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ABsTRACT. — In this paper, we are concerned with the existence of
multiple solutions of
—Autu=rbx)|ul tutc(x)|ult" u
N+2
N-2
We obtain the existence of multiple solutions by using concentrations-

compactness method and dual variational principle to establish the cor-
responding existence of critical points.

where 1 <p, g< if N=3, 1<p, g<+0 if N=2, A>0.

Key words : Semilinear elliptic equations, variation, critical point, concentration-compact-
ness.

REsuMmE. — Nous obtenons dans cet article un résultat d’existence et de
multiplicité de solutions de

—Autu=rbx)|ulf " tutc(x)|ult" u

N+2
oul<p, q<1_\1_5’ N=3, 1<p,g<+o0si N=2, A>0.
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594 D. M. CAO

Ces résultats sont prouvés a l'aide de la méthode de concentration-
compacité et de principes variationnels duaux pour obtenir I’existence des
points critiques correspondants.

1. INTRODUCTION

We consider the existence of multiple solutions of the following semi-
linear elliptic equation

a.1) —Au+u=rb@)|ulf tutc@x)|ul 'y in RN
) ueH! (RM)

+2

where l<p,q<1:I if N=23, 1<p,g<+o0 if N=2, A>0 is a real

number, b (x) and ¢ (x) satisfy

b(x)e C(RM), b(x)=0 in RN,
1.2 b(x) — b,>0,
|x}|— o
c(x)eCRY), ¢(x)=0 in RN,
1.3) { c(x) — 0.
|x| = o

Existence of nontrivial solutions (positive solutions, for example)
concerning (1.1) has been extensively studied even for more general
nonlinearity —see, for instance, W. Strauss [12], H. Berestycki and
P. L. Lions [4], W. Y. Ding and W. M. Ni [5], P. L. Lions [9], [10],
A. Bahri and P. L. Lions [2] and the references therein. For the multi-
plicity of solutions we refer to H. Berestycki and P. L. Lions [4],
X.P.Zhu[13] and Y. Y. Li [8].

It is known to some extent that the equation
(1.4 —Autu=c(x)|ul'"'u in RN

may have infinitely many solutions because (1.3) ensures that the cor-
responding variational functional

(1.5) I"‘(u)=%J‘|Vu|2+u2—ﬁj‘c(x)|u|"+~1
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A SEMILINEAR ELLIPTIC EQUATION 595

satisfies the (PS) (Palais-Smale) condition and the dual variational princi-
ple of A. Ambrosetti and P. Rabinowitz [1] may be applied. When A is
small, (1.1) can be taken as a small perturbation of (1.4) and thus it
seems reasonable to hope that (1.1) has more and more solutions as A
tends to 0.

As mentioned in P. L. Lions ([9], [10]) that the variational functional
corresponding to (1.1) defined by

(1.6) I,L(14)=%J‘|Vu|2+u2——p%lJ‘b(x)|u|”“—q:_—ljc(x)|u|“+1

fails to satisfy the (PS) condition because of the lack of compactness of
the Sobolev embedding H' (RY) g L2 (RY).

Such a failure creates difficulties for the application of standard varia-
tional techniques. In section 2, arguing as P. L. Lions [10], we show by
using the concentration-compactness principle that I, () satisfies (PS),
condition if ¢ belongs to an interval depending on A which becomes large
as A tends to 0. In section 3, using a variant of the dual variational
principle (dealing with unbounded even functionals) of A. Ambrosetti
and P. Rabinowitz [1] we obtain the existence of multiple solutions by
establishing the corresponding existence of critical points of I, (1) with
critical values in the interval in which I, () satisfies (PS), condition.

We conclude this introduction by remarking that some more general
nonlinearities can be considered and similar existence results can be obtai-
ned by the arguments in this paper.

2. EXISTENCE OF A POSITIVE SOLUTION

In this section, we are concerned with the existence of a positive solution
of (1.1). As preparations and for the discussion of next section, we first
give some notations, definitions and auxiliary results.

Define
2.1 M,={ueH'(RY)|u#0, I, (w)u=0}
2.2 Mp={ueH'(RY)|u#0, [’ (w)u=0}
where I, (1) is defined by (1.6), I,° (u) is defined by

1 A
2.3 I°@w)=-||Vul*+u>———|b p+1
2.3) @ 2f| ul*+u pHIquI
Let
2.9 L=inf{I, (w)|ueM,}
2.5 I?=inf{ L () |ue M }
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596 D. M. CAO

(2.6) I*= + 00 if ¢(x)=0 in RN
' inf {T* ()| ue H RHN{O0}, I¥ ))u=0}  if c(x)#0

j|Vu|2+u2
2.7 S=  inf

2/(p+1)
ueHI(RN)\{0}<JIulp+1) fp=D

ProposiTioN 2.1. — For each A>0, I, <T*.

