, if ¢ Z 0 is a
positive function with compact support in € and h satisfies —Ah = g in
Q, h = 0 on 91, then the pair (u,a) with u = Ak and ¢ = (—’\Z'L)‘_hl—"’ﬁ
solves the problem, and a > 0 in €2 for A large enough. So he focused the
attention of the mathematicians on the problem of giving some conditions
on a(z) > 0, sufficient for the solvability of (1.1) in general domains §2
(even starshaped).

A first contribution to this question was given by Benci and Cerami in

[3]. They considered the case {2 = R™ (their method does not apply when
Q is a bounded domain) and proved that the problem

~Au+a(z)u=u¥"' inR"
u>0 in R"
Jg 1Dul?dz < 400

has at least one solution if a(z) is a nonnegative function, strictly positive
somewhere, having L% norm suitably bounded and belonging to L?(R™)
for every p in a suitable neighbourhood of %

Multiplicity results concerning a related problem in IR™ have been
obtained in [15].

In this paper we consider the case of a general bounded domain §2 and
give an answer to the question posed by Brezis. The main results (already
announced in [14]) are stated in Theorems 2.1, 3.1, 3.2 and 3.3.

We consider, in section 2, functions a(z) of the form:

(1.5) a(z) = a(z) + N2a[M(z — z0)]

Vol. 13, n® 2-1996.



188 D. PASSASEO

where &(z) is a given nonnegative function in L™/2(Q), z, is a fixed point
in € (the concentration point), A > 0 is a “concentration parameter’, and
a is a given nonnegative function in L™/?(R") with |||/ n/2(gn) # 0.

We prove, in Theorem 2.1, that Problem (1.1) has a solution if ) is large
enough; moreover we show that there are at least two solutions (for X large
enough) if the additional assumption

(1.6) lleell vy < S(22/™ — 1)

is satisfied (S is the best Sobolev constant: see (2.3)).
We notice that our assumptions seem fairly general. In fact, if we assume
for example that in (1.3) o = 0, @ = 0 in {2, and

a(z) = { if |z] < 1

|z|=# if |z] > 1,

then, if 8 < 2 (i.e. « ¢ L™/?(R™)) and € is a bounded domain starshaped
with respect to zero, Pohozaev identity (1.2) implies that Problem (1.1),
with a(z) = A2a(Az), has no solution for any A > 0; on the contrary, if
B > 2 (ie. « € L'?(R"™)), Theorem 2.1 guarantees the existence of a
solution for A large enough, without any assumption on the shape of  (if
A is small and € is starshaped, no solution can exist, also in this last case,
because of the Pohozaev identity).

The assumption (1.6) is strictly related to the method we use in the
proof and it is very reasonable that it might be weakened arguing like in
[2]; however, unlike [3], here we need it only to prove the existence of
a second solution.

More general results can be obtained considering functions a(x) of the
form:

(1.7) a(x)_ar)+ZA pios[Ni(z — ;)] + Z A [Mi(z — z;))

=1 i=r+1

where z1,...,z, are given points in Q,& € L™?(Q) and oy...a; €
L*/?2(R™) are nonnegative functions, and \;, u; (withs = 1...h, j = 1...r,
0 < r < h) are positive parameters.

This case is studied in section 3; Theorems 3.1, 3.2, 3.3 show that, for
a suitable choice of A; and p;, Problem (1.1) has at least (r + h) distinct
solutions.

Remark also that it is not necessary to choose distinct concentration
points x1,...,x5 in order to obtain distinct solutions.
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 189
2. AN EXISTENCE AND MULTIPLICITY RESULT

The aim of this section is to prove the following existence results for
Problem (1.1).

THEOREM 2.1. — Let §2 be a smooth bounded domain of R™ with n > 3
and o be a fixed point in Q. Let @ € L™%(Q) and o € L™/?(R™) be two
nonnegative functions and assume that ||| pn/2(gny # 0.

Then there exists A > 0 such that for every A > \ Problem (1.1) with

a(z) = a(z) + Na[\(z — x0))

has at least one solution uy. Moreover

. U
2.1 lim f(—) =S.
(21 8\l
If we also assume that
(2:2) lletll sz grny < (227 = 1),

then Problem (1.1) has at least another solution 4., and

U 'LAI,)‘
f (nuxnw ) <f (IlﬁAHm* )

In order to prove this theorem we need to introduce some notations, to
recall some known facts and to state some preliminary lemmas.

In what follows, as usual L?(f2), 1 < p < oo, denote Lebesgue spaces,
Hy*(Q) (HY*(R™)) denotes the Sobolev spaces, closure of C§°(Q)
(C5°(R™)) with respect to the norm |ju|| = ([, |Dul*d)3.

From now on, also, for any function u € Hy?(2) we denote by the same
symbol its extension to R", obtained setting v = 0 outside €.

A function u in Hy?(Q) is a weak solution of Problem (1.1) if and
only if w > 0 in Q,

/ |\ Duf2ds + / a(z)ulds = / luf? dz 0,
Q JQ Q

and W is a critical point for the functional f (defined in (1.3)),
L2*

constrained on the manifold V(§2) (defined in (1.4)). Thus, solving Problem
(1.1) is equivalent to looking for constrained critical points for f on V().

Vol. 13, n°® 2-1996.



190 D. PASSASEO

But, since the pair (f,V(£2)) does not verify the well known Palais—Smale
compactness condition, the critical points cannot be obtained by applying
directly the classical variational methods.

A very important role in this type of problems is plaied by the best
Sobolev constant S for the embedding H,*(Q) — LP(Q):

(2.3) S¥in f{/ |Dul?dz : v € Hy*(Q), /|u|2*dm: 1}.
Q

Its main properties can be summarized in the following
PrOPOSITION 2.2. — a) S is independent of Q@ C R"; it depends only on
the dimension n;
b) S is never achieved when Q C R" is bounded;
c) when Q = R", S is achieved by the function
- P , 1

moreover every minimizing function has the form

5 Yom _ [T %o
Vows = gl 1””’“‘””)“‘”( - )

with ¢ > 0 and o € R";

d) if u € H3’2(]R"), w > 0, is a critical point of the functional
[ |Duldz, constrained on V(R")={u € Hy*(R™) : [ [uf? dz=1},
then u = VY, o, for suitable 0 > 0 and zo in R".

The proof of properties a), b), ¢) can be found, for instance, in [6] or
in [23]; for d) we refer to [10].

The following proposition describes the behaviour of the minimizing

sequences for the Sobolev constant S; for its proof see, for example, [12],
[22].

PROPOSITION 2.3. — Let (u;); be a sequence in Hy>(R™) such that
/ |u;|¥ de =1 VieN; lim |Du;?de = S
n 1—=00 [pn

Then there exist a sequence (y;); in R™ and a sequence of positive numbers
(0:); such that the sequence (ii;); in Hy>(R™), defined by

Annales de I'Institut Henri Poincaré - Analyse non linéaire



SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 191

is relatively compact in L* (R™).
So @; — 4 in L? (R™) (up to a subsequence) and

/ |Diif?dz = S.

If, in particular, u; € Hy*(Q) and Q is bounded, then hm 0; = 400

1,“) (o)
and the sequences (|u;|*"); and (|Du;|?); concentrate near a point of
(like a Dirac mass).

We recall now a nonexistence result which can be found in [4].

PrOPOSITION 2.4. — Let §) be a bounded domain of R"™, n > 3, and a(x)
be a nonnegative function in L™/?(Q). Then it results:

. f
(2.5) inf f=S$

and the infimum is not achieved.

The proof is obtained (see [4] or [3]) by testing f on the functions
introduced in (2.4), suitably cut off (2, and using the estimates given in
[6]. Moreover, the proof evidences that the minimizing sequences for f
on V (), in booth cases, when a(z) = 0 and when a(z) > 0, are exactly
the same.

The following proposition and the subsequent corollary describe the
behaviour of the Palais—Smale sequences, giving useful informations about
the compactness properties of f on V().

PROPOSITION 2.5. — Let  and a(x) be as in Proposition 2.4. Let (u;); be
a Palais-Smale sequence for the functional f constrained on V() ie.:

sup f(u;) < 400 and grad fjy)(u;) — 0 in H-L2(Q).
1€IN

Then one of the followmg two cases happens: either the sequence (u;); is
relatively compact in Hy* (), or there exist k solutions Uy,... 0 (k> 1) of

Au+|u2u=0 inR"
ue HY?(R™), u#0 in R"

and a solution ugy of

Au—a(z)u+ [u* 2u=0 inQ
u € Hy? ()

Vol. 13, n° 2-1996.



