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ABSTRACT. — This paper is concerned with regularizing effects of solutions
to the (generalized) Korteweg-de Vries equation

Ou+ O3u = AP 10,u, (t,z) €R xR,
(KaY) O

and nonlinear Schrodinger equations in one space dimension
Wu+ 302u = G(u,q), (t,z) ERxR,
(NLS) {u(O) =y, z€R,

where p is an integer satisfying p > 2, A € C and G is a polynomial of
(u,@). We prove that if the initial function ¢ is in a Gevrey class of order
3 defined in Section 1, then there exists a positive time T such that the
solution of (gKdV) is analytic in space variable for ¢t € [T, T]\{0}, and
if the initial function 1 in a Gevrey class of order 2, then there exists a
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Vol. 12/95/06/$ 4.00/© Gauthier-Villars



674 A. DE BOUARD, N. HAYASHI AND K. KATO

positive time 7' such that the solution of (NLS) is analytic in space variable
for t € [-T,T]\{0}.

RESUME. — Nous étudions, dans cet article, certains effets régularisants
pour les solutions de 1’équation de Korteweg-de Vries (généralisée)

Opu+ 3u = AP 10,u, (t,7) ER xR,
(gKdV) {u(O) =¢, zER,

et des équations de Schrodinger monodimensionnelles

iOu + 102u = G(u,u), (t,z) € RxR,
(NLS) {u(O) =y, zeR,

oll p est un entier supérieur ou égal a 2, A € C et G est un polyndme
en (u,%). Nous montrons que, lorsque la donnée initiale ¢ appartient a la
classe de Gevrey définie dans la premiére partie, il existe un temps 7" tel
que la solution de (gKdV) est analytique en espace pour ¢ € [-T,T|\{0};
de méme, lorsque la donnée initiale 1) appartient & une certaine classe de
Gevrey d’ordre 2, il existe un temps T' tel que la solution de (NLS) est
analytique en espace pour t € [T, T]\{0}.

1. INTRODUCTION

In this paper we study regularizing effects of solutions to the (generalized)
Korteweg-de Vries equation

30, — p—1
(gKdV) {Btu + Oju = AuP™ 0y, (t,z) e R xR,

u(0)=¢, z€R,

and nonlinear Schrodinger equations in one space dimension

(NLS) {iatu + 302u = G(u, u), (t,z) e R xR,

u(0)=1¢, ze€R,

where p is an integer satisfying p > 2, A € C and G is a polynomial of
(u, @). We prove that if the initial function ¢ is in a Gevrey class of order
3 defined below, then there exists a positive time T such that the solution
of (gKdV) is analytic in space variable for ¢ € [T, T]\{0}, and if the
initial function 1 is in a Gevrey class of order 2, then there exists a positive
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GEVREY REGULARIZING EFFECT 675

time 7' such that the solution of (NLS) is analytic in space variable for

€ [-T,T]\{0}. In other words, the singularities of the data go to infinity
at once. We call this property the Gevrey regularizing effect.

We also prove analyticity in time of solutions of (gKdV) which is the
same result as that in [H-K.K] in the case of (NLS).

To state our results precisely we introduce the basic function space used
in this paper. We define a Gevrey class of order ¢ as follows :

G;QIAT“AN(P17P2?"")PN;X)

= {f € X; "f”G:IA2~-~AN(P1,P2,---,PN;X)

and Al A]N R
= ) Tw |P] Py - Pz]va||X<°°},

! o
@) (e

where A, -- -, Ay are positive constants, Py, - - -, Py are vector fields with
analytic coefficients and X is a Banach space of functions on an open set
in R® with norm || - || x and o > 1. The above function space is used to
define several function spaces :

Yr = {f € C([-T,T1; L*); Il flllvr < o0},
where

“lfl”YT = max{'y(T,P,3,f),o(T,P,3,f),'y(T,P,O,atf),a(T, PvOaatf)}

with
P = .’L'az + 3t8t,
- Ak Lok
T,P, -
( m, f) klzo (l')a (k')a Sllp ”P a:z:f(t)”H
and

. T 1/2
o(T,P,m, f) = Z > (lu)a (k')v sup (/ |6;+1Pla§f|2dt) :
§=0 k,1=0 -T

Zoo ={f € C(R; L*); ||| f|l| z.. < o0},
where

Flllzee = max{|l|flllv.., ()}

Vol. 12, n® 6-1995.



676 A. DE BOUARD, N. HAYASHI AND K. KATO

with

=2 (n)a (m)o sup(L+ ) IR0 f (1)

H™?(~R,R) = {f € L?(-=R, R); || fl|gm»(-r.R)
= E 162 fll Lo (~r,Rry < o0}

0<j<m
For simplicity we let H™(—R, R) = H™?(—R, R), H™? = H™?(R) and
H™ = H™2. We also define the closed balls in Y7 and Z., as follows.

Yr, ={f € Yrilllflllyz < p}s Zoo = {f € Zooi llIflllzoc < p}-

Throughout this paper we assume that 4; < 1 since when ¢ = 1
Aikawa’s result [A,Theorem 3] says that If A; > 1, then G‘l41 (2dy; L?) =
{0} which implies that the solutions constructed in the theorems below are
identically zero when A; > 1 and ¢ = 1. Different positive constants are
denoted by C,Cy,Cy,---, A1, As, -+ in Sections 1 and 4.

We now state our main results.
THeoreM 1.1. (gKdV). — We assume that ¢ > 1 and
¢ € GflA? (204, Ou; H?’).

Then there exist positive constants As, Ay, T and a unique solution u of
(gKdV) such that

u € C([-T,T); H?)
and

u e G4 (3 HY(—R,R)) NGl 2 (8, H(~R, R))
for te[-T,T)]

where

Az < min 34, 34,
3 1+34; 44, +e3(1+R) [’
Ay depends on Az and

lull G143 (5,005 (-, -

Annales de ’Institur Henri Poincaré - Analyse non linéaire



GEVREY REGULARIZING EFFECT 677

TueoreM 1.1°. (gKdV). — We assume that ¢ > 1 and
¢ € Gh42(20,,0,; H*) N G4 42(39,, 8,; HM?).

Furthermore we assume that

€1 = “¢”G:1A2 (284,00 ;H?3) + "¢”G£1A2 (285,80, ;HL1)

is sufficiently small and p is an integer satisfying p > 6. Then there exist
positive constants As, A4 and a unique solution u of (gKdV) such that

u € C(R; H®),

u €G3 (9, H3(—R, R)NGY "4t (8,; H}(—R,R)) forany teR,

max(o/3,1)

||u(t)||G!:;A3(at;Hl'm(_RyR)) < const. 1 (14 [t|)"Y®  for any tE€R,

where

A < mi 34, 34,
3NN T34, 14, + 31+ R) [

Ay depends on Az and

||UHGL‘|A3 (8¢;H3(—R,R))"

Remark 1.1. — The positive constants appearing in Theorems 1.1 and 1.1’
are important numbers which determine the domain on which the data and
the solution of (gKdV) have analytic continuations when ¢ = 1 or 3. We
explain this point herein.

(D) ([H-K.K]). If ¢ has an analytic continuation ¢ on the complex
domain

T fa,.a, ={z€C;z=z+1iy,—00 <z < 00,
— A; — (tana)|z| < y < Az + (tana)|z|, A2 > 0},

where 0 < o = sin™!'v/24; < 7/2 and
/ |®(2)|*dzdy < oo,
F\/§A1A2

then
¢ € GiA2(28,,8,; H).

Vol. 12, n® 6-1995.



678 A. DE BOUARD, N. HAYASHI AND K. KATO
(II) In the case 0 = 1, Theorems 1.1-1.1" say that
u € G2 (8,; H*(-R, R))

which implies

i (‘t|A3) |3l , )| < oo for z€(—R,R).
=0

Hence u has an analytic continuation U(zo,z) on the complex plane
{z0 € C; 20 = t +iT;|argzy| < sin™' A3} for z € (-R,R).

From Theorems 1.1-1.1° we see that A3 is bounded from above by an
upper limit 3/4 (4; = 1, A2 = 00). On the other hand in the case of the
nonlinear heat equation

Ou — O2u =Pt (t,z) eRT xR, peN,
u(0) = ¢, z€R,

it is well known that if ¢ € H'(R), then » has an analytic continuation
U(zp,z) on the complex domain

{z0 € C;29 =t +it;|argzo| < 7/2} for z €R.

This last result corresponds to the case A; = 1. Hence the following
question arises. Can we improve the upper limit on Az ?