Proof. — If ¢(x)=0, then I*= + oo, thus I, <I*. In what follows, we
assume ¢ (x)#0.

Suppose ue H! (RY), ##0 such that

2.9) J|Vu|2+u2=Jc(x)!u|q+1.

Let v=o0u such that veM,, i. e.,

We have

(2.9) ﬁVu[z-kuZ:c—S”_lka(x)|u|”“+8"_lJc(x)[u|"+1

Comparing (2.8) and (2.9) we deduce that such o exists and ce(0, 1).

2 q+1
Letting h(c)=°—J|Vu]2+u2—° jc(x)]ul"“, we have
2 qg+1

h’(c)=o<J|Vu|2+u2—cq‘1Jc(x)|u|““>>0 for ce(0, 1).
<2 —pt+1
2.10) (v =3J|Vu|2+u2—ijb(x)|u|v+1
2 pt1
—q+1
ot} S5at1
<—J}Vu|2+u2——J‘c(x)|ul"’rl
2 g+1
<lj|Vu[2+u2——l—jc(x)|u|“+1=I*(u).
2 qg+1

Thus I, <I* and we have proved Proposition 2. 1.

ProrosiTiON 2.2. — We have
2.11) I{°=£S(”“V‘P‘1)Qb )~ @ir=1),
2(p+1) ©
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Proof. — We can easily find that
2.12) S=inf{j|Vu|2+u2|ueH1(RN),J|u|”“=1}

which has a positive minimum «e H! (RY) N C2 (R") satisfying
(2.13) —Au+u=S|ulf"'u in RY
(see W. Strauss [12], P. L. Lions ([9], [10]) for examples). By Gidas, Ni
and Nirenberg [7] we may assume u is radial.

On the other hand, there exists a positive radial function
ue H (R™) N C2(RY) achieving I}° such that u satisfying
2.14) —Autu=Ab,|ulf"'u in RN
(see also W. Strauss [12], P. L. Lions ([9], [10]) for examples).

- /(p-1)
Let u=()b—s> v, then v>0 in RN and solves (2.13). By the

o

uniqueness of radial positive solution due to M. K. Kwong [11] we deduce
v=u and thus

I =12 ()= p—1 f|V§|2+;2= r—1 S@+VIp=1) () p_)~@E=1)
2(pt+1) 2(pt+1)

proving Proposition 2.2.

LEmMMA 2.3. — I, (v) satisfies (PS), condition if

@.15) ce(—w, I?).
Proof. — Suppose {u, } <H* (R") such that

(2.16) I, (u,) = ce(— o0, I)

.17 Lw)—0 in HRY

It is easy to deduce from (2.16) and (2.17) that {u,} is bounded in
H! (RY). By choosing subsequence if necessary we assume
(2.18) u, - u, weakly in H!' (RV).

By the method of concentration-compactness, as in A. Bahri and
P. L. Lions [2], P. L. Lions [10], V. Benci and G. Cerami [3] we deduce
that there exist a nonnegative integer k, {xi}(1<i<k) in RN,
solutions u;e H! (RY) (1 <i<k) of (2. 14) such that (extracting subsequence
if necessary)

k

Uy~ o= ), U (x—Xy)
i=1

(2.19)

-0
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598 D. M. CAO
2. 20) c=1, (uo) + Z I (E;)
i=1

Since I (ﬁi)z—p———l— j\Vﬁi\z-HIf;O for i=1, ..., k if for some i,
2(p+1)
u;#0, then I’ (1) 21> which implies ¢ =1 because T (1o) 20 Thus ©;=0
for 1<i<k. Hence u, CONVerges to u, strongly and therefore Lemma 2.3
has been proved.
We are now going to use the preceding result to obtain the existence of
a positive solution.

THEOREM 2.4. — Suppose I, <IP. Then (1. 1) has a positive solution.

Proof. — By Ekeland’s variational principle [6] and the definition of 1,,
there exists a minimizing sequence {u,} such that {u, =M,

(2.21) INUAEAN
(2.22) I, () >0 in H ! (RY).
(2.23) L(u)—0 in H'@®.

Indeed, from (2.21), u,€M,, using Sobolev inequality we can find C,,
C,>0 such that

(2.24) C1<j\Vun\2+u§<C2 forall n=1,2, ...