192 D. PASSASEO

such that (u;); (up to a subsequence) verifies

k —3=
u; — To [E/ Iﬂjlz*dxj| weakly in  Hy*(Q);
j=0/R"

—~ 2
=

%

k k
lim / | Du;|2dz = [Z/ |D’U/j|2dm:| [Z/ !ﬁjlz*dx}
1—00 Q j=0 R" j:O R»

The proof can be obtained by the same arguments used in [22].
COROLLARY 2.6. — Let 2 and a(z) be as in Proposition 2.4. Let (u;);
in V() satisfies
lim f(u;) €]5,2%/"9]
grad flV(Q)('U,i) —0 in H—I’Q(Q).
Then (u;); is relatively compact in H?(<).

The following lemma gives a lower bound to the energy of the functions
changing sign, that are critical points for f on V(2).

LemMa 2.7. — Let Q and a(x) be as in Proposition 2.4. Let u € Hy?(Q)
be a critical point for f on V(). If f(u) < 2%/™S, then the function u
has a constant sign.

Proof. — Assume, by contradiction, that v+ # 0 and u~ # 0. Since u
is a critical point for f on V (), u solves Au — a(z)u + plul> ~2u =0
in @ with g = f(u). Thus

2/2*
f(u) L [t |* dz = /Q[|Du:t|2 + a(z)ut|Hdz > 5’(/Q |ui|2*d$> .

Then we obtain

that implies f(u) > 2%/, contradicting our assumption. O

Let us now introduce some useful tools. We define two continuous maps:

B:V(R") - R"* and ~:V(R")— R*

Annales de I’Institut Henri Poincaré - Analyse non linéaire



SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 193

by
(2.6) p = [ @) ds
(2.7) 1) = [ 1 - Sl @) do.

We notice that 3 is a “barycenter” type function, while v measures the
concentration of the function u near its barycenter 5(u).

The following remark, also, will be helpful in the sequel: a function u
solves the equation

—Au+ a(z)u =u? in Q

if and only if the function u, defined by u(z) = AT u[Mz — z¢)] solves
the equation
n+g

—Auy + Xa[Mz — zo)]uy = uy >

in Q\ = zo + 1+ (notice that lluallzes (@,) = llullr2* (). Moreover, setting
ax(z) = Aa[A(z — )], we have for every € > 0:

/ o} *(z)dz = / o™?(z)dz,
: B(zg,€) B(0,)e)

that implies

lim a:ﬂdx:/ a?dz.
Q n

A—o00
Let o be a nonnegative function in Lz (R"); we set
(2.8)
(@)= inf { / [IDuf + a(z)u?ldz : uw € V(R), Bu) = 0, y(u) = %}
RTI.
The following inequality holds.
LeEMMA 2.8. — Let a > 0, « € L™2(R™), satisfy letl| pnr2(mny # O. Then

(2.9) cla) > S.

Vol. 13, n® 2-1996.



194 D. PASSASEO

Proof. — Clearly c(a) > S, thus we must show that the equality cannot
hold. If this were the case, we could find a sequence (u;); € V(IR™)
such that

(2.10) lim [|Du;|* + a(z)u?)dz = S
R"

11— 00

(2.11) B(u;) =0 and ~(uw;) = /R" T f::ﬂ lui(2)|? da = % Vie N.

Since a(x) > 0, it follows

(2.12) lim |Du;|*dz = S.

=00 Jrn

Then there exist a sequence of points (y;); in R", a sequence of positive
numbers (o;); and a sequence (w;); in Hy?(IR™) such that

u; = w; + "/;C’i,yi

where 1), ,, are the functions (2.4), and w; — 0 strongly in L2’ (R™).
We claim that the sequences (y;); and (o;); are bounded. In fact suppose,
first, lim |y;| = 400 (up to a subsequence) and set

2i={$€Rni(($—yi)'yi)>0}‘

; |=] ly: 2" g 1
since 177 > T/ Vo € X; and hm fz |ui|*> dz = %, we should have

Il 2 |yz
1) > [ @ de > T */|

that implies

liminfy(u;) >

DN | =

contradicting (2.11).
Assume now that, up to a subsequence, lim o; = +oo. Then

Hm sup |4, 4, (x)| =0
1— 00 ze]R'"
and so

lim |u;|* dz =0 Vr > 0.
11— 00 B(O,T)

Annales de IInstitut Henri Poincaré - Analyse non linéaire



SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 195

From

s = [ oz [

» 1+ |z we\Bo 1+ |7l

> " / |w;|¥ dz Vr >0,
1+7 Jre\B(or)

it follows
liminfy(u;) > —— Vr>0
imi i e —
mint () 2

that implies lim y(u;) = 1, contradicting again (2.11).

Thus the claim holds and we can assume, passing eventually to a
subsequence, y; — § € R" and 0; — & > 0.
We have ¢ > 0: otherwise we should have

lim ;) = Tf_hl—l and B(u;)=0Vie N

that implies § = 0. On the other hand, if & = 0, we have

lm y(u;) = hm il

i—oo re 1+ |z]

z*dx: |y|~ :0
1+ gl

lui(z
that contradicts (2.11).

Thus, u; — %5 4 strongly in L? (R™) with & > 0. Therefore we can
deduce

(2.13) / a(z)? zdz >0
R" '
because 5 5(z) > 0 Vr € R™ and a(z) € L™%(R") is nonnegative and

satisfies [, a™/?(z)dz > 0.
So, using (2.12) and (2.13), we obtain

lim [Du,l2 + a(z)ulldz = S +/ o(z)P? ;dx > S

contradicting (2.10). o

Fix now € > 0 so small that S + ¢ < min{c(a),2%/"S}.

Vol. 13, n° 2-1996.



196 D. PASSASEO

In what follows ¢ denotes a function belonging to Hj(B(0,1)),
satisfying the properties:

¢ € C=(B(0,1)),  ¢(z)>0 Vze B(0,1)
(2.14) @ is radially symmetric and || < |22 = @(z1) > ¢(22)
fB(O,l) prdr=1;, S< fB(O,l) |Dp|?dz < S + €.

The existence of a ¢ fulfilling (2.14) is a consequence of the properties of
S. For every 0 > 0 and y € R", we define

T,,:V(R") - V(R")
by

Uy T—y
(2.15) Toy(u) = —=—  where u,,(z :u< )
A = gl =S

Lemma 2.9. — Let B8, v, ¢, T, , be the objects defined in (2.6), (2.7),
(2.14), (2.15) respectively. The following relations hold

a) lir% sup{yoT,,(¢):ye R"} =0
(2.16) ¢ 0) (BoToy(9)-y) >0 Vye R"\{0} and Vo >0
c) lirf inf{yoT, ,(p):yeR", |y|<r}=1 Vr>0.

Proof. — To prove (2.16) a) we argue by contradiction. So we assume
that there exist a sequence (y;); in R"™ and a sequence of positive numbers
(04): such that:

(2.17) lim o; = 0;
(2.18) 113{.107 0Ty, 4 (¢) > 0.

By (2.7) we have

T

—  —BoT,. ..
1 + |.’E| 180 zayt((p)

(219) 70Ty, (o) = / T2 (p)dz

B(yz,o'i)
<
B(y;,0:)

x Yi
T4 z| 1+l

* yi
T%  (p)dz + —BoT,. )
0i,Yi ((P) l 1 + |y1l ’8 z,yl((P)
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 197

Now, since

x Yy . n
2.20 - <lz—y| V R",
e |- pifsle -l vey
we infer

T Yi 9*

(2.21) / — T, , (p)dz

B(yionl 1+ || 1+ |yl Yy

<[ oo ultf, i <o
B(yi,0:)

On the other hand, using (2.6) and (2.21), we deduce

Yi
2.22 —BoT,. ..

T Y o*
= - Tcr- ((p)dm
/B(yi,ai) (1 +lz 1+ Iyil) e

< / €z Yi
B(yi,o:)

T+]e]  1+]yl
Thus, taking account of (2.21), (2.22) and (2.17), we obtain from (2.19)

-
1, ,.(p)dz < 0;.

lim y0 Ty, 4. (¢) <2 limo; =0

contradicting (2.18).
In order to obtain (2.16) b), let us observe that (2.14) imply Vo > 0

T,y (0)(x) > Tpry(p)(—z) VzeR"™ suchthat (zr-y)>0
and, if y # 0,
T, 4(p)(x) > Ty y(p)(—z) Vz € B(y,0) suchthat (z-y)>0.