(IIT)  In the case 0 = 3, Theorems 1.1-1.1" say that if the initial function
¢ belongs to a Gevrey class of order 3, the solution u(t,z) of (gKdV) has
an analytic continuation U(¢, z) on the complex domain

(2 € C;z=xz+iy,|z| < R, —[t|3Ay < y < |t|}/3 Ay, t #0}.

In the case of the KdV equation (p = 2), the end of the proof of Theorem 1.1
(Section 4 below) shows that it is sufficient to take A4 such that

A 1/3
3 3
As < (2(1 +(1+2¢- 313|/\|2CQC§CI)A3)> ’
where

oo
Co = HUHGL”A3(3,;H3(—R,R))’ Ci=1+ Z m~/3

m=1

Annales de I’Institut Henri Poincaré - Analyse non linéaire



GEVREY REGULARIZING EFFECT 679

and C is the best constant arising in the Sobolev’s inequality

C
I llze(-rr) £ =l - |2 (- R, R)-

(The constant C' can be given explicitly since we have

) 1/2
MNroo(— <12 —_ . 1(_ .
Iz =r,R) < ( R+2R> |-z (~r.R)-)

We now give a typical example of the function in G142 (20,, 8,5 HP),
but is not an analytic function, which may help the readers to understand
the Gevrey regularizing effect.

We put

1
_ Jexp(—27T), x>0,
wle) {0, z<0.

Then the function ¢(z) belongs to Gevrey class of order s but not belong
to Gevrey class of order r, where 1 < r < s (see [Ko, p41, Lemma 2.1] for
the proof). We let 1(x) = (1 — x?) and s = 3. Then there exist positive
constants A; and A, such that ¢(x) € GE**(20,,8,; H®), but ¥(z) is
not analytic in the neighborhoods of +1. More precisely () is not in
GH142(30,,0,; H®) for 1 <7 < 3 and any A;, Az > 0.

The analyticity of solutions of (gKdV) was studied first by T. Kato and
K. Masuda [Ka-M] (see also [H]). They proved that if the initial function
¢ is in G (8,; H?), then there exist A} > 0, T' > 0 and a unique solution
u of (gKdV) such that

u e C(-T,T); H%)

and
uwe G (8,;H?) for te[-T,T] and A} < A

Their method requires the condition ¢ = 1 to treat the nonlinear term
involving the space derivative of the solution u. Hence their method is not
applicable to the general case o > 1. To overcome this difficulty we use the
local smoothing property of solutions to the Airy equation O;u + Bu=0
which was shown by [Ke-P-V 1] first. Local smoothing property enables
us to handle (gKdV) by using the contraction mapping principle (see [Ke-
P-V 5]). In fact, in the same way as in the proof of Proposition 3.1 in

Vol. 12, n° 6-1995.



680 A. DE BOUARD, N. HAYASHI AND K. KATO

Section 3 we can prove that there exist 7 > 0 and a unique solution u
of (gKdV) such that

u € C([-T,T); H?)
and
(1.1) u € G314 (0, H?) for te[-T,T),

when ¢ € G21(8,; H®) (0 > 1). From the above result we can prove that
there exists Ay > 0 such that

(1.2) u € G32(9; H?) for te [-T,T).

However analyticity in time of solutions to (gKdV) does not come from
(1.2) since o > 1 is needed to obtain (1.1).

In [Ka], it was shown that if ¢ € L7 = H? N L?(e**dz)(b > 0), then
the solution of (gKdV) becomes C*°(—R, R) for t > 0 in space variable.
His proof is based on the fact that the unitary group exp(—td?) in L?
is equivalent to

exp(—t(d; — b)%) = exp(—td?) exp(—3btd2) exp(—3b%td,) exp(—bt)

in L? when ¢ > 0. Hence the method is not valid for the negative time and it
is not clear whether or not the solution of (KdV) becomes analytic for ¢ > 0.

In [Cr-Kap-St], the authors studied a fully nonlinear equation of KdV
type in one space dimension :

Oyu+ f(8u,2u, dpu, u,2,t) =0, z € R,
where f € C* and
0f/9(d3u) > C >0 and 8f/H(8%u) < 0.

They showed that if the initial function decays faster than any polynomial
on R*, and possesses certain minimal regularity, then the solution
u(t,) € C*°(—~R, R) for ¢t > 0. Their result ([Cr-Kap-St, Theorem 2.1) is
considered as a generalization of results of [Ka] and [Kr-F].

We prove the regularity in time result for solutions to (gKdV) implying
analyticity by using the operator P = zd, + 3td, (which almost commutes
with the operator 9; + 32) and the local smoothing property. We also prove
a global existence in time result for solutions in a Gevrey class implying
analyticity by using a similar method to that of W. A. Strauss [St].

Annales de Ulnstitut Henri Poincaré - Analyse non linéaire



GEVREY REGULARIZING EFFECT 681

By making use of the regularity in time result obtained in Section 3 and
an induction argument, we prove regularity in space of solutions to (gKdV)
yielding analyticity in space variable.

We next state the results concerning (NLS).

THeEOREM 1.2. (NLS). — We assume that 0 > 1 and

b € GArA2(29,.8,: H?).

Then there exist positive constants As, Ay, T and a unique solution u of
(NLS) such that

u € C([-T, T];H2),
u € G (9 HA(-R,R)) NG & (8, HX(~R, R))
for te[-T,T],

where

Az < min{ 24, 24, },

1+2A; 345 +€e/2(1 + R)
Ay depends on A and

lull giias o,52 (-
THeEOREM 1.2°. (NLS). — We assume that o > 1 and

Y € GArA2(19,,0,; H?) N GH42(20,,0,; L").
Furthermore we assume that
€1 = ||’¢||G:1Az(x3m3z;H2) + Il¢|lG:1A2(x6¢,Bz;L1)
is sufficiently small and G(u, @) satisfies the following growth condition
|G(s,38)| < const.|s]P  for |s| <1,

where p is an integer satisfying p > 5. Then there exist A3, A4 and a unique
solution u such that

u € C(R; H?),
u € G4 (8, HA(—R,R) NG "4 (8,: H*(~R, R))

max(c/2,1)
forany teR,

”u(t)||G,I_.flA3(8t;L°°(—R,R)) < const.ey(1 + |t|)"Y% forany teR,

Vol. 12, n° 6-1995.



682 A. DE BOUARD, N. HAYASHI AND K. KATO

where

Az < min 24, 24,
2 1+ 24, 34, + 21+ R) [’

Ay depends on As and
||U||G[;'A3(31;H2(—R,R))'

Remark 1.2.

(I) By the same argument as in Remark 1.1 (I), we see that the solution
u of (NLS) has an analytic continuation U(zo, ) on the complex plane

{29 € C; 29 =t +i7;|argz| <sin™* A3} for z € (-R,R)

and Aj has the upper limit 2/3. The same question as in Remark 1.1 (I)
arises concerning this upper limit.

(II) In the case o = 2, Theorems 1.2-1.2° say that if the initial function
1 is in a Gevrey class of order 2, the solution u(t,z) of (NLS) has an
analytic continuation U(¢,2) on the complex domain

{zeCiz=z+iy,|z| <R, —|t|"/?As < y < |t|!/? A4, t # 0}.

(IlI) In the case G(u, %) = u?, the end of the proof of Theorem 1.2
given in Section 5 shows that it is sufficient to take A4 such that

2 1/2
3
Ae <2 (2(1 TR 3C’C’0A3)>

where
C 0= |

|U“G§'f‘3 (0+;H?(—R,R))

and C is the best constant arising in the Sobolev’s inequality

C
|- llze-rr) < = - &t (~R.R)-

The smoothing property of solutions to (NLS) implying analyticity in
space variable was studied in [H-Sai] in the case of G(u,@) = |u|**u,
k € N. More precisely, the main result of [H-Sai] is as follows.

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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If the initial function ¢ satisfies
||(cosh Ayz)d|| g < oo,

then the solution u(t,z) of (NLS) has an analytic continuation U(t,z) on
the complex plane

{z € Gz =z +1y, —[t|Ads <y < |t|As,t # O}

The result stated in Remark 1.2 (I) was already obtained in [H-K.K] but
the result stated in Remark 1.2 (I) is new. It is interesting to compare
the result of [H-Sai] given above and Remark 1.2 (II). Our result is new
even in the case G(u, %) = |u|?*u,k € N since we do not assume that the
initial function decays at infinity.

For a general class of equations which includes a large number of models
arising in the context of water waves, analytic solutions were obtained in
[B]. We note here that the methods used in [H-Sai], [H-K.K] are not
sufficient to treat the nonlinear Schrédinger equation with a nonlinear term
involving the derivative of the unknown function :

(1.3) 10pu + %Q%u = G(u, 0,u,u, 0,4),

where G is also a polynomial of (u,0,u, s, d,a).

