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ABSTRACT. — This paper gives a solution to an open problem raised by
Bethuel, Brezis and Hélein. We study the Ginzburg-Landau energy with
weight. We find the expression of the renormalized energy and we show
that the finite configuration of singularities of the limit is a minimum point
of this functional. We find a vanishing gradient type property and then we
obtain the renormalized energy by Bethuel, Brezis and Hélein’s shrinking
holes method.
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RESUME. — Ce travail donne la solution d’un probleme ouvert de Bethuel,
Brezis et Hélein. On étudie I’énergie de Ginzburg-Landau avec poids.
Nous trouvons I’expression de I’énergie renormalisée et on prouve que la
configuration finie des singularités de la limite est un point de minimum
pour cette fonctionnelle. Nous montrons une propriété du type « vanishing
gradient » et on obtient ensuite I’énergie renormalisée avec la méthode
« shrinking holes » de Bethuel, Brezis et Hélein.

Classification AM.S. : 35 J 60, 35 Q 99.
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172 C. LEFTER AND V. D. RADULESCU
1. INTRODUCTION

In a recent book [BBH4], F. Bethuel, H. Brezis and F. Hélein studied
the vortices related to the Ginzburg-Landau functional. Similar functionals

appear in the study of problems occuring in superconductivity or the theory
of superfluids.

In [BBH4], F. Bethuel, H. Brezis and F. Hélein have studied the behavior
as € — 0 of minimizers u. of the Ginzburg-Landau energy

B = [ 190 4gg 0= lupy

in the class of functions
1 _ 1 m2Y. ., —
H,(G) = {u € H(G;R%); u=g on 0G},

where:

a) € > 0 is a (small) parameter.

b) G is a smooth, simply connected, starshaped domain in R2.

¢) g : 0G — S! is a smooth data with a topological degree d > 0.

They obtained the convergence of (u., ) in certain topologies to wu.
The function w, is a harmonic map from G \ {ay,...,as} to S, and is
canonical, in the sense that

0 ou d ou
. * . A * — . DI G .
Bml (U A 8.’1)1) + 8$2 <u 8?172) 0 in ( )

Recall (see [BBHA4]) that a canonical harmonic map w, with values in
S' and singularities by, ..., by, of degrees dy, ..., d;, may be expressed as

d d

T —b ! (m*bk >kisoo(w)
up(x) = [ ——— ol ———1 e ,
o) <|$~bll) | 2 — b |

AQD():O in G.

with

They also defined the notion of renormalized energy W (b, d, g) associated
to a given configuration b = (by,...,bx) of distinct points with associated
degrees d = (dy, ..., dy). For simplicity we set W(b) = W (b,d, g) when
k = d and all the degrees equal +1. The expression of the renormalized
energy W is given by

k

_ 1

W(b,d,g) = —m > did; log | bi—b; | + 3 LG ®o(gAg-)—7 Y _ d;Ro(b)),
i#j j=1
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ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT 173

where @ is the unique solution of

( k

A®y =27y d;b,, inG
j=1

1) { 99,

—a—y—:g/\g.,—, on 0G

/ @0:0
»JoG

k
Ro(z) = ®o(z) — ) d; log |z = b; | .
7j=1

and

The functional W is also related to the asymptotic behavior of minimizers
u. as follows:

(2) lim {E.(us) — 7d | loge |} = min W (b) + dv,
e—0 beGe

where « is an universal constant, k = d, d; = +1 for all ¢ and the
configuration a = (ay,---,aq) achieves the minimum of W.

We study in this paper a similar problem, related to the Ginzburg-Landau
energy with the weight w, that is

1 1
E;"(u):i/G|Vu |2+E/G(1—|u|2)2w,

with w € C*(G), w > 0 in G. Throughout, u, will denote a minimizer of
EY. We mention that u. verifies the Ginzburg-Landau equation with weight

. ~ Au, = giZuE(l— lu. P)w in G
us =g on 0G.

Our work is motivated by the Open Problem 2, p. 137 in [BBH4]. We are
concerned in this paper with the study of the convergence of minimizers,
as well as with the corresponding expression of the renormalized energy.
We prove that the behavior of minimizers is of the same type as in the
case w = 1, the change appearing in the expression of the renormalized
energy and, consequently, in the location of singularities of the limit u,
of u.,. In our proof we borrow some of the ideas from Chapter VIII in
[BBH4], without relying on the vanishing gradient property that is used
there. We then prove a corresponding vanishing gradient property for the
configuration of singularities obtained at the limit. In the last section we
obtain the new renormalized energy by a variant of the “shrinking holes”
method which was developed in [BBH4], Chapter 1.
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174 C. LEFTER AND V. D. RADULESCU
2. THE RENORMALIZED ENERGY

THEOREM 1. — There is a sequence €,, — 0 and exactly d points a4, ..., aq
in G such that

Ue, — u, in Hi (G\ {ay,...,aq};R?),

where u, is the canonical harmonic map associated to the singularities
ai,...,aq of degrees +1 and to the boundary data g.