Therefore

(BoToy(p) y) = L %Tﬁ,(w)dw >0 VyeR"\{0}.

Vol. 13, n°® 2-1996.



198 D. PASSASEO

To prove (2.16) c) we show that both the relations

(2.23) limsupinf{yo T, ,(¢):y € R", |y| <7} <1 Vr>0
og—+00

(2.24) liminf inf{yoT,,(p):yeR", |ly|<r}>1 Vr>0

hold.

If (2.23) were not true, there would exist a sequence (a;); of positive
numbers and a sequence (y;); in R™ such that

(2.25) hm o; = +OO, ‘yll S r Vi € N

(2.26) lim yo Ty, 4, () > 1.
By definition of v, we have

z

2 T, (o) = | |[—2—
) veTaule)= [ |

R”

~ B0 To, . (9)| T2, (#)d

xTr *
< / Il 2 (o)de 4180 Ty ()] < 1+ 180 Ty (o).
re 1+ |z

Now, taking account that 3o T, o(¢) =0 Vi € IN, we write

x [Tz*

029 1ol =| [ T~ Tolelds

< [ 0 - TEglds = [ 1T ) - TE(elde
R R e
and from this we deduce
(2.29) lim BoTy, () =0
because, by (2.25), g— — 0 as 1 — +00o. So (2.27) and (2.29) imply

hm Yo Tﬂi,yi ((P) S 1

that contradicts (2.26); so (2.23) is proved.
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SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 199

If (2.24) does not hold, then there exist a sequence (o;); of positive
numbers and a sequence (y;); in R", satisfying (2.25) and

(230 lim y 0Ty, () < 1.
We have
x
2.31 T, .(0)= | |—5— —BoT,
(31) V0T (9) = [ | = Ao T (0|12, (0t

> /R 2 (o)dz 180Ty ()]

T e

Now -for every p > 0 we have, as ¢ — +o0,

ez [ pEort, ez [ gz

1+ |z oo "\B(0,p) 1 + 2| oo

_—— Tf,*.cpdx:—+ol
1+ p Jre\B(0,) () I+p @

because, for every p > 0, lim 0; = +oo implies
lim T2 . (9)dz =0
*7%° JB(0,p)

Thus, using (2.29) and (2.32) in (2.31), we obtain

: p
1 Ty 4 >— Vp>0
dm yoTo(0) 2 17— Vp

that gives, as p — o0,
lim 0 Ty, 4, (¢) > 1
11— 00

contradicting (2.30). So (2.24), and then (2.16) c), is proved. 0

LemMA 2.10. — Let a(z) be a nonnegative function in L™/?(R™). Let ¢,
T,y be as in Lemma 2.9. Then we have:

a) ilil% sup { [~ @(@)T2? ,(p)dz :y e R*} =0
(2.33) b) lim sup {[g. a(2)T2,(¢)ds:y € R"} =0
c) r_lirfoo sup {fRn a(x)Tf’y(go)dx 0 >0, |yl = r} =0.
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Proof. — Firstly, let us suppose (2.33) a) not true. Then there exist a

sequence (y;); in R™ and a sequence (o;); of positive numbers, such that
lim ¢; = 0 and

=200

(2.34) lim | a(z)T?, . (p)dz > 0.

1—00 R

Then, taking account that lim o; = 0 implies

1— 00

lim a?(z)dz =0,
¥ J B(oi,yi)
we obtain
'lirgo a(z)T?. , (p)dz = lim a(z)T7, . (p)dz
1—00 fpn P J B(oi,yi)

2/n 2/2"
< lim (/ oﬁ(w)daz) (/ Tgi’yi)(cp)dx)
' \J B(o:,y:) B(oi.yi)

2/n
= lim (/ a%(x)da:> =0
P NI B(oy,yi)

contradicting (2.34).

To prove (2.33) b), we argue by contradiction and we assume that there
exist a sequence (y;); in R"™ and a sequence of positive numbers (0;);,
with lim o; = 400, satistying (2.34) as before.

1—00

Let us observe that Vp > 0, Vo; > 0, V(y;); € R”

(2.35) /Rn a(a:)Tfi’yi(ap)d:c:/ a(a:)Tfi’yi(np)d:c

B(0,p)

+ o2, (p)d
R™\B(0,p)
2/n ) 2/2*

< ( / a"/2(x)d:1:> ( / Tgi‘,yi(w)dx)

B(0,p) B(0,p)

2/n ) 2/27

+ (/ a"/2(a:)dx) (/ T .. ((p)d:t) .

R~ \B(0,p) R™ \B(0,p)

Now, when o; — +00, we have

lim Tgy((p)dm =0 Vp>0.

1T J B(0,p)
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So

2/n
limsup/ a(z)T?, , (p)dz < (/ a"/2(x)dx> ;
imoo JRn ’ R™\B(0,p)

but, clearly, (since a(z) € L™/2(R™))

lim a™?(z)dz = 0;
P+ JR\B(0,p)
thus
lim a(a:)Tfi’yiQp)da: =0,

1—00
contradicting our assumption.

In order to prove (2.33) c), let us assume, by contradiction, that there
exist a sequence (o;); of positive numbers and a sequence (y;); in R",
with lim |y;| = 400, such that

1—00

(2.36) lim a(x)Tfi’yi (p)dz > 0.
71— 00 R"
This implies (because of (2.33) a), b)) that

0 < liminf o; < limsup o; < +o00.

100 i—00

Then, up to a subsequence, lim;_,o, 0; = & with & €]0,+o00[ and, since
lim |y;| = +o0 and a(z) € L2(R™), we deduce

lim a™?(z)dz = 0.
¥ J B(ys,04)
Thus, from
| oz, o= [ a2, (o
]R,"' B(yi,ai)

2/n ) 2/2*
< (/ a"/2(x)da:) (/ Tfi')yz(go)dm)
B(yi,o:) B(y:,0:)
2/n
= (/ a"/Q(x)dx>
B(yuai)

we infer
lim | a(@)T2, (p)dr =0
contradicting (2.36): so (2.33) c) is proved too. O
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CoroLLARY 2.11. — Let a(x), B3, v, ¢, Ty, be as in Lemmas 2.9, 2.10 and

suppose also ||&|| n/2(gny # 0. Then, there exist 7 > 0 and a4, 05 satisfying
0<o; < % < o9, such that

@37) s [ IDT, (o) + a(a)T2, ()i () € 0K )
< S+e<ca),

where
K =K(o1,00,7) ={(y,0) e R" xR : |y| <7, 0, <0 <0y}
Moreover the map © : 0K — R"™ x R, defined by
O(y,0) = (BoToy(0), 70 Toyly)),
is homotopically equivalent to the identity map in R" x R \{(0, é—)}

Proof. — By (2.16) a) and (2.33) a) there exists o1 €]0, %[ such that

vo Ty 4(p) < Yy € R"

Wl

and the relation
@38 [ IDT (0 + @)1, (s < 5+

holds, when ¢ = oy, for any y € IR". Furthermore (2.33) c¢) allows to
choose 7 > 0 such that, if |y| = r, (2.38) is satisfied whatever o > 0 is.
Lastly, fixed r, as before chosen, it is possible by (2.16) ¢) and (2.33) b)
to find o, > 3 for which y o T,,, ,(¢) > L if |y| < r, and such that (2.38)
holds, when o = o5, for any y € R".

Clearly the set K = K (o1, 09,7), with o1, 02,7 chosen as before, is the
wanted set satisfying (2.37).

To achieve the second part of the assertion, consider the map

19:6K><[0,1]—>R"><]R\{(0é)},

defined by

Iy,0,t) = (1 -1t)(y,0) +tO(y,0) Y(y,0) € K, Vte|[0,1].
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Note that ¥(y, o, t) # (0, 3) V(y,0) € OK, Vt € [0,1]: in fact, if [y| <,

1
(I1=t)or+tyoT, 4,(p) < 3 vt € [0,1]

and .
(L=t)oz +t70To,y(p) > 5 VE€0,1];
if ly] = r and 01 < 0 < 03, by (2.16) b),
(@A =ty +tBoT,y(v)]-y) >0 Vte0,1].

Then ¢ is the required homotopy between the continuous function © and
the identity map in K. o

Let 2o € Q, @ € L"?(Q), a € L™?(R") be as in Theorem 2.1; for
every A > 0, set

Br =B oTx -xz Ya =70 Tx ~xzo
and define fy : Hy?(?) — R by

fa(u) = / {IDuf? + [a(z) + Na(A(z — z0))Ju?}dz.