The gauge transformation techniques used in [H-O] are applicable to
prove a time regularity result similar to Theorem 1.2 for (1.3) and for
general space dimension the method of [Ke-P-V 2] based on [Ke-P-V 2,
Theorem 2.3 (2.9)] is applicable for (1.3) with a smallness condition on the
data. However these methods cause undesireble complexities, and so we do
not go into the problem (1.3) in this paper. The difficulty to handle (1.3)
arises from the fact that the smoothing property of solutions to the linear
homogeneous Schrodinger equation is not sufficient compared with the Airy
equation (see , [Ke-P-V 2, Theorem 2.1]). Local smoothing properties in
the usual Sobolev spaces for the linear Schrodinger equation were studied
by [Co-Sau], [Sj] and [V] simultaneously. A sharp version of the local
smoothing property was obtained in [Ke-P-V 1, Section 4]. Moreover they
proved a sharp inhomogeneous version of the local smoothing property in
[Ke-P-V 2, Theorem 2.3] for Schrédinger equations which was used to
study several higher order models arising in both physics and mathematics
in [Ke-P-V 3/4].

G. Ponce [P, Theorem 3.2, Theorem 4.2] studied the regularity of
solutions to nonlinear dispersive equations including (gKdV) and (NLS)

Vol. 12, n° 6-1995.
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as examples. Roughly speaking, his results are as follows. If ¢ € HZ*
and (20,)7¢ € L% (j = 1,---,k), then the solution of (gKdV) is in
H*(—~R, R) for any R in some time interval. If ¢ € H* and (x0y )i € L?
(G =1,---,k), then the solution of (NLS) is in H?*(—R, R) for any R in
some time interval. His methods are based on the classical energy method
and the facts that the linear operator 8; + 9 commutes with the operator
x + 3t82 and the linear operator 9, + 302 commutes with the operator
z + itd,. However our results do not follow from the methods in [P]. This
commutation property was used in [G-Vel] to study the scattering theory
for nonlinear Schrodinger equations with power nonlinearity satisfying
the gauge condition. The iterative use of the operator x 4 itd, in [H-N-
T] allowed the authors to study the smoothing property of solutions to
nonlinear Schrodinger equations satisfying the gauge condition.

In Section 5 we prove regularity in space of solutions to (NLS) by
using regularity in time of solutions. However the proof in Section 5 is not
applicable directly to the case of arbitrary dimension.

Our method in this paper can be applied to the system of nonlinear
equations

i0,ii + AB%i = F(q),
(1.4) { (0) = i,

where

(0 4= ) ro- (5) e ()

(au a12) _ (0 —1> (fl(u,'v)) B (—iv)
az axp) \-1 0 ) folu,0) ) 0
(1.4) is written as

10u — (Av —v) = 0,
10;v — Au = 0,
’LL(O) = Uo,U(O) = Vo,

which is equivalent to the (linearized) Boussinesq equation

Ou+ Otu — O2u =0,
u(0) = uo, u(0) = i(—87 + 1)~ twp.

Annales de I'Institur Henri Poincaré - Analyse non linéaire
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We can obtain the same result as that of Theorem 1.2 for (1.4) since the
operator P = z8, + 2t0, has the commutation relation

[P,i0; + A3Z] = 2(i0, + Ad2).
Our method is also applicable to a diagonal system

(1 5) {atwk + aﬁj+1wk + Qk(wl, . ,wm’awwl, .. .,aZj—lwm) =0,
' (k=1,---,m=m(j)),

where Q) s are polynomials having no constants or linear terms, since the
operator 20, + (2j + 1)t0; almost commutes with the linear part of (1.5)
and the local smoothing property for the linear part of (1.5) proved in
[Ke-P-V 1,Section 4] works well for (1.5) thanks to the nonlinear terms
%S which are independent of the derivatives of order 2j. The system (1.5)
was studied in [Ke-P-V 3] to obtain local well-posedness of the initial value
problem for higher order nonlinear dispersive equations of the form
{ Beu + a:%j_,_lu + P(ua Ortty- -+, a:E]u) =0,
(1.6)
U(O) = Uy,

where P is a polynomial having no constant or linear terms. We notice here
that P has the highest derivative 82'u. By using a gauge transformation
we can write (1.6) as a diagonal system (1.5) (see [Ke-P-V 3] for details),
and so local well posedness of (1.6) can be treated.

If we add a smallness condition on the data, our method can apply to
a system

k| 92j+1, k 1 25, 1 2
Ok + 02 W + Pi(ut, - u™, -, 0H0t - 02 ™)

by using the sharp inhomogeneous version of local smoothing property
given in [Ke-P-V 3, Theorem 2.1 (2.2)].

The main tool in the proofs of our main results is a first order differential
operator which almost commutes with the linear part of the target nonlinear
evolution equation and which has only derivatives with respect to the space
variables for ¢ = 0 and has a derivative with respect to the time variable for
t # 0. Hence the following question arises. For linear dispersive systems
of the type

wn { it + iP(D)ii = 0,

'17,(0) = ﬂo,

Vol. 12, n° 6-1995.



686 A. DE BOUARD, N. HAYASHI AND K. KATO

where
a= (" _ (pu(§) p12(8) — -1
- (v) ) = (p21(§) P22(§)) PID) = 7727,

do there exist such first order differential operators ?

Under some conditions on P(D) which includes many applications in
the theory of dispersive long waves of small amplitude, local smoothing
effects for (1.7) was proved in [Co-Sau]. Laurey [L] studied the Cauchy
problem for a third order nonlinear Schrodinger equations

(1.8) { ZEZ”; + iad3u + bd2u = alul?u + iB(0. [u*)u + iv|u|?0,u,
) u(0) = U,

which is introduced by A. Hasegawa and Y. Kodama (see references cited
in [L]), where a,b, o, 3,7 are given real parameters. The linear part of
(1.8) satisfies the condition of [Co-Sau] and so it has the local smoothing
effects. As can be seen in [P], the differential operator

(1.9) T — 3atd? — 2ibtd,

commutes with the linear part of (1.8). However it is difficult to construct
a first order differential operator which almost commutes with the linear
part of (1.8) from (1.9).

By combining the induction method in [P] and the local smoothing
property for the linear part of (1.8) in [L, Proposition 2.1] we can obtain
the similar result as [P, Theorem 3.2] for (1.8). However the result in a
Gevrey class function space is still open. More precisely, assuming that ug
is in some Gevrey class, is the solution of (1.8) analytic in space variable
or not ?

This paper is organized as follows. In Section 2 we prove useful lemmas
which are needed to obtain the main results. Section 3 is devoted to study
the existence of solutions to (gKdV) when the initial function is in some
Gevrey class of order o, which yields that the solution of (gKdV) is in the
(usual) Gevrey class of order ¢ in time variable. By using the existence
results of Section 3, we prove Theorems 1.1 and 1.1’ in Section 4. In
Section 5 we state the results of [H-K.K, Propositions 3.3-3.4] that the
solution of (NLS) is in the (usual) Gevrey class of order o in time when
the initial function is in some Gevrey class of order o and using these
results we show Theorems 1.2 and 1.2°.
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2. PRELIMINARIES

In Sections 2 and 3, we denote positive constants by C and C' may
change from line to line. We let S(¢) be the unitary group associated with
the linear equation dyu + 83u = 0. We first state well known estimates and
local smoothing property of S(t)¢ obtained by [Ke-P-V 1].

LEMMA 2.1. — For any ¢ € L? and any t > 0
I1S@®)¢llze = ll¢llz2,
sup [ 10:5(0)6@) Pt < Ol
and for any ¢ € L*,

[1S(®)¢llze < CA+ [t) 73 |4|:-

Lemma 2.2. — We have for P = x0, + 3t0;

l l
(21)  8.P'=)" (Ii)P’—kam, Plo, =) (fc>(—1)kazp’—k,

k=0

l !
(2.2) 8tPl = Z (Ilc)?)kpl—kat’ Plat - Z (,lc)(_g)katpl—-k‘

k=0 k=0

Proof. — We prove (2.1) and (2.2) by induction. When [ = 1, it is clear
that the first equality of (2.1) is valid. We assume that the first one of (2.1)
holds true for any {. Then we have by assumption

(2.3) 0, P! =(P9, + 8,) P

=(P+1)0,P' = (P +1) Z (Ilc)Pl_sz.
k=0
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By a direct calculation the right hand side of (2.3) equals

l
l
(2.4) (PHI=kg, 4 pl-kg,

l

l
E s G )
k=1 k=0
-1 I
-k I+1
BB (e

k=0
<, 1 !
= Z(( ) + ( ))P’—’“ax + 0, + P'*1y,
P k+1 k
-1 141
= (k 4 1)P"’°8m + 8, + P19,
k=0
l
- Z (l+ 1 )Pl—kaz +P1+la¢
k+1
k=0
1+1 1+1
_ (l 4’; 1 >Pl+1—kax + Py, = Z (l —i]; 1 )Pl+1—kaz‘
k=1 k=0

From (2.3) and (2.4) we have

I+1
9P =Y (’ Z 1) pH1-ky
k=0

Hence we obtain the first part of (2.1). The second part of (2.1) and (2.2)
are obtained in the same way as in the proof of the first equality of (2.1).
QED.