Letting J, (W)= j'\Vu\Z-Fuz— j)»b(x)\u\"+1 - ~{c(x)]u\"“, we have

(2.25) Mx={ueH‘(RN)\{O}\Jl(u)=0}.
Thus
(2.26) L () =15 |y (1) — 0 32, C40)

for some 0,€R.
Since u,€M,, we have from (2.26)

(2 . 27) I;. | My, (un) U,=— en ];. (un) u,= I;« (un) Uy = 0

(2.28) J;(un)un=2leun|2+uﬁ—(p+1) jkb(x)luA"“
—(q+1)j6(x)lu\"“

=—(p— D ij(X)\un\”+1—(q—1)§C(X)|u,.\““-
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Thus from (2.24), (2.28) and u,eM, we have
2.29 —-Cy<) (u)u,<—C,

for some constants C,;, C,>0 independent of n.
From Ij |y, (4,) = 0, we obtain by (2.27) and (2.29) that 6, — 0 which

combined with (2. 26) deduces I, (u, ) — in H™}(RM). Thus (2. 23) holds.

Following Lemma 2.3, we can assume (by choosing subsequence if
necessary)

u, > u, strongly in H* (RV).

By Sobolev inequality, we have Il>0. Thus u, is a nontrivial solution
of (1.1). Letting u,=ug +ug, where ug —max{uo, 0} Uy =uy— uo , We
have I, (ug) =1, (ug ) +1, (g ). Since I (uo)uO =0, i.e., uf eM, if uf #0 we
have I, (u3f)=1, if uy #0. Therefore ug =0 or uy =0. Without loss of
generality, assume u; =0. Thus #,=0 in R". It follows from standard
regularity method and maximum principle that u,eC? (RY), u,>0 in RN,
Thus, we conclude the proof of Theorem 2.4.

CoROLLARY 2.5. — Suppose (1.2) holds, c(x) satisfies
c(x)eC(RY), c(x)=0 in RN,
c(x) — 0, c(x)#0 in RN,

Ix| =

(2.30)

Then (1.1) has a positive solution provided

-1 (p—1)/2
2.31) refo, | —2— Sz p-1)
200+ ) I*

Proof. — From (2. 31) we have

(2.32) I*< P~ Stp+1)/(p— l)ab ) Q@/ip— 1))_100
2(p+ 1)

which combined with Proposition 2.1 implies

(2.33) L<IpP.

Thus, by Theorem 2.4 we know (1.1) has a positive solution.
We end this section by a few remarks.

Remark 2.6. — The fact that if I, <L then I, has a minimum has been
proved in P. L. Lions ([9], [10]). We reprove this fact for the sake of
completeness.

Remark 2.7. — Consider the following equation
(2.35) —Au+u=Q(x)|ulf"'u in RN
where Q (x)e C(RY), Q(x)20 in RN, Q(x) > Q>0 as | x| - oo.
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600 D. M. CAO

(2.35) can be obtained by taking A=1, Q(x)=b(x), ¢(x)=0in (1.1).
From Theorem 2.4 we can deduce the corresponding results concerning
the existence of positive solution of (2.35) in section 3 of W. Y. Ding and
W. M. Ni [5] [for the case Q(x) > Q as |x|— oo]. Corollary 2.5 gives a
type of precise condition under which I, <I}°.

Suppose Q(x)=2xb(x)+ c(x), where b (x) satisfies (1.2) and

(2.36) (b, —b(x) log(1+|x|)> +00 as |x|—>

c(x) satisfies. (2. 30) with supp ¢ (x) bounded.

Corollary 2.5 ensures the existence of positive solution if A is properly
small. It should be pointed out that in this case Q (x) does not satisfy the
condition proposed by A. Bahri and P. L. Lions in [2].

3. EXISTENCE OF MULTIPLE SOLUTIONS

First of all, let us state a variant of the dual variational principle
of A. Ambrosetti and P. Rabinowitz [1] dealing with unbounded even
functionals.

Let E be a Banach space, B, be the ball in E centered at 0 with radius r,
0B, be the boundary of B,. AcE is called symmetric if ue A implies
—ueA. Let

(3.1) Z={A]AcE\{0}, A is closed and symmetric }
For AcZ, v(A) denotes the genus of A. We set for f e C}(E, R)
(3.2). E,={ueE|f(w)20}

(3.3) H={h|heC(E, E), his odd homeomorphism 4 (B,)<E, }
(3.4 TI',={AcZXZ|A iscompact, V(AN h(0B,))=n for any heH}

Replacing (PS) by (PS), condition, we have the following lemma proved
exactly as in [1].