Lemma 2.12. — Let Q, o, &, « be as in Theorem 2.1. Let c(«) be the
number defined in (2.8). Then, for every A > 0 the relations

(2.39) { a) inf{fs(u) 1 u € V(R), Ar(u) =0, 7 (u)

=3} 2> ( )> S
b) inf{fa(u):u€ V(Q), Br(u) =0, a(u) >3} > S

g0 |

hold.
Proof. — Set, for any u € H01’2(Q), ux = T\ _xz(u) and observe that
Bx(u) = 0 and vx(u) = % if and only if B(uy) = 0 and y(uy) = %
Then, since @(z) > 0, we have Yu € Hy?(R) (u is extended by zero
outside €2):
fa(u) > / [|Dul* + Na(Az — 0))u?]ds = / [|[Dux|? + a(z)ul]dz.
R"™ R™
So, for any u € Hy*(2) having S (u) = 0 and vy (u) = 3, we deduce
f(w) > inf{ / [|Dul? + a(z)u?]dz : u € V(R™),
R’n-
1
0) = 0. 9(0) = 3 }= ela)
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that implies (2.39) a).
In order to prove (2.39) b), assume, by contradiction, that there exists a
sequence (u;); in V() such that
1 .
(240) ,8)\(“,‘) =0, ’)’)\(’Uq) > § Vie N

Thus, since & and « are nonnegative functions, it follows

lim |Duz |dz =

1—00

This implies (by Propositions 2.2 and 2.3) that there exist a sequence (6;);
of positive numbers, a sequence (z;); in R™ and a sequence (w;); in

V(R") such that
U; = Wi + Ttsi,zi ('1/_))

where ¢ is a minimizing function for the Sobolev constant S, w; — 0,
strongly, in L2 (R™) and &§; — O.

Now, setting v; = T\ _xq, (i), we have B(v;) = 0, v(v;) > 1 Vi € IN.
Moreover from
Vi = Ta—xzo (Wi) + Tr—xzp © Ts,0, (%) = T —xao (wi) + Ths, A, —20) (¥),
taking in account that T _x, (w;) — 0in L?" (R™) and §; — 0, we deduce
(2.41) A lim vZdr=1 VYp>0.

=% JB(Ax; —Axo,p)

Using the fact that 3(v;) = 0 and the relation (2.20), we can write,
whatever p is:

_Alzi —mo| / AMz; — x0) T ]2*
v; dz
1+)\|x1—x0| W1+ Az —zo] 14|z

S/ \ )‘(:L'z -Z'O) U‘ (iﬂ)d.’L'
re |1+ 2] 1+ Az — 2o
_ / x Mz —x0) | - o (2)dz
B(Az;—Azg,p) 1+ llzl 1+ )“xl - TOl
x AMz; — xo)

of (2)dz

o,
R" \B(A\z; —Azo,p)

< / |z — Mz; — zo)|v? (z)dz + 2/ v? (z)d
B(Az;—Azq,p)

R"™ \B(Az; —Azq,p)
<o | o @+ 2 o (z)do
B(Az;—Azo,p) R™ \B(Az;—Azq,p)
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that, together with (2.41), gives

. Alzs — o
limsup ————— < p Vp>0.
i_,oopl—i—/\l.’lti —-.’L‘Ol =F p
Thus lim #—fﬂo' =0 and so lim z; = xg. On the other hand, since
1—00 * 1—00
B(v;) = 0, we have for every p > 0
lz[ o
v;) = v; (z)dz
w0 = [ @
lz| o / lz| o
- vy (z)dx + v; (7)dz
/B()\mi—)\mo,p) 1+ |=| R \B(\ai—Azo,p) 1 T |7

g/ [x|vi2*($)d:c+/ v (x)dz
B(Az;—Azo,p) R™ \B(A\z; —Azo,p)

<(p+ Az — x0|)/ v? (z)dz + / v? (z)dz.
B

(Az; —Azo,p) R™ \B(Az;—Azq,p)

Therefore we deduce

limsupy(v;) <p Vp>0

1—00

that implies lim ~(v;) = 0, contradicting (2.40). a

LemMA 2.13. — Let Q, zo, &, « be as in Theo_rem 2.1 and K be the set
introduced in Corollary 2.11. Then there exists A > 0 such that for every

A > X it results:

(2 42 a) the function T% 0 © Tg’y(go) has its supportin §3 ¥V (y, 0‘) € K;
42) b) sup{fao Ty o, 0Toy(p): (y,0) €EOK} < S+e<c(a).

Proof. — The existence of A1, such that (2.42) a) is satisfied for every
A > Aq, follows from the fact that ¢ has compact support and K is a

bounded subset of R™ x IR.
In order to prove (2.42) b), let us remark that for every A > A1 it results

(213) 0Ty, 0 Trsl0) = [ (IDTo(@) +a(@)T2, (¢)ds

+ / &(2)[Ty 1y 0 Ty ()Pl
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and that, by Corollary 2.11,

sup {/Rn“DTa,y(SD)P + a(z)T2 ,(9))dz : (y,0) € 81{} <S+e

So, to get (2.42) b), it suffices to show that

(2.44) Jim sup { /Q a(2)[Ty 4y 0 Toy(0)Pdz : (y,0) € K} =0.

Now, VY(y,0) € K we have

/ BTy 2 0 Ty ()2 = / ()T 0, © Ty ()2
Q B(zo+%,%)

< / az(z)dz| < / a®(z)dz
B(zo+%,%) QNB(zq,7%22)

A

where the last term goes to zero as A — 400, because @ € L™?%(12). Then
(2.44) is proved. O

Proof of Theorem 2.1. — Let c¢(«) be the number defined in (2.8); let
K and © be as in Corollary 2.11. Let us choose ¢ > 0 so small that
S + ¢ < min{c(a),2%S}, and ¢ satisfying (2.14); moreover consider
A > X with ) fixed in such a way that the claim of Lemma 2.13 is true.

Let ¢ be the homotopy between © and the identity map in 0K, used in
the proof of Corollary 2.11. Then we have

1
(2.45) I(y,0,t) # (O, 5) V(y,0) € 0K, Vte|[0,1]
that implies the existence of (7,5) € 0K such that

BoTs5(p) =BroTr,, oTs5(p) =0,

Yo Ts5(p) = 0TL 2 0 To () 2

(ISR

and the existence of (y',0’) € K for which ©(y’,¢’) = (0, 1) that is

1
:8/\ © T—i—,xo 0 TU/,ZJ'(QD) =0 and Ny T&,wo °© TU',?/'(SO) = §
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Therefore, using also (2.39) a) - b) and (2.42) b), we obtain

(2.46) S < inf{ Falu) u € V(Q), Ba(w) =0, ya(u) > %}
S faoTy o 0 To5(p) <sup{fao Ty, 0Ty(p): (y,0) € 0K}
<S+e<ca)< inf{f,\(u) cu € V(Q), Br(u) = 0, ya(u) = %}
S faoTy 4y 0 Tory (@) S sup{fao Ty, 0T y(p) : (y,0) € K}.

We want to prove that there exists a critical point vy for fy constrained
on V() such that

e Sint] f30) 1w € VIO, Brl) =0, (w) 2 3}

ef
< fa(ws) < sup{fr o Ty, 0 Toy(9) : (y,0) € IK}E cy.

Assume, by contradiction, that no critical value lies in [c1,c2]. Then,
since S < ¢; <3 < S+¢€ < 2%"S and the Palais-Smale condition
holds in f;'(]S,2%/"3[), there exists ¢; €]S,ci[ such that the sublevel

;i = {u € V() : fa(u) < ¢/} is a deformation retract of the
sublevel fi2 = {u € V(Q) : fi(u) < c2}; namely a continuous function
I f2 x[0,1] — f32 exists such that

I'(w,0) =u and T(u,1) € ffl Yu € f32.
Since {Ty ., 0 Toy() : (y,0) € K} C f32, it follows that
(2.47) faol[Ty 5 o Toy(9),1] < ¢) <1 V(y,0) € OK.

Now, let us define a continuous function 7 : 9K x [0,1] — R™ x R by
1
W ot) = 0p,0,20) Vo) € 0K, vie |o.]
n(y, o, t) = (/8)\ 0 F[Ti,xo ° To,y(QO), 2t — 1]’ I © F[T} o © Ta,y(@), 2t — 1])

V(y,0) € 0K, Vte€ [%1]

Notice that 77 is well defined because {7’y , 0T, () : (y,0) € K} C f32;
moreover, by (2.45) and (2.46),

w0t £ (0.3) o) €0K, Vi€ fo,1],
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Then a point (7,8) € K must exist such that

Brol([Ty 4, 0T55(9),1] =0 and vy oI[Ty ;0 T5:(p),1] >

Qo =

and this implies
f)\ o F[Ti,mo o Tg,i(‘P)a 1]
. 1
> lnf{fA(U) Lu e V(Q), () =0, n(u) > g}z o>

that contradicts (2.47).