Lemma 2.3. — We let 0 > 1 and P = 20, + 3t0,. Then we have

Z (l,),na . Plgllx < Z (l,)a 1P'9gllx,
=0

Z (l,)anP Begllx < AZ (,.)ana . Plg|x,

Z (l')o- “atP g”X < 63A Z (l')o. atg'l)(?
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and
o0

— Ao 34 A 1
> P ol <43 GrslaPslx.
=0 =0

Proof. — Since every inequality in the lemma is proved in the same way
by using Lemma 2.2, we only prove the third one. By the first equality

of (2.2) in Lemma 2.2 we have
Z (ll)a ”at g”X

l
Z( )3P0l s
=0
A'—k 34)k
( ) ( ) ”Pl_katg“X

IN

o~

"B (ke

70 (3 k Al k
(k) (- PY°

(by (2)1—031 for 031«51,021)
34 > pi
( ‘(k,) ) (z P atan)

S 63A Z (l')a ”Platg”X
=0

1P egllx

IN

M8 EEA% J;MS

N
Il
=

QED.

LemMa 2.4. — We have

T
/_ OOl

T 1/2 1/2
< OTY?sup (/ Ig(t,fv)|2dt> (/ sup If(t,w)|2d$> ;
zeR\ J-T \ /R te[-T.T]

provided that the right hand side is finite.
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Proof. — By Schwarz’ inequality we have

T 1/2
N C(/R /_T |f(t,x)g(t,x)|2dtdx> T1/2

T 1/2
sc( / / lg(t,2)Pdt - sup If(t,x)lzdw) /2
RJ-T te[-T,T]

from which the lemma follows.
In the same way as in the proof of Lemma 2.4 we have

T T 1/2
/_ Tlif(t)g(t)lledt < O( / i I f(t)g(t)“izdt) T2

LEMMA 2.4°.

1/2
(/ ||f(t)g(t)|I2L2dt> SCsup</ Ig(t,x)lzdt>
R z€R R
1/2
x (/';stgglf(tyw)ﬁdx) ,

provided that the right hand side is finite.

1/2

In order to prove Lemmas 2.5-2.5’ we need [H-K.K, Proposition 2.1]
and since we also use it in several stages of the proofs of the results in
Section 3, we state the proposition without proof.

[H-K.K, ProposITION 2.1.]. — We let

f, g € GRA2(P o, H™) N GA42(Pd,; HM™2=) o >1
and P = 28, + 3t0,. Then we have

If - gHG;}lA? (P+C1,8:;H™)
< e fllgaraz p o, pimmoe 1l garaz (p o gy

+ ”g“Gjl Az (p,ax;[{[m/2],0<>)”f”(;;;‘1 Az (P’az;Hm))v

where [s] is the largest integer less than or equal to s.

The following lemma is needed to show the local existence in time of
solutions to (gKdV).
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Lemma 25 — We let f € Yr, F(f) = fP710.f,0 > 1 and
P = z0, + 3t0;. Then we have
T
P + VP Dl 5,
< TR, + T snlF O s g, o)

Proof. — We have by lemma 2.3

oo Al Ak 3 ‘
25) IF(Dllgazpoms) = D2 e e 2 1057 %F (Dl
1,k=0 7=0

3

34 - All A’f 1 ok 57
<4 Y G g 2 IPORF Dl
Lk=0 ‘" o j=0

3
< 63A Z naip(f)“c;;"l’ﬁ (P,8,:L2)"

=0

A direct calculation gives

(0. F(f)=(p—1)fP~2(8:f)* + fP10%f,

RF(f)=@-1)(p-2)fP30.1)?
+3(p—1)fP20,f - OIf + fr1o3f,

(2.6) SABF(f)=@-1)(p—-2)(p-3)f7*0.1)*

+6(p — 1)(p — 2) fP73(8.f)?0%f

+3(p— VP22 + (p— 1) fP 20, f - 33f

\ +fP1a5f.

By the same argument as in the proof of [H-K.K, Proposition 2.1],
Lemma 2.3 and Sobolev’s inequality, G2142(P, 8,; L?) norm of each term
in the right hand side of (2.6) is estimated from above by

@1 OO krms sy + 1770 a0, 1)

Hence we have by (2.7)
T
28) [ NP lapns g

T
< C(T”Ifl“{’T +/0 ”fp_la:f”c;;‘lA2(p,3m;L2)dT> .
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By Lemma 2.4 and a simple calculation
T

@9) [ llor allasioa i, poyde
0
S
i (IHe (ke
T
< [ 1Pk gl
0

-Earar s ()

=0 n=0

T
x/ ||Pl_j3f_"gl ~Pj8;’g2|],;zd7'
0

oo

Z o EI:Z T'/? " pion 2d "
(l' (k") '—OnO( )() i‘ég / |P?0; ga|*dr
1/2

X (/ sup |Pl"j(9£'”gll2da:)
R t€[0,T]
ol w= AL Ak 5 i
(I;O W7 (i sup</ [P} gs dr> )

1/2
- All AIZC / l ak 2
X sup |P'0;¢g1|°dx .
(%;wwwﬂnmwﬂ !

Since

t
me=M@FfA&MWWM
we have by (2.9)

T
(2.10)/0 “gl'g2llgf1A2(P,ax;L2)dT

oo 1 A »
g (l,kzz() ;?)” (;64')0 sup (/ |Plak92|2d7'> >
1/2
[e's] Al Ak l 2
(,‘;0 (17 (kN ((/Rl(a:az) 8%91(0, )| dx)

1/2
+2<// |6TPI‘9:91(T,x)”Plafgl(T,.’L‘)|de:c) )
RJo
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oo 1/2
Tm(,;o(”)" (k')" (/ |P'3 92|2d7') )

X (Il91(0)ll ga142 (4o, 0,12
+TY%y(T, P,0,91)"/?y(T, P,0,8:9:)*/?)

by Schwarz’ inequality and Lemma 2.3.

We apply (2.10) with g; = fP~! and g, = 82f, and Lemma 2.3 to the
right hand side of (2.8) to obtain

T
1) [ NPl o s
< CT|||f||, + CTY?a(T, P,3, f)

X (“f(o)p_l”G;:l"2 (%84 ,05;L2)

+TY2(T, P,0, fP=1)/2y(T, P,0,0, f*~*)'/?).

By using [H-K.K, Proposition 2.1] and Sobolev’s inequality in the second
term of the right hand side of (2.11) we get

T
@12) [ IF(Pllgpuss o, rnr
< O, + T2l (O a5

+TV2)||£]I18:))
< G, + T2 Ay O S ns g, 51100

In the same way as in the proof of (2.8) we have

T
| 10F Dl 12y
T
<O, + [ 15770:0: llsuss i, .n)

We again use (2.10) with g; = fP~! and g, = 8,0, f, and Lemma 2.3 to
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the right hand side of the above. Then we have

T
(2.13) /0 ||3tF(f)”(;31A2(P,am;m)dT

< CT||IfI, + CTY?0(T, P,0,8,f)
X (“f(o)p_l”(;:l‘42 (xax’az;LZ)

+TY?y(T, P,0, fr1)/2y(T, P,0,8,(f7~1))/2).

By the same argument as in the proof of (2.12), (2.13) yields

T
2.14) O F ()|l ~4142 .12yd7 < The right hand side of (2.12).
o Gi142(Pa,;L2)

The lemma follows from (2.12) and (2.14) immediately.

QED.
In the same way as in the proof of Lemma 2.5 we have

LEMMA 2.6. — We let F, 0, A; and P be the same as those in Lemma 2.5,
and we let f,g € Yr and f(0) = g(0). Then we have

T
/0 (IF(F) = F(9)llga142 o 5, a0y + 1OLF() = F (@)l gmana g, o)
< CTIIf ~ alllve (AN + NIl ESD)-

The following lemma is needed to show the global existence in time of
solutions to (gKdV).