Lemma 3. L. — Suppose f € Ct (E, R) satisfies

(C1) f@©)=0 and there exist p, >0 such that f(u)>0 for any
ueB\{0},f(w=a for all uedB;

(C2) for any finite dimensional subspace E"cE, E* N E, is bounded;

©€3) fw=f(~w.

Set
3.5) b,= inf sup{f@)|ueA}, n=12, ...
Aely
Then

i) F,#0for n=1, 2, , b,z a;
(ii) b, is a critical level lf f satisfies (PS), condztzon for ¢c=b,.

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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Furthermore, if b=b,=...=b,,,, then v(K,)2m+ 1, where
K,={ueE|f(w)=b, f (w)=0}.

In what follows, we always take E=H!(RY) and use the same
notations X, B,, B, and v(A). Let

(3.6) E,={ueH' RY|L @20}

G.7) E,={ucH!®Y|I*@)20)

(3.8) H,={heCH"'(RY), H' (RY)), & is odd homeomorphism,
h(B)<E,}

(3.9) H,={heCH'RY), H' (RY)), & is odd homeophormism,
h(B,)<E, )

Obviously E,<E_, H,cH,.

ProprosITION 3.2. — If b(x) satisfies (1.2), c(x) satisfies
c(x)eC(RY), c(x)=0 in RN,
(3.10) meas { xe RN|c(x)=0}=0,
c(x)>0 as |x|-> o0
Then 1, (u) and 1* (u) satisfy (C1), (C2) and (C3) in the previous lemma.
Proof. — The verification of (C1) and (C3) is trivial. We only show
that (C2) holds for I, (u) [resp. I* (v)]. We argue by way of contradiction.

Suppose there exists a m dimensional subspace E™cH!(RY), a
sequence { u, } < E™ N E, (resp. {u, } <E, M E™) such that ||u, || - + c0. Let

ey, ey, ..., e, be the basis of E,. Then
3.13) u,=tie;+...+the,

for some 7,=(7;, ..., tn)eR™
Set |1,|= max ||, we have |#,| > + c0.

15ism n
(3.14) JIVu,,|2+u3=O(|t,,|2)
(3.15) Jb(x)|u,,|”+120

(3.16) Jc ()| u, |11 2Cs |2, ]2+ for n large enough

where C5>0 is some constant.
(3.14), (3.135) and (3.16) deduce I, (u,)<O0 for » larger enough [resp.
I* (u,) <0 for n large enough], which contradicts u,eE, (resp. u,cE,).

Vol. 10, n® 6-1993.



602 D. M. CAO

Define
(3.17) TI={AcZX|A is compact and v(A N h(0B,))=n

for any heH, }, n=1,2, ...,
(3.18) F1={Ac2!A is compact and V(A N A (@B,))=n

for any heH, }, n=1,2, ...,

(3.19) &= inf max{I, (u)|ueA}, n=1,2, ...,
Ael®

(3.20) cy= inf max{I (w)|ueA}, n=1,2,...,
Ael}

By the definitions we have
(3.21) ory for n=1,2, ...

Suppose (3.10) holds then by Proposition 3.2 and Lemma 3.1,
I#J foreach n=1, 2, ..., and consequently ¢}, < + .
Let

p—1 (p—1)/2

M= ———— SteHbizp-1 k=12, ...
2(p+1)c’;

We have

THEOREM 3.3. — Suppose (1.2) and (3.10) hold. Then for each
n=1,2,..., (1.1) has n pair of solutions{—u,.u,-}, i=1,...,n if
Ae(0, A,).

Proof. — By the definition of ¢}, ¢}, n=1, 2, ... we have
cy= inf max{I, (u)|ueA}
Aer?}
< inf max{I, (u)|ucA}
Ael}
< inf max{I*(u)|ueA}
Ael}
Thus
(3.23) a=cy

=c, for n=1,2,...

Next we claim that for each ¢, k=1, ..., n, I, () satisfies (PS), condi-
tion.
Indeed, A<, implies

< p—1 (rl)/zs(p+1)/zb—1‘
2(p+1)c ®
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Thus

p—1 _ _ _
&< S(P+UIP=1D () p )~ @p-1) =]
*T2(pt+1) (Ab.o) *

which combining with (3.23) deduces

(3.29) a<lIy.
On the other hand, obviously we have

(3.25 <. .

Thus, by Lemma 2.3, I, (u) satisfies (PS), condition for &, k=1, 2, ..., n.
Following Lemma 3.1, L (#) has at least n different critical points
u,e H' (RY) (1<i<n) such that I, (u;)=ci (1<i<n). Since I, (u) is a even
functional —u; is critical point either (1<i<n), { —u, u;} are the solutions
we are looking for. Hence we have proved Theorem 3.3.
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