So it is proved, for any A > ), the existence of a constrained critical
point v, satisfying the energy estimate

S<01§f)\(’0)\)362<8+6
and, since € > 0 can be taken arbitrarily small, we derive

A—l—lffoo f)\(vl\) =5

Remark also that, since S + ¢ < 2% S, by Lemma 2.7, vy must have
constant sign.

Let us now prove the second part of the claim of Theorem 2.1.
First of all observe that, if ||| fn/2(rn) < S(22/™ —1), then it is possible

to find ¢, K and X so that

(2.48) sup{fr 0 T1 o, 0 Toy(¥) : (y,0) € K} < 22" YA > A

In fact, since in this case 22/"S — ||| Lr2(rmy > S, @ can be chosen
verifying, in addition to (2.14),

(2.49) | DePds < 2/n8 ~ fallsqen
B(0,1)
Now we have for every (y,0) € K

I 0T§,x0 o Toy(p) = /

B(0,1

2
Defds + [ a@)[Tya, 0 Toale)] do
) Q
4 / o(2)[T o ()
B(y,0)

2
g/ |D(,p|2da:+||aHLn/2(Rn)+/&(x) [T%,zo ) a,y(tp)] dx
B(0,1) Q
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and from this, using (2.49) and (2.44), we deduce the existence of A > 0
for which (2.48) is satisfied.

We shall prove that for every A > X there exists a constrained critical
point 95 for fy on V() such that

éld:efinf{f,\(u) tu € V(Q), Ba(u) =0, m(u) = %}

N def
< Sa(0x) < sup{fa 0Ty o, 0 Toy(e) : (y,0) € K} =6

We remark that, in this case, by (2.48) and Lemma 2.7, 0, will have
constant sign, and moreover Uy # vy, because ¢; < fr(vy) < 2 < ¢(a) <
¢ < fa(ba) < éo.

Assume, by contradiction, that no critical value lies in [¢;, é3).

Then, since S < é < é& < 22/™S and the Palais—Smale condition
holds in fy 1(]8,22/78]), there exists & €]cz,é;1[ such that the sublevel

W ={u € V(Q): fi(u) < &} is a deformation retract of the sublevel

v ={u € V(Q): fa(u) < é&}; namely there exists a continuous function
I': fi2 x[0,1] — f32 such that:

f'(u,0) =u and T(u,1) € £ Vue f&
P(u,t)=u Vte[0,1], Yue fi.

So, from
{Ti,:l:o OTa,y(go) : (y,O’) S aK} g f§2 g f,‘\al

{T%,$0 oTa,y(So) : (y’ 0-) E K} g f)C:27

it follows

(2.50) T[Ty, 0Ty, (0),t] = T1 . 0Ts,(p) Y(y,0) € 0K, Ve [0,1]

3To by

(251)  sup{fro T[Ty, o Toy(9),1): (y,0) € K} <& < éy.

Now let us define a continuous function 7 : K x [0,1] — R"™ x R by

(y,0,8) = (1 = 2t)y + 2t o Ty (9), (1= 2t)0 + 2ty 0 Ty ()
V(y,0) e K, Vte [0, %},

0y, 0,t) = (Bx 0 [[Ty 4y © Toy (0), 2 — 1], 90 0 [T, 0 Ty (1), 2t — 1))

V(y,0) € K, Vte B 1].
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Notice that 7 is well defined because {T'y ,, 0 T5 () : (y,0) € KYcf,
moreover we deduce from (2.45)

.00 =920 # (0.3) Vo) €0k, wie o]

and, using (2.45) and (2.50),
R . 1 1 1
n(yagut) :77<y,0'a 5)# (Oag) V(yva) € aK: vt € [571]
Then a point (z’,6’) € K must exist such that

. . 1
Brol[Ty 4, 0 Ty (), 1] =0 o L[Ty 4y 0 T ar (), 1] = 3
and this implies

f)\ o f[T§,10 0 Té’,z’(QD)v 1]

> iﬂf{fx(u) tu € V(Q), Ba(u) =0, ma(u) = %}: &> ¢

contradicting (2.51).

Then we have proved the existence of two distinct critical points vy and
0y of fx on V(). These functions have constant sign, that we can assume
positive; so they give rise to two positive solutions

Uy = [f/\(vx)]ﬁz_Zv,\ and 4y = [f)‘(r[u) 1‘%%@/\

of Problem (1.1). ]

Remark 2.14 (radial symmetry). -~ 1f Q = B(0,p) = {z € R" : |z]| < p},
and we assume 7o = 0 and @, « radially symmetric functions, , then it
is natural looking for the solutions of Problem (1.1) in the subspace of
H}?() made up the functions having radial symmetry.

In this case the proof of Theorem (2.9) can be simplified. In particular,
the solution u) corresponds to a local minimum point among the radial
functions. In fact, if we denote by V,.(Q2) the subset of V(£2) made up the
radial functions, we have for A > )\

Wl

x© T%,O o Taz,O(‘p) >
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and
1
S < inf{fx(u) tu € Vo(Q), ya(u) > g}
<faoTigoTs,o(p) <S+e<c(a)

with § + ¢ < 22/"5.
Thus the existence of 4 minimum point vy of fy on the subset

{u € V() : va(u) > %}

can be proved.

Moreover, under the additional assumption ||c||n/2gny < S(2%/™ = 1),
another solution 4, can be obtained by a variant of the well known
Mountain Pass Theorem by Ambrosetti-Rabinowitz [1]. In fact, in this case
we have for A > A

1
YaoT1g0Ts 0(p) < 3<MmoTyo0 To,0()

and
S <max{froTy o0 Ts0(p):z € {01,02}}

< inf{f)‘(u) tu € Vi (Q), va(u) = %}
<sup{faoT1 g0 Too(p): 0 € [01,02]} < 2% 5.

Remark 2.15. — The solutions ) and 4, found in Theorem 2.1 have a
different behaviour as A\ — +oco. In fact, as we have before seen,

. Ux
lim fy (—) =S5,
N
while
. U
lim inf f (—) > c(a) > 8.

Ao T\ [|aa| e

Thus one cannot say that %, concentrates near a point as A — 400,
like u) does.

It is only possible to remark that for A large enough f,\("—uﬁ;) is
close to S provided that ||a||zn/2(g~) is small enough.
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Remark 2.16. — The solution 4, given by Theorem 2.1 corresponds, in
some sense, to the solution obtained by Benci and Cerami [3] in the case
Q=1R".

On the contrary u) is a solution of new type, whose existence is just
related to the fact that {2 is a bounded domain.

Let us also remark that in Theorem 2.1 we do not require the stronger
assumption o € LP(R™) Vp € [p1,pa] with p; < & < po, used in [3].

3. MULTIPLICITY OF POSITIVE SOLUTIONS IN
PRESENCE OF SEVERAL CONCENTRATIONS

This section is devoted to the study of Problem (1.1) when the function
a(z) has the form

h
(3.1) a(z) = alz) + Y Nei(i(z — 2:))

=1

or also

(3.2) a(z)=a(z)+ Z M pioi(Ni(z — ;) + Z Ma;(Mi(r — 3;))

i=r+1

where zi,...,z, are given points in ), &, a;...q, are nonnegative
functions, and \;, p4; are positive parameters.

It is very natural to think that several concentrations in the function a(x)
can guarantee the existence of several distinct solutions. Indeed, we show
that it is possible to choose the parameters A; and y; in such a way to obtain
several distinct critical values of the functional f constrained on V().

Theorems 3.1, 3.2 and 3.3 describe some possible way to realize this
choice. We point out that, when we exploit the parameter A; and p; in
order to obtain several critical values, we do not need to require that the
concentration points x;...r, are necessarily distinct.

THEOREM 3.1. — Let Q0 be a smooth bounded domain of R™ with n > 3
and z,...r; be given points in ) (not necessarily distinct). Let o in
L*2(Q) and a;...ap in L*(R™) be nonnegative functions such that
llllprrzgny # 0 Ve = 1...A B B

Then, there exzst A >0, Ao = Xa(A1) > 0, Az = A3(A,A2) > 0...
A = A i) > 0. Ah = M(A1.. An_1) > 0 such that Problem
(1.1) with a(x) of the form (3.1) has at least h distinct solutions uy...up
for every choice of Ai.. .\, such that \; > \;, i =1...h.