LEMMA 2.5°. — We let f € Zo, , F(f) = fP~'9,f, ¢ > 1 and
P = z0, + 3t0,, where p is an integer satisfying p > 6. Then we have

/R(llF(f)llcflA2 (P,8,;H3) + HatF(f)”G?lAz(P,t‘)z;L"’))dT

< CIANEZ., + ANZ N O)ES )-

4142 (29,,8,;H3)
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Proof. — We have by (2.5), (2.6) and [H-K.K, Proposition 2.1]
”F(f)“G;‘lA2 (P,8,:H3)

3
< 4 Y IF (Dl gmns o, 1)

j=0
-1
< U e g sy 24 (00
-2
+ ”f”g;nAz (P,BI;LOQ)“(azfyn(;?lA? (P,8;L2)
+ ”fp_la;lf”G:v‘z(P’ax;L‘z))

—2 _
S C(“f”gf"‘z(P,Bm;Hlvw)“f”éflAz(P,at;H3) + ”fp 18;}f||G£1A2(P,az;L2))

(by Sobolev’s inequality and Lemma 2.3).

Hence
AL I~
< C [ UAIZ s oMWy
+C [ 17710 lams o ot
< Oxfoa, P3P [ (14 17)7*5 dr

+C [ 17792 lggu0s 1y

and since (p — 2)/3 > 1, the integral in the preceeding term is convergent
and we get

(2.15) /R €] A"

< C<”|f|“%m + A ”fp_la:cif”c;;‘l'”(pyaz;Lz)dT)-
We have
(216) [ 177720 gyt

S O Vi T I
(by [H-K K, Proposition 2.1])
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< /R llflléglAz(P,a,~L°°)
v 2 () ()

7=0 n=0
X [|P95™(f773) - P32 f|padr
)

<> e ()

Lk=0 7=0 n=0

1/2
4
8 (/n ”f”G;‘“‘z(P,az;Lw)dT)

X ( / |PY=395=n(£7=3) . Pigrat f|[2.dr)H/2
R

(by Schwarz’ inequality)

scli - (WZZ< ) (5 )msz..

k= j=0n=0

1/2
X sup(/ |P13;‘8;1f|2dt)
zeR R

1/2
x ( / sup | P99k ( fp- 3)|2dx) (by Lemma 2.4’)
R

te

o k 1/2
< |||f|”22m (l;() (l')" (k')” sup(/R |Pl(9f8;if|2dt> )
oo All A’; Lo g 1/2
(2 <zz>vw(lizslp o) )

1,k=0
1/2
(ll)a (k')" </ SuRp IPlaf(f”—3)|2d.’I:>

<IIfz. D
(by Lemma 2.3).

Lk=0
In the same way as in the proof of Lemma 2.5 we use the fact that

sup | P'O;(f7=2)* <|(2,)' 95 (£(0)7~%)[?
teR

+ / |PLOE(f7-2))10, P9k (7)) dt
R
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to obtain

o a0k 1/2
> i (/ R IPof ”_3)'2""”)

1L,k=0

<> ik ( / |<xaz)'a:<f<o>'°-3>> [Fda

Lk=0

Lok ¢p—3 Lok sp—3 1/2
e /R / 10, POE(f7)| [POk(f2~%)|dtdz)

< CIFO0Pllgaraz g, 5,12

> Al Ak Lk 1/2
i zkzo(l')”(k!)a(A<L|P32(f )] d:c)

1/2 1/2
x ( / |0. POk ( f”‘3)|2da:) dt)
R

(by Schwarz’ inequality),

and by the same arguments as in [H-K.K, Proposition 2.1],

p—
<C“f(0)“ A1A2( 8, ,0,;H3)

+c( S e e W i

1/2
X ||at(fp_3)”G:1A2 (P,aI;L2)dt)

< ClF )P

2142 (39, ,8,;H3)

2 4
+c| [ ek oo 1Pl G222 (b, o
(P,8,;L>) o2 (P,0s;L%)

1/2
X |0 f || garaz (P,Bw;Lz)dt)

p—
< C“f(())“ A1A2( 82,02 H3)
+ CIIIF NG v (o0, P,0, £)*/2y(c0, P, 0,8, f) /2.
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Hence we have

(2.17) i A; ig— /supIPlak(f”_3)|2dx "
G W () \Jper ™ 7
< OUAONG w00, + I

From (2.15), (2.16) and (2.17) it follows that

(2.18) /R Il gtz g, 0

< CANANNZ, + HMZ N O)E

;‘1“2(13,,3,;113))'

On the other hand, using the fact that

OF(f) = fP710:0:f + (p — 1) f*20,f - 0o f

and the same arguments as in the proof of (2.15), we can easily show that
(2.19) /R llatF(f)“Gﬁl"?(P,a,;L2)dt

< CUMNE.. + [ 1577200 o102 5., 100

In the same way as we proved (2.16), we have

A 1772802 fll G225, 12y

1/2
— Al Ak
<A, (Z @7 (i ( / st\elglP’af(fp‘3)l2d$)>

L,k=0
and this, together with (2.19) and (2.17), gives

@20) [ 1OF(Dllgs . uet
< C(IfI. + A £ O

;‘IAZ(zaz,am;Hs))'

From (2.18) and (2.19) the lemma follows.
QED.
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The following three lemmas are needed to show analyticity of solutions
to (gKdV) in space variable when the solutions are in a Gevrey class of
order 3 in time variable.

Lemma 2.7. — We have for any m € N

£()

U'=0

Proof. — By an elementary calculation

ZI: (llf)_m=2+li (ll,>—m <2+ (%)m <3.

I'=0 =1
Q.E.D.

LEMMA 2.8. — We have

-1
@) s o s

Proof. — We expand both sides of the equality (1+#)"+™ = (1+¢)'(1+¢)™.
Then we have

I+m
1+ =3 (l 1;:m)tk,

k=0

1+t +t)™ = (;g (,:1 )t’“) (ki:o (Z;’)tkz)
) kllzo k:;o (kll ) <Z>tkl+k2 B g(h;:k ("fl) (ZZ ))tk'

0<ky <t

0<ko<m
Hence
ky+ko=k k1 ko k
0<k; <I
0<ko<m

Since every term of the left hand side is positive, we have the result.
QED.
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LemMma 2.9. — We have

(3m ) (m )_3 <38 (max(1,m,))?/3(max(1,m — my))?/3

3Imy my m2/3
for meN,0<my <m.

Proof. — We first prove

1
(2.20) §m1/3 <a(m)™' <b(m)7! <3m'? for m > 1,
where
“« 3k —2
H m =T %22
k=1 k=1

For m = 1,2, it is clear that (2.20) is valid, and so we consider the case
m > 2. We have

log(a(m) ™) = Zlog(?,,f’f 1) = Zlog<1 3oy 1)'
k=1

k=1

Since « — 22 < log(1 + z) < z for z > 0, the above equality gives

Z(Sk— 1~ (3k— 1)2> < log(a(m)™

k=1 k=1

By an elementary calculation

1 m™ Ml 1 1 /M1
< 4= =d
/ Z 1= 2 3/1xx

from which it follows

and so

loge™3m'/3 < log(a(m)™) < loge/?2mY® for m >e.
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This implies
(2.21) %ml/:i <a(m)~! <3m'? for m > 3.
Similarly, we have
(2.22) %m1/3 <b(m)~! < 3m® for m > 3.

Therefore (2.20) comes from (2.21) and (2.22). We note that

(3m)!

()3 = 3*™a(m)b(m).

From this we see that if m; # 0, m; # m

(m)(r ) _ B! m)® ((m—m))?

3mi J\mi) — (m))® (Bmy)! (3m — 3my)!

(2.23)

= a(m)b(m)a(m1)*b(m1) " ta(m — my) " tb(m — m,) 71
< 36m_2/3mf/3(m - m1)2/3.

When m; = 0 or m; = m,

(2.24) (:»?ZZ ) (7;”1 ) o 1.

From (2.23) and (2.24) the lemma follows.
QED.

The following lemma is needed to show analyticity in space variable of
solutions to (NLS) which are in a Gevrey class of order 2 in time variable,
and is proved in the same way as Lemma 2.9.

LemMMmA 2.10. — We have

(Zm ) (m )_2 <98 (max(1,m;))(max(1,m — m,))

2m, my ml/2
for meN,0<m; <m.
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3. EXISTENCE OF SOLUTIONS TO (gKdV)

In this section we prove

PROPOSITION 3.1. — Let ¢ € G5 42(20,,8,, H®). Then there exist a unique
solution v of (gKdV) and a positive constant T such that u € Y.