Moreover, a = (a1, - -,aq) minimizes the functional
(4) W) =wb)+ 5 ; log w(b;)

among all configurations b = (by, ...,by) of d distinct points in G.
In addition, the following holds:

d
(5) Jim {BY (ue,) ~md |loge, |} = W(a)+ 3 3 logway) + d,

Jj=1
where v is some universal constant, the same as in (2).

Remark. — The functional W may be regarded as the renormalized
energy corresponding to the energy FY.

Before giving the proof, we shall make some useful notations: given the
constants c,e,n > 0, set

If(e,n) = min{Eg(u); ‘u € H'(B,;R?) and u(z) = % on 8B,,}.

Here B, = B(0,n) C R2.
For z € G, denote

M,(zy= sup w and  m,(z)= inf _w.
B(z,n)NG B(z,n)NG

renr{ip)e (i)

I (e,n) < I (e, m),

Note that

and

provided ¢; < cs.

Annales de IInstitur Henri Poincaré - Analyse non linéaire



ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT 175

We shall drop the superscript c if it equals 1.

Proof of Theorem 1. — The first part of the conclusion may be obtained by
adapting the techniques developed in [BBH1], [BBH2], [BBH3], [BBH4]
(see also [S]). We shall point out only the main steps that are necessary
to prove the convergence:

a) Using the techniques from [S] we find a sequence &,, — 0 such that,
for each n,

1
(6) = /G (1- | ue, PYw < C.

b) Using the methods developed in [BBH4], Chapters 3-5, we determine
the “bad” disks, as well as the fact that their number is uniformly bounded.
These techniques allow us to prove the convergence of (u.,) weakly in
H} (G \ {a1,...,ar};R?) to u,, which is the canonical harmonic map
associated to ai,...,a; with some degrees d,...,dr and to the given
boundary data. ‘

c) The strong convergence of (u, ) in HL (G \ {a1, ..., ar.}; R?) follows
as in [BBH4], Theorem VI.1 with the techniques from [BBH3], Theorem 2,
Step 1. Now the local convergence of (u.,) in G\ {ai,---,ax} in stronger
topologies, say C2, may be easily obtained by a bootstrap argument in
(3). This implies that

1— |ue, |2
™) e By v,

uniformly on every compact subset of G \ {ay,...,ax}.

d) For each 1 < j <k, deg (u.,a;) # 0. Indeed, if not, then as in Step
1 of Theorem 2 [BBH3], the H!-convergence is extended up to a;, which
becomes a “removable singularity”.

e) The fact that all degrees equal +1 may be deduced as in Theorem
V1.2, [BBH4].

f) The points aj,...,a4 lie in G. The proof of this fact is similar to the
corresponding result in [BBH4].

The proof of the second part of the theorem is divided into 3 steps:
Step 1. — An upper bound for E¥(u.).

We shall prove that if b = (b;) is an arbitrary configuration of d distinct
points in G, then there exists 779 > 0 such that, for each 5 < 1,

(®) E*(u,) < §I<W 1)+W(b)

1
+ wdlog 5+O(n) asn— 0,
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176 C. LEFTER AND V. D. RADULESCU

for € > 0 small enough. Here O(n) is a quantity which is bounded by C7,
with C independent of 1 > 0 small enough.

The idea is to construct a suitable comparison function v.. Let 1 < 7,
where

no = min{dist (b;, 0G), | b; — by [}.
VLY
Applying Theorem 1.9 in [BBH4] to the configuration b, we find
d

i : Gy =G\ |JB(b,m) — S with @ = g on 9G and a; € C,

71=1
| @; |= 1 such that
. z—b;
u = o[jl—z———le on BB(b],n)
and
1 N 1
©) 5[ IVaP=rdog S+ W) +0W), g0
G

n

We define v, as follows: let v. = u on G,, and, in B(b;,n), let v. be
a minimizer of EY on Hy(B(b;,n); R?), where h = @ |sp(, ). We have
the following estimate

P E
(1) B(v. |sg, ) < I9®)(e, ) = 1(—, 1).
(b3 v/ M, (b;)

n
The desired conclusion follows from (9), (10) and E*(u.) < E¥(v.).
Step 2. — A lower bound for E? (u.,).