Annales de I’Institut Henri Poincaré - Analyse non linéaire



SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF POSITIVE SOLUTIONS 213

Moreover
Up
3.3 22/"S>f(———) >f(—u2—) >...>f<———) > S,
(33) oxllo Tzl Tanllor
.
34 lim f(——) S Vi=1...h.
(34 N e

THEOREM 3.2. — Let , x1...Th, @, Qi...ap be as in Theorem 3.1.
Then there exist [11 > 0, 5\1 = 5\1([111) >0, jig = ﬂz(/\l,ul) > 0, 2\2 =
)\2(H1a/\1 p2) > 0.. = I (1, A1y 2y A2y e vy frm1, Ar—1) > 0, A
A (11, A1, pias Az, - - ,;I,T 1,)\, Lpe) > 0, (with v < h) and A\py1 =

/\r+1(ﬂ17/\1au21)‘27 aﬂ'ra/\ ) > 0.. /\h - )‘h(u11/\17ll’27/\2a au‘ra/\
Arg1---An_1) > 0 such that Problem (1.1) with a(x) of the form (3.2) has

at least (r + h) distinct solutions Gy, U1, Ug, Uz, . . ., Up, Up, Up 41, - - -, Un fOT
every choice of A\1...An, pi.. .Uy sSuch that

N>\ Vi=1l..h and 0<p; <p; Vj=1...r

Moreover

2/n U U1 0
ws) 25> i (i) > S (wnm)” (i)
Uz
> f (Ilmllm*) >4 (nurnm*) > (uurnw)

Ur41 S
> <nur+lnL2*) > 1 (nuhup) >

U;

lim f(——) =S Vi=1..h,
Mmoo \ || poe

lim f( Y ):s Vj=1...r
w5 =0 "\ [|4y]| or

THEOREM 3.3. — Let Q,z1...xTh, &, Q1...ap be as in Theorem 3.1.

Then there exist jiy > 0,2 = fa(p1) > 0, iz = fa(p,p2) >
0,...fir = fp(pt1, 2 - -pr_1) > 0 (withr < h) and Ay = Ai(p1. - por) >
0, )\2 = )\2(,[1,1 ;ufm)\l) > 0.. /\h = /\h(ﬂl ,u'r,)\l'--)\h—l) > 0 such
that Problem (1.1) with a(z) of the form (3.2) has at least (v + h) distinct

(3.6)
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solutions iy, . . Gy, uy, us. . up for every choice of M\y... Ay, 1. . .1y such
that

X>XN Vi=1.h and 0<p;<p; Vj=1..r

Moreover we have

(3.7)
22/"S>f< & )>f( Gs )>...>f( i )
[l | 2= 2] L2+ lldir || L2+

U1 U2 Up
>f (nulnm*) > 1 (nmuw) >o>f (Ithlle*) > 8

and the relations (3.6) hold.

In what follows we denote by fy, . A, the functional f when

a(z) = a(x) + Z Aoy(Ni(z — z;)) (where s < h)

and by f{'{" the functional f when

a(z) = &) + Y MmNz — ;)

=1

+ Z Moi(Ni(z — ;) (with t < s < R).

1=t+1

Moreover we put
/8/\z =po T)\i,—)\imz and T =70 T)\i,_)\iwi'

Proof of Theorem 3.1. — The idea of the proof is the following: first we
remark that Theorem 2.1 implies the existence of a critical value for i
on V(Q) if A; is large enough; moreover, fixed A\; > 0, the same theorem
implies that for A, > 0 large enough there exists a critical value for Far g
that goes to S as Ay — +oo.

Then, the crucial step is to prove that the previous critical value of fy,
persists in the sense that f, ), has also another critical value, which is
close to the one of fy,, if A, > 0 is large enough. Iterating this argument,
we obtain h distinct critical values for f, . a, for suitable choices of the
parameters Aj...\p.
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For every ¢ = 1...h, let us set
def . 2 2 n
cla;)= 1nf{/ |1 Du|* + ai(z)u’ldz : w € V(R™),
Rn .
1
1) =0, 2() = 3.

By Lemma 2.8, since |lai|lpn/2(g=) # 0, we have that c(a;) > S
Vi = 1...h.
For every ¢; > 0 such that

S+ € < min{c(ey), ..., c(an), 2™},

we find, arguing as in section 2, with analogous notations, a constant
A1 > 0, a function ¢; € Hy?(B(0,1)) and a subset K; of R® x R, with
(0, 3) in its interior, having the properties described in Corollary 2.11 and
such that for every A\; > A; the relations

( Tﬁ,xl OTU,‘!/(SDI) € Hé’z(ﬂ) V(y7a) € Kl

and
S < inf{f (u) 0 € V), fa,(u) = 0, 1a,(u) > 1}
< sup{fy, o Txl?ml 0T, (1) : (y,0) € 0K;}

\ <S+€1<C(a1)

(3.8) 4

hold.
Let us fix A; > A;. Then, for every €z > 0 such that

S+e < inf{f,\l(u) cu e V(Q), B, (u) =0, ya,(u) > %},

there exist Ay = A5(A;) > 0, a function ¢, € H5’2(B(0, 1)), a subset K,
in R" x R, with (0, 3) in its interior, having the properties described in
Corollary 2.11, so that for every Ay > A, it results:
Ty oy 0 Toyl) € HI(Q) W(y,0) € Ky

and

. 1

§< lnf{f/\l,)q(u) ‘u € V(Q)) /8)\2(“) = Oa ’7)\2(“) > g}
S Sup{f)\l,/\2 ° T%,:rg ° o‘,y(502) : (y7 U) € 8K2} <SS + € < C(ag).
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Now, let us prove that

(3.9) lim sup{/ Mag(Aa(z — )T o, © T, (01)]%d :
O 1

Ag —>+OO

(y,0) € Kl}: 0.

In fact we have

(3.10) sup{Tﬁ,‘,,c1 oT,y(p1)(x):z €, (y,0) € K1} < 400
because sup ¢; < +oc.
B(0,1)
Moreover, it is easy to verify that

lim Naa(Ao(z — 12))]2dx = / af (x)dx ¥Yp >0

A2+ JB(x,,p)

n

that is
lim Mas(Ae(z — 22))]2dz =0 Vp > 0.
A2=+00 JO\B(x2,0)

Therefore we have
[ Maalha(o — eI s, o Teglp0)Pds
Q
- / Nas((@ — 22) [Ty, 0 Toy(1)da
B(z2,p) !

+ / Mo = 22) [T, 0 Ty (01)Pd
Q\B(z2,p) !

< </B(x2,p) Aoz (Ag(z — x«?))]"”dx) 2/n

n

( [ e Ta,y(%n?*dx)
B(zz,p) !

2/n
N ( / N2as(a(z — x2))]"/2dx>
Q\B(z2,p)

( [ a,y«ol)]?‘dx)
Q\B(xz2,p) '
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So from (3.10), for a suitable choice of ¢, it follows

lim sup sup{/ Mas(Aa(z — x2))[Tﬁ,zx 0T, (p1)]%dz : (y,0) € Kl}
Q

AQ—)+00

<ep"? Vp >0,

that implies (3.9), as p — 0.
Thus we infer from (3.8) and (3.9) that

Iimoo sup{fa, a, 0T L o, 0I5 (1) : (y,0) € OK1}

z
Az2—+ Aot

= sup{fy, OTﬁ,ml 0Ty y(p1) : (y,0) € 0K} < S +¢.

Moreover, since fi, x,(u) > fi,(u) Yu € V(2), we can assume that for
every Ay > Ay the following inequalities hold:

S+e< inf{f/\l,)\z(u) U € V(Q)a ﬁAl(u) =0, T (u) > %}

<sup{fnn 0T oy 0 Toy(1) 1 (y,0) € 0K1} < S+ 1 < ¢(en).