ProPOSITION 3.1°. — In addition to the assumptions on Proposition 3.1,
we assume that

¢ € G242 (20, 0,; HY),

€1 = ”¢”G:1A2(ac32,31;H1'1) + ||¢“G:1A2(13,;,8E;H3)

is sufficiently small and the nonlinear term satisfies the same growth
conditions as those in Theorem 1.1°. Then there exists a unique global
solution u of (gKdV) such that v € 7.

In what follows we only consider positive time, since the case of negative
time is treated similarly. We let u,, be the solution of

Lu, = M2 0,01 = F(tn_y)
3.1 n n—1YzUn—-1 n—1)y
(3 {2y

for n > 1, and ug be the solution of
(3:2) Lug =0, uo(0) = ¢,

where L = 9, + 92. In the same way as in the proof of [H-K.K, (3.3)]
we have by induction

(33) LO3 P'0¥un () = 0(P + 308 F(un-1(£)).
The integral equation associated with (3.3) is written as
(3.4) 0IiP'OFu,(t) =S(t)d) (xd,) 0%

+ / t S(t = 1) (P + 3)'0% F(tp_1(7))dr,

where S(t) is the unitary group associated with the linear equation Lu = 0.
By using formula (3.4) and Lemma 2.1 we prove Propositions 3.1-3.1".

Proof of Proposition 3.1. - 1t is sufficient to prove that {u,,} is a Cauchy
sequence in Y7 when T is sufficiently small. Taking L? norm in (3.4),
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multiplying both sides of the resulting inequality by A!A%/(1')7(k!)’,
making a summation with respect to ! and k, and using Lemma 2.1, we
obtain

(3.5) (T, P,3,u,)+ o(T,P,3,un)

T
< Ol + [ NP Cnas (Dl gy 07

where and in what follows we let for simplicity

- llyve = I llgara2 s, o, .5r)-
In the same way as in the proof of (3.5) we have

(36) ’)’(T, P, 0, Btun) + O'(T, P, 0, 8tun)

T
sc@muwm+4namwdmm@mwﬁ%ww)
< C<”¢"YB + ||F(¢)”G:1A2(maz,6m;L2)

T
+/0 ”3TF(un—1(”'))”G;‘l"2(P+3,az;L2)dT>'

We have by [H-K.K, Proposition 2.1] and Sobolev’s inequality

(3.7) 1F()lgas2 zo, 0,02 < ClIBIE,-

From (3.5)-(3.7) it follows that
(3-8)  Nllunlllyr < C{II¢IIY0(1 + I8l )

T
+ [ AP sl g

+ 107 F(un-1(7))ll g 4142 (P+3,3¢;L2))d7-}

so{mmuﬂwaw
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T
o AL

+ ”aTF(un—l(T))”G;‘lAz(p,am;LZ))d"'}
(by [H-K.K, Lemma 2.1])
< C{llellys (1 + 11155 ) + Tllfun-1 115,
+ T2 [lun—1 lllvz 015, '}
(by Lemma 2.5)
< Cligllve (1 + 1I9135T)
+ (T + T fun- [, }-

From (3.2) and energy estimates it follows that

(3.9) uolllyr < ll¢llys-
We take p such that

Cligl (1 + Il ) < £

and T such that

1
C(T+TP?) < 3
in the right hand side of (3.8). Then we have by (3.8) and (3.9)
(3.10) |lunlllyy < p forany neN.

Proposition 3.1 is obtained by showing {u,} is a Cauchy sequence in Yr.
In the same way as in the proof of the second inequality of (3.8)

(3.11) Mun+1 = walllyr

T
< C [ (1P () = Flun-)llgsuss e,
100 (F () = Ftno)) gt o)
< Ol — -l (s 1+ i 125)
(by Lemma 2.6)
< CTo ™l — wncs v
(by (3.10)).
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If we take T satisfying

CTpP~* <

N =

in the right hand side of (3.11) we have by (3.10)

1 1\" 1\"
s =l < i =t < (5) s = woll < (3 )

This means that {u,} is a Cauchy sequence in Y. This completes the
proof of Proposition 3.1.
QED.

Proof of Proposition 3.1°. — In the same way as in the proof of the second
inequality in (3.8) we obtain by (3.4)

llunllly.. < C{||¢||Y0(1 + 915"
+ [ UPCns g,

+ HatF(un—l(t))”G;‘lA2 (P,az;Lz))dt} ’

We apply Lemma 2.5’ to the above to have

(3.12)  |lualllv
< C{llellve (X + 8187 Y) + Mun—1ll_ + Hun—1lllZ_ 16112}
< C{lIollye (1 + 11618 + [Hn—1ll5_}

(by Young’s inequality).

On the other hand, by Lemma 2.1

8@ fllzrr < CA+)3(Iflana + [1F]]a2)-
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Hence we have by (3.4) and [H-KK, Propositions 2.1-2.3]

t
im0 5,000y < CxU 472 4.0 [ (14 (1= 7)) 08
0

X (”F(un*l (T))“GﬁlAQ (P+43,8, JHL.1)

+ ”F(un~1(7))”G;‘1A2 (P+3,83;H2))d7—

< 0(e1(1 + )72 4 )3 /t(l +(t—-71)"3

X llum 1 (DI df)

ﬁlAQ(Pvaac;Hl’w)

t

< 0(61(1 7% 4 |l |15, / A+ E-m) 501+ T)‘p‘;ﬁdf)

0
which gives
(313) 1+ t)”"’llun(t)HGglAz(P,az;Hl,m) < Ol + [fJun-alll7)-
By (3.12) and (3.13)
(3.14) llwnlllz., < Cler + [lfun-slilf_).
In the same way as in the proof of (3.14) we have

llwolllz.. < Ce,

this with (3.14) gives
(3.15) Hunlllz., < Ce, forany neN.

Similarly, we have by Lemma 2.6’ and (3.15)

(3.16)  |)|upyr — unlllz., < Ce 1”|un = Un-1ll|z, < 0(5) €1.

By (3.15) and (3.16) we have the result.
QED.

In the same way as in the proofs of [H-K.K, Proposition 3.3-3.4] we
have by Proposition 3.1-3.1°
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PrOPOSITION 3.2. — Let u be the solution of (gKdV) constructed in
Proposition 3.1. Then

u € GL”A3 (0y; H3(-R,R)) for |t|<T,

where

As < mi 34, 34,
ST T34, 44, + AL+ R) [

ProposITION 3.2°. — Let u be the solution of (gKdV) constructed in
Proposition 3.1°. Then

ue G4 (9,; H3 (=R, R)) for any te€R,
and
||’U/(t)||GLt|A3(6t;H1,m(_R’R)) < Ce(L+ )73 forany teR,

where R and Aj are the same as in Proposition 3.2.

4. PROOFS OF THEOREMS 1.1-1.1" (gKdV)

By Propositions 3.1, 3.1°, 3.2, 3.2°, to obtain Theorems 1.1,1.1° it is
sufficient to prove

PROPOSITION 4.1. — Let u be the solution of (gKdV) satisfying

u € Glt143(,, H3(-R, R)).

Then there exists a positive constant A4 such that

1/3
u€ Gl ot 1)@ HY (R, R)).

Proof of Proposition 4.1. — We divide the proposition into the following
two lemmas.

LEMMA 4.1. — Let u be the solution of (gKdV) satisfying

u € GIt143(3,, H3(—R, R)).

Then there exists a positive constant As such that

ue Gite (9% H3(~R, R)).

max(o,3)
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LemMa 4.2. — Let u be a function satisfying

= GltlAs (83 H3( ))

max(0,3)

Then there exists a positive constant A4 such that

uE G’xfllax(a/IS 1)(81’H3( R R))

Proof of Lemma 4.1. - 1t suffices to prove the result for £ = 1. By the
assumption we have

Co = lz: (l!;o‘ “‘9£U||H3(-R,R) < 0
=0

which implies

(4.1) —3||8}ull g2~ r,R) < Co.

O

We prove by induction with respect to m that there exists a positive
constant Ag such that

Al+m
(42) e 10103 ™ ul| g1 (— .y < Co AR (max(1,m)) ™43,
Ag+m l 3Im—+k m
(43) ————((l T m)') H 3 U"HI(_R,R) S ACOA6 y

for I,m € NU {0}, k = 1,2, where ¢/ = max(0,3), A is a positive
constant determined later. If (4.2) is valid, then taking [ = O in (4.2) and
(4.3) we have Lemma 4.1 with

It is clear that (4.2) and (4.3) hold for all [ and k£ = 1,2 when m = 0.
We assume that (4.2) and (4.3) are valid for all [,m and £ = 1,2. For
simplicity we denote

Il -rm =11
until the end of of the proof of Proposition 4.1.
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Since
Bu = —dyu — A(8:(wP))/p,

we have

AM™Hku =~ M™ O — %angaj;“(up),

where and in what follows

M =83,

T

Hence

(4.4) |IB;M™ ully < (|07 M™OFully + IMI|0: M™% (wP ug)la
= Il,k + l)‘lI2,k'

The crucial term is I ; because it is easy to handle I; ; by the induction
assumption. Indeed we have

(45) Iy 2 {OoAa”(max(l,m))—4/3 for k=0,

3 <
(+m+ 1)) — | ACoAZ for k=1,2.
We shall prove that

Abtmt1 - 1CATT 1+ m)~3 for k=0,
(@+m+ DN =

4.6) | ALk 2
(4.6) [AlL2k LAC, AT for k=1,2.