We shall prove that, if ai,...,a4 are the singularities of u,, then given
any 7 > 0, there is Ny = Ny(n) € N such that, for each n > N,

d
e 2300

Here o = 147 and O(7) is a quantity with the same behavior as in (8).
Indeed, for a fixed a;, supposed to be 0, u, may be written

1
1) +md logg +W(a) + O(n).

an man(a])

_ iyt
u, = ' W+o),

where 1) is a smooth harmonic function in a neighbourhood of 0. We may
assume, without loss of generality, that ¢(0) = 0.
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ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT 177
In the annulus A, ., = {z € R? ; 1 <| 2 |< an} the function u., may
be written, for n large enough, as

(40
uEn = pnez(d’ + )7

where 1), is a smooth function and 0 < p,, < 1. Define, for n < 7 < an,
the interpolation function

n 79 - an—r
Un(r,0) = —n+ p(o(én_ 1))(6”7 r) ilota=ty ¥ (m,6)+6]

We have

an
L[ e pre < W= U (T, 2o )dr
€2 N \JoB
Anan n n n

1 1- | u, [2)?
=||w||Loo-—~“+ n2/ Al )00 0 asn— oo
B

2
2 €2

This convergence is motivated by (7). We also observe that the convergence
of (uc,) in HE (G \ {a1,...,aq}; R?) implies

(12) / | Vo, ?— / | Vo [?, as n—0,
An,an An,an

where
v(n,0) = elaan v (m0)+6]

Thus, we may write, for n > Ny,

1
E2 (v |aya,) = 5/,4 | Vo |2 +o(1).

We prove in what follows that
(13) [ 1ver=onm.

Indeed, since

|V’U |2___ ¢2(77,9) 1 { arn —

( —1)? 2 777(0[ )%(n, o) + 1]

and
¢(T’0) < C’I”, I 77br(7'7 0) IS C7 | 1,[)9(7’,0) |S CT’

the desired conclusion follows by a straightforward calculation.
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178 C. LEFTER AND V. D. RADULESCU

We obtain
(14) E;‘;(ve,,,B(w)) > [™en(%) (e, am) + O(n).

On the other hand, by the convergence of (u.,) in HL_(G\
{a1,...,a4};R?) it follows that

(15) E¥ (ue, |,) = / | Vi P +0(n),

n

for ¢, sufficiently small.
Taking into account (12)-(15) we obtain the desired result.

Step 3. — The final conclusion.

It follows from [BBH4], Chapter IX that

(16) I(e,n) =m

logE|+7+o(1) as = — 0,
n n

where the constant -y represents the minimum of the renormalized energy
corresponding to the boundary data x in Bj.
From (8) and (11) we obtain

(17) W(b) + ZlogM (b;) — wdloge,, + dy + o(1)

] 1

> W(a)+ = Zlogmn(al) wdloge, +nd log%—wd log — +d7+0(1),

i=1

where o(1) stands for a quantity which goes to 0 as ¢, — 0 for fixed 7.
Adding 7d loge, and passing to the limit firstly as n — oo and then as

n — 0, we obtain that a = (a;,...,a4) is a global minimum point of w.
We also deduce that

d
lim {EY (u.,) —7d |loge, |} = W(a) + gZIOg w(a;) + dv.

=1

We now generalize another result from [BBH4] concerning the behavior
of wu,.

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT 179

THEOREM 2. — Set

1

Wo= o (

1= | ue, [*)?w.

Then (W,,) converges in the weak * topology of C(G) to

Proof. — The boundedness of (Wn) in Ll(G') follows directly from (6).
Hence (up to a subsequence), W,, converges in the sense of measures of
G to some W,. With the same techniques as those developed in [BBH3]
(Theorem 2) or [BBH4] (Theorem X.3) we can obtain that, for any compact

d

MI=1

subset K of G \ U{aj},

i=1

1
=3 11— ue, |* lze@) < Ck.

Hence

d
supp W, C U{aj}.
=1
Therefore ’

W, = Zm]ﬁaj with m; € R.

We now determine m; using the same methods as in [BBH4]. Fix one of
the points a; (supposed to be 0) and consider B = B(0, R) for R small
enough so that Br contains no other point a; (i # j). As in the proof of
the Pohozaev identity, multiplying the Ginzburg-Landau equation (3) by
z - Vu, and integrating on By we obtain

(18)
R Oue 2 1 2\2
o, 5 +——/ (1 luel)w+42/ (I— | ue |9)(Vw - z)
R Ou. R 212
5| O +@/83R(1— | ue [7) w

Passing to the limit in (18) as € — 0 and using the convergence of W,

we find
R ? R
+2m; = —
2 Jay

(19) o
2 OBg

Ouy >
or

Oux
ov

Vol. 13, n°® 2-1996.