Iterating this argument for ¢ = 3...h, we obtain that for every ¢ > 0,
such that

S+e < inf{f}\l._.)‘i_l(u) cu € V(Q), B, (u) =0, y,_,(u) > %},

there exist \; = Xi(Aq.. Ai—1) > 0, functions ¢; € H&’z(B(O, 1)), subsets
K; in R" x R, with (0, %) in their interior and satisfying the properties
described in Corollary 2.11, so that, if A\; > X, then

Ty, oT,,(p:) € HY*(Q) Y(y,0) €Ki, Vi=1...h

T
1

and, for every ¢ = 2...h, it results:

5< inf{fh...xh () 5 € V(Q), fr,(w) = 0, ya,(w) > ;}

<sup{fa,.x, 0T1 , 0T5 (i) : (y,0) € OK;} < S +¢

by 2Ly

< inf{f)q.u/\h (u) ue V(Q)a /8)\,'71(71‘) = 07 ’Y)u'—l(u) Z %}

<sup{fa,.an 0T 1, 0T, (pic1) : (y,0) €K1} < S+ €4

1
Xi—1?
where S+ ¢, < c(a;) Vi = 1...h.
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It is easy to verify that for every choice of the positive constants A;. ..\,
the relation

c(ay) < inf{f)\l...xh (u) :u e V(), B, (u) =0, yx,(u) = é}

Vi=1...h

is satisfied. Therefore the following inequalities hold, if A\; > \; Vi = 1...h:

(3.11)
5< inf{fxlu.xh (u) s w € V(Q), fa () = 0, 7, (u) > %}

< Sup{f)qw)\h 0 T-l— z; © Ta,y(%‘) : (y’ U) € aKz} <S+¢g

< c(ai) < inf{f/\l-n/\h (u) ‘u € V(Q)a IB>\1(/U’) =0, v (u) = %}

with S + ¢ < 22/"S Vi = 1...h.

Arguing as in the proof of Theorem 2.1, using (3.11) and the properties
of K, it is not difficult to prove that, for every i = 1...h, the functional
far..a, admits a critical value v; verifying

. 1
{0052 € VI, (00 = 0, 3, (0) 2 § 1< Foron (00
<sup{fa,.n 0 Ta o, 0 Toy(i) : (y,0) € 0K} < S+ e

Thus, the solutions u; = [fx, .a, ('ul)] v; (i =1...h) of Problem (1.1)
verify the relations (3.3); moreover, since ¢; > 0 can be taken arbitrarily
small, (3.4) holds. 0

Proof of Theorem 3.2. — Like in the proof of Theorem 3.1,
we use an iterative procedure: we find consecutively the parameters

K1y AL, 2, A2, ooy oy Ay Arg1. .. Ap In such a way that the functional

fyiXr constrained on V/(€2) has at least (r + h) distinct critical values.

Let us choose fi; > 0 in such a way that
|| prre ey < S(2%™ = 1).

Arguing as in Theorem 2.1, we deduce that for every €; > 0 there exist
A= Ai() > 0,9, € Hy 2(B(O 1)), and a subset K; of R" x R (having
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the properties of Corollary 2.11) such that the following inequalities hold
for 0 < n1 < U1 and \; > /\1([1/1)2

S < inf{ fll(u) cu e V(Q), By, (u) =0, v, (u) > %}
<sup{f}' oT1 , 0T, ,(p1): (y,0) € OK1}

_ml

< lnf{ fll(u) ‘u € V(Q)7 /B)q(u) = Oa ’Y)\l('u’) = %}

< sup{f{} oT1 0T, y(p1): (y,0) € K1} < 2% 9

21
and, moreover,

sup{f}, o T'L ,, 0 T y(p1) : (y,0) € OK1} < S+ e

_zl

sup{f3} 0 T o, 0 Toy (1) = (y,0) € K1} < S+ 2ullan|prrzrny-

Let us fix p1 < f1; and A > Al :l“hen, as before, for every ¢, > 0 there
exist iy = fia(p1, A1) > 0, Ao = Aa(pa, A1, p2) > 0, @ € H3’2(B(0a1))
and a subset K5 of R" xR (satisfying the properties of Corollary 2.11)
such that, if 0 < ps < jio and Ay > Ao, it results:

S < inf{ flf;(u) u € V(R), Br,(u) =0, ya,(u) > = }
< sup{fy)5; 0 T 2, 0 Toy(2) : (y,0) € 0K}
< inf {f;‘ff; (u) :u € V(Q), Ba,(u) =0, ya,(u) =
< sup{fy 5, 0 TL 2, © Toy(2) : (y,0) € Ko}

W =
N——

and moreover

sup{fi/ 32 0T L o, 0 T y(02) : (y,0) € 0K} < S+ ¢y
sup{ 35, o TL w2 © Toy(2) 1 (y,0) € Ko} < S+ 2ps||ca| g2 gy

As in the proof of Theorem 3.1, we can also assume that fis(p1, A;) is so
small and Ay = Xo(p1, A1, p2) is so large that the following inequalities
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hold:
S+ 2pslloa|| prs2
< inf{ /{‘I‘f:(u) cu € V(Q), Ba, (u) =0, v, (u) >
< sup{f{*" “22 oTa , oT, (¢1): (y,0) € 0K}

_ml

<int{ S8 0 € V), ) = 0, 10, (0) = 3

<sup{f{/ Az 0T . 0T, (¢1): (y,0) € K1} < 22/ng

—931

Wl
——

and moreover

sup{fX; %, 0 Tt 2y © Toy(tp1) : (y,0) € 0K1} < S+ &1
sup{f{. {7 o T_l_ 2 0 Toy(p1) i (y,0) € K1} < S+ 2uallaa |l prre gy

Repeating this procedure for 7 = 3...r, for every ¢; > 0 we find

fi; = fii(pn, Are e oprio, A1) > 0, A = Ag(pa, A pior, Aie 1, 1), @i €
Hy?(B(0,1)), K;CR" x R such that, if 0 < 11; < ,h and \; > \; Vi=

1...r, the following inequalities hold for s = 2...r:
S <int{ F82147 0 w € VI, B 0) =0, )2 3
<sup{f{\ X 0 T o, 0 Toy (1) : (y,0) € 0K}
<inf{ F2 070 s € V), B (0) =0, o) = 3}
<sup{fi} %7 0 Th o, 0 To (i) = (y,0) € Ki}
< inf{f;‘::::;‘:m) WE V), B (1) =0 (1) 2 3
<sup{ 0T a0 Toy(pin1) s (y,) € OK,1)

Tl

1
< inf{fi?fjji‘:(u) W€V, Bri() =0 () = 5
< sup{fy 3 o T 0 Tpy(0iz1) : (y,0) € Kiq} <2278

and, for ¢+ = 1...7,

sup{f3) 37 0 T o, 0 Toy(0:) < (y,0) € OKi} < S + ¢
sup{fX; "X 0 T o, 0 Toy(i) : (y,0) € Ki} < S+ 2uillcvil| /2 ey

]
i
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For + = r +1,...,h, the same arguments used in the proof of Theo-
rem 3.1 allow to state that for every ¢; > 0 there exist

Ai = N1, Mo ey Ay Arga- - Ail1), o € Hy2(B(0,1)), K, R xR

(with the properties described in Corollary 2.11) such that, if A\; > \; for
t=1...hand 0 < p; < fi; for s = 1...r, then the previous inequalities hold
with f{! %" instead of f{"{'", and, moreover, fori = r+1,..., h, we have

1
S < inf{ 304 (u) ru e V(Q), Ba(w) =0, v, (u) > 5}
Ssup{f3) A 0 T o, 0 Toy (1) : (y,0) € 0K}

< lnf{ f\?;;(u) BAURS V(Q)’ ﬂki_i(u) = Oa f)’)\i-—l(u) 2 %}

< sup{f;“ Yol s, 0Ty (9i1) s (1,0) € aKi_l};
sup{f3} "%, 0 T o, 0 Toy (i) : (y,0) € OK;}

< 1nf{ Mok (w) s u e V), Ba,(u) =0, v, (v) = 1}
sup{f! {T o Ts ., 0 Toy(9s) : (y,0) € OK;} < S +¢;.

Using these inequalities and the properties of the subsets K;, arguing as in
the proof of Theorem 2.1, it is not difficult to see that the functional I, g 5
constrained on V(2) has, for every ¢ = 1...r, a critical point 9; such that

mf{ ok (w) su e V), B, (u) =0, v, (u) = } X (os)
S sup{fy N 0 T o, 0 Toy (i) < (y,0) € Ki} < S+ 2|l s ey

Moreover for every « = 1...h it is possible to prove the existence of
another critical point v; € V() such that

mf{f‘“ (0w V), B ) =0, ()2 3 < R ()
<sup{f{!" "’ oTL 2 ©Toy(0i) : (y,0) € OK;} < S+ ¢.

Thus, we obtain the solutions of (1.1)
= [ )] e (= 1)
;= [falAn(@)] T e (i=1..r)
that, clearly, verify (3.5) and (3.6). O
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Proof of Theorem 3.3. — In analogy to what done in the proof of Theo-
rems 3.1 and 3.2, we choose the positive parameters A; and ; consecutively,

in such a way that the corresponding functional f{"{'" constrained on V(1)

has at least (74 h) distinct critical values. Here we choose these parameters
in the following order: w1, po. . .tr, A1, Az. . Ap.