For simplicity, we show (4.6) in the case p = 2, since the general case
p > 3 can be proved by induction. We have by Sobolev’s inequality

C
I-llze-rmy < N - r.my
(4.7) D = 18103 (u - ug)|y

l 3m+k
l 3m+k ! oam! U n3m !
Py (1)( m’ )”35 O ull 0" AT .

U'=0 m'=0
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First we treat the term I, ,. We have by (4.7)

1

]. 3m l 3 ’ ’ _q '
48 glo< Y (1) (o Yot orulun oim-ma,

=0 m'=0
=Z S () (o et v agot=r -,
+§mZ= (0) (s )10t M aaot= e

1 -1
2 Z ( )(3m +2)u6’ M7 O2ully 19~ M B2y
U'=0m;=0

=hoi+ Lo+ Ihos.
Hence

A;l)’-}-m—i—l
(IT+m+ 1)

L) w

Al +m; I4+m—U'—m,

! A ’
l my 3 -1 m—mg
((l/ +m )')gl ” t M u”l ((l +m=1 - ml)!)o-l “at M Bx‘unl

EEO7TEE O T

CoAg" (max(1,my)) ™42 AC AT —™

(4.9) 12’0’1 *

3
X————
(I+m+1)

(by the induction assumption)

iis -3
A; - /

=3 z; (3m1)( 1) mACZA (max(1,m;))~%3
(by Lemmas 2.7-2.8)
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< 37 —~ (max(1,m1))?*(max(1,m —m,y))?>/® A,
- Z m2/3 (14+m)3

x AC2A™(max(1,m;))™** (by Lemma 2.9)

mi =0

m —2/3 _ 2/3
< 3TAC? Z (max(1,m,)) (max(1,m — m1)) As A

“— m2/3 (14+m)37°®
A3
< 3TACE—=_ AT,
- O(14m)2"e

In the same way as in the proof of (4.9) we have

I Al3+m+1
4.10 —
( ) 2,0,2 ((+m+Dh”

’

23076 @) 1O ER) T

As

— A m1 —4/3 m—m;y
X (l +m + 1)0" COA6 (max(l, ml)) COAG

(by the induction assumption)

<3 3 sm i —3i——AC2Am(max(l my)) 43
- m (14+m)3" 076 7

(by Lemmas 2.7-2.8)

m—1 -3
3m m 3(m—my) As 5 _
= 3 m 4/3
mEl=0 (3m1 ) (m1 ) Smatl (L) AC§ Ag (max(1,m,))
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m—1
< 3%AC2 Z (max(1,m1))%3(max(1,m — my))~/3

2/3
m1=0 m

As 1
X Ag
(1+m)37% 3m; +1

(by Lemma 2.9)

< BBAC fLe AT,
and we also have
Al+m+1
411) Igs 2
(411)  Bos (+m+ 1))
I m-1 l+ —o’
m .
<
<S5 (1) (ama) ()
» As _ As
(l+m-=VU-m) (I+m+1)
A’ T " 5
Wn@ M™ 8 ullx

AH—m U'—mi—1
((l+m—l’ — )
V=0 mi=0 3m1 + 2 mq
l+m -
ll + my
(+m-V-m) (I+m+1)

187" M™—m 1924,

’

APCZApP

(by the induction assumption)

ity 3m m\"° Al
< 3 A202Am—1
=3 (3m1 + 2) (m) T+ mPGm =m0

(by Lemmas 2.7-2.8)
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S5 )

3(m —my)(3m—3m, —1) AIA2CRA7!
(Bmy+1)(3m; +2) (14+m)3(m—mi)?
A2

9 42 m—1 '
S 3°A CO mAG (by Lemma 2.9)
Consequently we have
1 A?'m"'l
=ho e
C (I+m+ 1))
1 m
< (2-3%AC2A3A5 + 39A2OOA2A62)(——+T)5A +
If we take
C=C(2-33AC2As A" + 3°APCEAAG?).
Then
Aé+m+1 A +1 4/3
4.11 Mo ————— < |A|CAGT (1 -
( ) ||2,0 ((l+m+1)!)”'_| | 6 ( +m)

which implies (4.6) for k = 0 if

1
(4.12) ZAG = max{|A|C2 - 33Co AAs, (|A|C - 3°Co) /2 AA;}
Next we treat the case k¥ = 1. We have by (4.7)
1
4.13 —1I
(4.13) o2
3m+1
l 3m 1 " am! o et 2—m/
<33 (o) (" retor et ez
'=0 m'=0
l m
l 3m+1 - ' rm—m
=525 (o) (o d ot b
I'=0m;=0 1
L& l 3m+1
PP (l> (3m1 + 1)“6’i M™ Bul|1[|8;" M™ ™ Oy ully
1'=0m;=0
L (1) (3m+1
PIPY (l) (3m1 +z)”3ﬁ M™ 2y ]9 M
I'=0my=0

=hii+I12+ 1,3
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In the same way as in the proofs of (4.9)-(4.11) we have

(4.14)

(4.15)

(4.16)

I+m+1
A;

T. 8
N (Tt

m -3
3m m 2 im
: 3mz—() <3m1 ) (ml) ACOA6 s

3m+1

1, —4/3___ Ot -
3 (max(1,m,)) 3m — 3my + 1

1

X _—
(m+1)

< 3°AC2Z A3 AT,

l+m+1
AB

I N
P20 m+ 1))

m -3
3m m 1 I3m+1

<3 A2CZA™ A
- Z( )(m1) 0776 3(m+1)33m1-§-1

< 3%A2CEZA3 AT,

I+m+1
A;

g —=™=3
2,1,3 (T mED)”

mi1=0
AC2AT Ay 43 3m 41 3m— 3m,
7076 7S 1.m — /3

(m+1)3 (max(1,m —my)) 3mi+1 3my +2

< 39AC2Az AT

From (4.13)-(4.16), (4.6) follows for k = 1 if

(4.17)

1
ZAG = IA|3BCCOA3 max{G, A}
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Finally we treat the case k = 2. We have by (4.7)

3Im + 2 _ _
( m' >”3£8;"'u||1||3§ Ugmtzti-miy|,

I 3m+42 I
<22 ()
U'=0m'=0
l m
l 3m + 2 P m I
=3 5 (1) (o, et st~ et
I'=0m1=0
! m I 3m 4+ 2
U'=0m;=0
l m
{ 3m + 2 " ~U arm—-my
U'=0m;=0

=ho1+1l22+ 1223,

In the same way as in the proof of (4.9) we have by (4.18)

A§+m+1
((I+m+ 1))
zl:i 3Im+2\[l4+m+1 -
om0 3m1 4 + my
Al +ma

@ m))”
Al+m+1 U'—my

((l+m+1—l' my)!)7’ y
EE )0
Be ) |

x CoAr™ (max(1,m1)) ¥ 3CoAP =™ (max(1,m 4+ 1 — my))~%/3
(by the induction assumption)

(419152 -

16¢ M™ w3

194~ Mty

I/\

X
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m -3
3Im+2\/m+1 9
< m+1
<33 (on ) () can

x (max(1,my))"**(max(1,m + 1 — m,))~*/3

(by Lemmas 2.7-2.8)

505
";Ejr?_ml+1) 1
3(m+1)

X (max(1,m + 1 —my))~*/?3

CgAg‘“(max(l, ml))_‘ll3

<3 (max(1,m1))¥3(m + 1 —m,)¥/3
Z (m+1)2/3

m1—0

XCGAZ+ (max(1,m1))™3(m + 1 — m,)~4/3 (by Lemma 2.9)

=3"C¢(m + 1) 2/34m+! Z (max(1,m;))"%3(m + 1 — my) /3.
'm1=0
Using Schwarz’ inequality, we have

m

Z (max(1,m1))"23(m 4+ 1 — m,)~2/3
m1=0
=(m+1)723 4 Z ml_2/3(m +1—-my)23
m1:1
2 , 1/2
<m0 ( 3 m—4/3) (z m;4/3) <o
mp=1 my=1

Hence we have by (4.19)

ALFmL
(I+m+1)H
In the same way as in the proofs of (4.10)-(4.11) we have by (4.18)

(4.20) Iy, - < 37C2C AT,
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l+m+1
A3

(421) I2,2,2 . m

(3m +2)(3m + 1) 1
(3m; +1)(3m —3m; +1) (m+1)3
< 394%C2 A3 AT,

x A2C2 AT A

I+m+1
A3

(4.22) L3 - (+m+)”

m -3
3m m o2 am s (3m+2)(3m+1) 1
<
<33 () () ACBA Ao

mi1=0

< 3°A2C2 A3 AT,

Hence (4.20)-(4.22) imply that (4.6) holds true for & = 2 if

A

From (4.9)-(4.11), (4.14)-(4.16), (4.20)-(4.22), and (4.12), (4.17), (4.23) it
follows that (4.6) holds for

(4.24) A = 2(1 + 2*3'8|A|2C%C2C) As.
From (4.5) and (4.6) we have (4.2) and (4.3) under the condition

A3
5< 3T+ (1+ 2938 \[2C2C2Cy) As)’

(4.25) A

This completes the proof of Lemma 4.1.
QED.