180 C. LEFTER AND V. D. RADULESCU

Using now the expression of w, around a singularity we deduce that, on
aBRa

2 2

; 2
(20) e A i
ov ov  Ov ov
u.> 100 oyl? 1 20y  |9y|?
(21) el |20 0081 200 19
or ar  Or R?2 R Or or
Inserting (20) and (21) into (19) we obtain
R o ? R |’
22 — — 2m; = — — .
( ) 2 8BR 81/ + m] Tr+ 2 8Br 87—

On the other hand, multiplying Ay = 0 by z - Vi) and integrating on

Br we find
R

(23) i / _ R /
2 JaBp 2 Japy

Thus, from (17) and (18) we obtain

2 2

oY

ov

4
or

™
m]‘—-E.

3. THE VANISHING GRADIENT PROPERTY OF
THE RENORMALIZED ENERGY WITH WEIGHT

The expression of the renormalized energy W allows us, by using the
results obtained in [BBH4], to give an expression of the vanishing gradient
property in the case of a weight.

From (4) it follows that

(24)  DW(by,...,bs) = DW by, ..., bg) + g(vj(]z(f;) . Vﬂéi‘;)) ,

for each configuration b = (b1, ...,b;) € G°.
Recall now Theorem VIIL3 in [BBH4], which gives the expression
of the differential of W in an arbitrary configuration of distinct points

Annales de I’Institut Henri Poincaré - Analyse non linéaire



ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT 181

b= (by,...bs) € G

@5 DW) = ~2n (5200, 5200 ) o (S0 52000 )

:zw[(_a—lﬁ(bl) oH, (bl)) (—%( ba), aHd(bd))]

Here S;(z) = ®o(z) —log | z — b; | in G and @, the unique solution of

( d
Adg=2r) 6, inG
Jj=1

0P
0= =gAg,, ondG
v

/ CDO:O
\ JOG

The function H; is harmonic around b; and is related to u, by

T—bj .z
uy(x) = |~x——bj~|61H]( )| near b;.
Let
Ro(z) = S;(z) — Zlog |z —b;|.
#]
Our variant of the vanishing gradient property in [BBH4] (Corollary VIIIL.1)
is:
THEOREM 3. — The following properties are equivalent:
i) a = (ai,...,aq) is a critical point of the renormalized energy W.
B 1 Vuw(a;)
VS;(a;) = = 2
”) J(a‘]) 4 w(aj)
1 o ow
iii) VH;(a;) = 4_(0—')(_ 8:( a;), =— o (a3)>,f0r each j.
—ai _ 1Vuw(qy)
Iag—a 2 4 w(ey)

, for each j.

iv) VRy(aj) + Z

£

The proof follows by the above considerations and the fact that, for
each 7,

, for each j.

VRo(z) = VSj(z) = 3 —— .

i#] | T
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182 C. LEFTER AND V. D. RADULESCU

4. SHRINKING HOLES AND THE
RENORMALIZED ENERGY WITH WEIGHT

As in [BBH4], Chapter 1.4, we may define the renormalized energy by
considering a suitable variational problem in a domain with “shrinking
holes”.

Let, as above, G' be a smooth, bounded and simply connected domain
in R? and let by, ..., by be distinct points in G. Fix di,....d; € Z and a
smooth data g : 9G — S* of degree d = d; + ... + dj. For each n > 0
small enough, define

where

Win = B(bj, U ) .
V(b))
Set
& ={ve H(GY;S"); deg(v,0w;,)=d; and v=g on 0G}.

We consider the minimization problem

(26) min / | Vu |2
Gy

uely

The following result shows that the renormalized energy W is what
remains in the energy after the singular “core energy” wd | logn | has
been removed.

THEOREM 4. — We have the following asymptotic estimate:
k
L Vu, 2= a2 )| 1 +W(b,d,g)+0(n), asn— 0
§Gw| uy P=m( > d? )| logn | vd, g n), asn—0,
7 7j=1

where

k
W(bd,g) = W(bd,g)+ (Z &2 logw(b»).
2 o
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ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT 183

Proof. — As in [BBH4], Chapter I we associate to (26) the linear problem:

(A®, =0, inGy
®, = C; = Const., on each dw;,

/ % =2nd;, foreachj=1,...,k
(27) By OV

9%, =gAg;, ondG

ov

| @0
\ Jag

With the same techniques as in [BBH4] (see Lemma 1.2), one may
prove that

[®n — @ollz=(cy) = On),

where @ is the unique solution of (1).
Note that the link between ®,, and an arbitrary solution u,, of (26) is

g A 20— 0%

(28) K 8371 81’2 n
U Ouy _ 0%, in Gy
" 8:v2 - 61}1 K

From now on the proof follows the same lines as of Theorem 1.7 in
[BBH4]. N
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