Let us choose fi; > 0 such that
S + ||;7,10z1HLn/z(]Rn) < 22/nS

Since [|a1||p/2(rn) # 0, Lemma 2.8 implies that c(u101) > S for every
p €10, fin[.
Therefore there exists 1o = fia(p1) > 0 such that

S+ [|B2a| prr2gny < ().

Notice that c(p1o1) < S+ ||rca||pn/zmny Y1 €]0, fir[, because

f |Dul?dzx + 1y / oy (z)ulder < / | Du|?dz + |1l pnrzmmy
Yu € V(R").

Iterating this procedure, we obtain, for every ¢ = 2...r,
Bi = Bi(p1...pi-1) > 0 such that, if p; €]0, ],
S < c(,u,iai) <S5+ “ﬁiai“Ln/z(Rn) < c(ui_lai_l)
2
< S+ ||l_1'i—lai—1||Ln/2(Rn) <27 8.

Then arguing as in section 2, we find, for every e; > 0, Ay = Ay (u1. . .14y,
¢1 € Hy?(B(0,1)), K;C R™ x R (satisfying the properties described in
Corollary 2.11) such that, if 0 < pu; < 17 and A\; > \q,

sup{fi‘l1 0T , 0T5y(p1): (y,0) € 0K 1} < S +e,

A1

(3.12) sup{f}, 0 T o, © Toy(¢p1) = (y,0) € K1}
< S+ [l flprr2 ey min(fig, 2p1) < 27 S.

In particular, we choose €; > 0 such that S + €; < c(p,a).
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Repeating the same procedure, for any €; > 0 we prove that there exist
Az = Aa(pi1- - -pmy A1), 2 € Hy?(B(0,1)), K2CR" xR,
such that, if
0 < p1 < fir, A1 > A1, 0< pig < fig, A > Ag,
then the inequalities (3.12) hold with f" % instead of f5' and, moreover,

sup{ fllf; o TL 20 0T y(2) : (y,0) € 0K} < S+ e,

sup{fi, %, 0 Tt 2, 0 To,y(2) : (y,0) € OK>}
<SS+ ||a2||Ln/2(Rn) min(fiz, 2p2) < c(pra1).

In particular, choose €2 > 0 such that

S+ e < inf{ f\‘:(u) cu € V(Q), v, (u) =0, By, (u) > %}
<inf { A5 0 € V@), B () =0, 7 () 2 3.

Arguing in the same way for i = 3. ..r, for every ¢; > 0 we find
Xi = Ai(pae - ey Are A1), @i € H”(B(o 1)), K;C R™ x R, such that,
if0<m<ﬂiand)\,~>)\i\7’z—1 .r, then

sup{fﬁ“ 'ﬁ\" 0T1 2. © Toy(ws) : (y,0) €OK;} < S + ¢,
(3.13) sup{f;\1 e TL 2 °Toy(pi) : (y,0) € K;}
< S+ ”ai”Ln/z(Rn) min(ﬁi, 2/1,,) Vi=1...r.

In particular, we choose ¢; > 0 such that

S+ez<1nf{ [ “’(u) weV(Q), Bi_,(u) =0, yr,_,(u) > 1}
Vi=2...r.

For ¢ = r+ 1,...,h, by arguing as in the proof of Theorem (3.1), we
find for every ¢; > 0,

/_\,‘ = 5\,‘([1,1. . ./,l,,-,)\l. . -/\'i—l)a w; € H&’2(B(07 ]-))a Kic R" xR
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(satisfying the properties of Corollary 2.11) such that, if
O<p;<p; Yi=1l..r and X\ >N Vi=1...h,

then the inequalities (3.13) hold when we replace the functionals by f{"{",
and, moreover, it results for every i = r +1,..., h:

sup{fy, 5 0 Th o, 0 Toy(9) : (y,0) € OKi} < S+ ¢,
Sup{ff '”’ ) T1 2: 2 Toy(@i) : (y,0) € OK,}

< lnf{ . ,Ltr(u) u € V(Q) 13)\ 1(“) 0’ 7>\i—1(u) > %}

We also assume that

S+e <cla) < 1nf{ VAT (w) s u e V(Q), Br(u) =0, ya,(u) = %}

Thus, the topology of the sublevels of the functional [yl constrained on

V(£2) can be described, if 0 < p; < fi; Vi = 1.. rand)\ >)\\7’z—1 .h,
by the following inequalities (that hold for i = 2...h):

1
S < inf{ Aoan () 1w € V(Q), B (w) =0, 7, (u) > g}
<sup{f{’{r 0T1 2. 015 y(@)i : (y,0) EOK;} < S+ ¢

< inf { Ao () 1w € V(Q), B, (uw) =0, ya,-1(u) > %}

<sup{f{} {0 Ty o 0Toy(p)i:(y,0) €K1} < S+€y
1
<inf{/\““r(u) u € V(Q), B (u) =0, v, (u) = 3}<2S
for + = 2...r we have, in addition,
S < Sup{ ,I\Ll1 ){L}: OTI T OTa,y((pi) : (y, U) € aKz}

<inf{ Fr(u) cu e V(Q), B, (u) =0, v, (u) = %}

< sup{fy % 0Ty 5, 0 Toy(pi) = (y,0) € Ki}
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< 8 + [l grs2 rny min(fs, 20:) < e(pi-106-1)
Sint{ ) sw € VIO a0 =00 = 5
<sup{f{1{roT 1, 0 Toy(wi-1) : (y,0) € Kir}

. s 2
<SS+ ||ai_1||Ln/2(Rn) min(f;—1, 2“1‘—1) < 2= 8.

Then the above inequalities, and the properties of the subsets K;, allow
us to state that the functional f§' 4" constrained on V() has, for every
1 = 1...h, a critical point v; such that

inf{ LA (w) s u € V(Q), B (u) =0, ma(u) 2 } S (vg)
<sup{ AT 0 T o, 0 Toy(i) : (y,0) € OKi} < S+ e

Furthermore for every ¢ = 1...r there exists another critical point
9; € V(Q) such that

1
it { £ 470 10 € V@), 5100 = 0, ) = § } < A0
< sup{f} ’“ “* o T1 o Ty (pi) : (y,0) € K}

Lo
<S5+ 2Hi||ai||Ln/2(R")-

Therefore the solutions of (1.1)

n-2 i
wp= [t ()] T e (i=1..h)
U = [ffllf,: (ﬁi)] T (i=1...1),
corresponding to these critical points, satisfy (3.7) and, since ¢; and p; can
be chosen arbitrarily small, the relations (3.6) hold. |

Remark 3.4. — In the proof of Theorems 3.2 and 3.3 we obtain (7 + h)
distinct solutions of Problem (1.1) by choosing the parameter A; and p; in
such a way that the corresponding functional f{{" has at least (7 + h)
distinct critical values; as already observed, we do not require that the
concentration points x;...z, are distinct. On the other hand, it is very
reasonable that, if we assume that the concentration points xp...Tp are
distinct, an assertion of the following type holds:

there exists ¢ > 0 such that, if

1
/\i>; Vi=1...h and O0<p; <e Vj=1...r,
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then there exist at least (r+h) distinct critical points for 3 {" constrained
on V(), corresponding to critical values not necessarily distinct.

Moreover, in analogy with other multiplicity results on elliptic problems
involving critical Sobolev exponents (see [21], for example), we can
conjecture that h distinct concentration points x;...r; guarantee the
existence of at least 2"+") — 1 distinct positive solutions, if A\; > % Vi =
l..hand 0 < p; < eVj = 1...r.

Remark 3.5 (concentration on subset of small capacity). — Theorems
2.1, 3.1, 3.2 and 3.3 associate the existence and the multiplicity of positive
solutions for Problem (1.1) to the property that some parts of the nonnegative
function a(x) are concentrated near some points of €.

More in general, one can consider the case where a(x) is a nonnegative
function concentrated near some subsets of {2, having small capacity: for
example, we can consider functions a(x) of the form:

/\i ifre lq'z
a(z) = 0 .

otherwise,

where (H;); is a sequence of subsets of 2 with lim capoH; = 0, and
lim A\, = +o00.

1—00

In this case the study of the multiplicity of positive solutions become
more interesting because the topological properties of the subsets H; also
intervene and contribute to increase the number of solutions.

Multiplicity results concerning functions a(x) of this type will be reported
in a paper in preparation.
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