Proof of Lemma 4.2. — For simplicity we denote | - ||s by || - || z2(—r,R)-

Since 3om .

BGm+2) = (m)®’
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we have
1/3
2 ezl
1/3 3m 1/3 3m+1
= S + (Lol
1/3 3m+-2
+(((|%11A—42;—!)¢7§|l32m+2u||3) (0" = max(,3)

m=0

e . 1/3 ) 3m
<y <((3m+ 2)(3m + 1))/ ('t' o ) a2l

+3(3m+2)0'/3' It‘l/3A4 e 1 ”83m+1 i
3 Gty 19"l

3m+2
[t /3 A, 1

+32.( . ) T uaim“ung)
o0 173 4.\
< Const-Z((m 3“‘4) e 127l

3m+1
t|1/3 AL 1 "
+<l 5 4) Gy 12" el
3m+2
1/3
(ItI 3A4) 0 1’)0, |03+ 2u)|3 | for AL > Ay
> t1/3A/ t1/3A/ tA m
< Const - Z (( I | + (I ! 3 4) )(l(l ,)3, 102 ul|5
m=0 m:

1/3 A7 1/3 A7
+<|t| 3A4+(|t‘ 3A4> )('(t\A‘)Z’ Hag(m—f-l),u”s) for A/ >(A /3)3

Therefore we have

t1/3A4
Z(H i

ozl

< Const - (1 + [t*/3 + [t[*/®) Z (£l As)™ 185" ulls < oo

‘ 7
m=0 )0

for As > A
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Hence, if we take A4 such that
(4.26) Ay < 3AY,

we have Lemma 4.2. We note here that by (4.25) and (4.26) , when p = 2,
it is sufficient to take A4 satisfying

A 1/3
3
As < 3(2(1 T+ ~318|/\|2020301)A3))

to obtain the resulit.
QED.

5. PROOFS OF THEOREMS 1.2-1.2° (NLS)

The following two propositions were proved in [H-K.K, Propo-
sitions 3.3-3.4].

ProprosITION 5.1. — We assume that o > 1 and
Y € GAr42(5,,8,; H?).
Then there exist As,T and a unique solution u of (NLS) such that
u € C([-T,T); H),

u € G4 (9,; H¥(—R,R)) for te[-T,T],

where

As < min 24, 24,
3 1+24," 34, +e2(1+R) [
ProPOSITION 5.2. — We assume that o > 1 and
P € GH42(28,,0,; H*) N G2142(29,,0,; LY).
Furthermore we assume that
€1 = [Yllgara2 o, 0,02 + [¥llga142 2o, 0,:0)
is sufficiently small and G(u, ) satisfies the following growth condition

|G(s, 3)| < Const.s|P  for |s| <1,
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where p is an integer satisfying p > 5. Then there exist As and a unique
solution u of (NLS) such that

u € C(R; H?),

u e G4 (9, H*(~R,R)) for any teR,

llu()llgaraz (@82 Bai L (—R,R)) < Const.e;(1+ |t))"Y? for any teR,

A3 < mm{ 24 24, }

where

1+2A4;’ 342+ €/2(1+ R)

We now prove Theorems 1.2 and 1.2°.

Proofs of Theorems 1.2-1.2°. — From Proposition 5.1-5.2 it is sufficient
to prove that there exists a positive constant A, such that

(5.1) ue Gl 2 (8 H(~R, R)).

The proof is obtained in the same way as in the proof of Proposition 4.1,
and so we only give the outline. We first prove there exists a positive
constant A5 such that

(5.2) we G (82, H*(-R, R)).

max(0,2)

It suffices to show it for ¢ = 1. By Propositions 5.1-5.2 we have

Co = IE: (“%”3:“||H2(—R,R) < o0,
=0

which implies

- 4

1
-—)%Ilaiullm(_R,R) < Co.

(

We prove by induction with respect to m that there exists a positive
constant Ag such that

l+m
A3

O @

llafﬁimafullHl(_R,R) S CgAgl, for k= 0, 1
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for I,m € NU {0}, ¢/ = max(o,2). If (5.4) is valid, then taking | = 0,
we get (5.2) with

A3
A5——Zg—€ (€>0)

In what follows for simplicity we let
I llzr-rry =1Il-1l1 and M = o2,

It is clear that (5.4) holds true for all [ when m = 0 by (5.3). We assume
that (5.4) is valid for all I, and k£ = 0,1. We only consider the case

1
(NLS2) i0su + §Au = u?,

since the general nonlinearity can be treated by induction. We have by an
elementary calculation and Sobolev’s inequality

(5.5) Lo = [10:02™ (u*)|1

2m

Z( )( )”8"3’" O™ uly

2 ( )( )”3’ M™ - 9 M )y
0

MN

I'=0

M~

l'=0ml=
1

2> s () (o, Y0t b - 0 bam=m 0,
Oml.—O

< CZ > (1) (7 Yot o= =

0m1—0

+CZ Z (l’)(zm +1>II<”"M"“8 ull119F~" M0y

0m1—0

= 0(12,0’1 + 12,0’2).
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In the same way as in the proof of (4.9)

Aé+m+1
56) Lg——2—
(56) Lo, T+ m+ 1))

-2 o
m CO z‘lgz‘lgL
< E Z97 9776
B ’ 0 (2m1) (ml )
mi=

(m+1)
<3 . 26 i (ma,x(l,ml))(max(l,m - ml)) B C(%A3Agl
- ot m (m+1)2
(by Lemma 2.10)
<3-2C2A3A7,

and in the same way as in the proof of (4.11) we have
Al+m+1

57) Lpsri—>——o

(5.7) 2“((z+m+1)!)o'

m\__cgaiAp!
2m1+1

mi ) (m+1)2(m—my)?

-1 -2 -1
2m \ [ m 2(m —my)  C2A2A7
3 ()

= my 2my +1 (m+1)%2(m —m,y)?
<3-2"C3A3AT  (by Lemma 2.10).

I/\
MS

We also have (see (4.13))

1 1 oo
512’1 = —C—Ilaiﬁi B (u?)|1

1
l 2m+1 ’ mi oy —
<> (l)< om, )I!aiM ull |05 M gy
I'=0m,=0
l 2m+1 V. Il 1
I U\ om 10; M™ dpul|1[|0)~ M™~™ =19, )|
I'=0m;1=0

=1+,

In the same way as we proved (4.14) and (4.15) we obtain by Lemma 2.10
Al+m+l s

5.8 I I e < 3.28C2 A3 AT,

(5.8) (Iz11 + 212)((14— TOn7 S 0 A3
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From (5.6)-(5.8) we see that if we take Ag such that

(5.9) Ag =3-2'0C,CA;
then

larmak/, 2 CO m+1
(5.10) oMo (u?) )y < AT

On the other hand, the solution of (NLS2) satisfies
|0 M™F  gully < |05 M™ Fgulls + |0t M™ 85 (u®)| 1.

By the induction assumption, we see that the first term of the right hand
side is estimated from above by

CoA7 = —1—00Ag"+1 < @Ag*“ if Ag>2.
Asg 2
Hence, we have (5.4) by (5.9) and (5.10) if
(5.11) Ag =2+ 3-2'0C,CAs.

Using (5.4) and the same argument as in Lemma 4.2, we obtain the desired
estimate (5.1), provided that A, satisfies

A 1/2
3
As<2 (2(1 T3 29000,43)) '

"Q.ED.
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