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ABsTRACT. — For the Emden-Fowler equation —Au=2M\e* in Q<=R?2,
the connectivity of the trivial solution and the one-point blow-up singular
limit is studied with respect to the parameter A>0. The connectivity is
assured when the domain Q is simply connected and the total mass

E=f Ae*dx tends to 8 from below, which is a generalization for the
Q

case that Q is a ball.

Key words : Emden-Fowler equation, singular limit, global bifurcation, rearrangement.

1. INTRODUCTION

In the present paper, we shall study the global bifurcation problem for
the nonlinear elliptic eigenvalue problem (P): find ue C?(Q) N\ C°(Q) and

Classification A.M.S. : 35J 60.
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368 T. SUZUKI

AeR,=(0, + o0) satisfying

—Au=\é* (inQ) Q)]
u=0 (on 6QY), (@)

where Q<=R" is a bounded domain with smooth boundary dQ and A is a
positive constant.

We shall study the two-dimensional problem, but a lot of work has
been done for (P) including higher dimensional cases, for instance,
Keller-Cohen [9], Fujita[6], Laetsch[10], Keener-Keller[8], Crandall-
Rabinowitz[5]. They can be summarized in the following way: '

Fact 1. — There exists Le(0, +o0) such that(P) has no solution
ueC?(Q) N\ C°(Q) for > A, while (P) has at least one solution for 0 <A <X.

Fact 2. — For each fixed \ the set of solutions{u} for(P), which is
denoted by S,, has a minimal element u=u, whenever S, #0. That is,
w, €S,, and w, <u holds for any ues,.

Fact 3. — There exists no triple {uy, u,, uy } =S, satisfying u; Su,<u,
and u, #u, #u,.

Fact 4. — Minimal solutions {(k, u)|0<A<A} form a branch S, that
is, one-dimensional manifold, in . — u plane starting from (h, u)= (0, 0).

FAcT 5. — When n<9, S continues up to A=A\ and then bends back.

Fact 6. — When n<2 and Le(0, X) we have S,#{uw,}, that is, there
exists a nonminimal solution then.

In the case of n=2, the problem (P) has a complex structure found by
Liouville[12]. Utilizing it, Weston [20] and Moseley [13] have constructed
a branch S* of nonminimal solutions via singular perturbation method
for generic simply connected domains Q = R2. Their solutions make one -
point blow-up as A | 0.

One the contrary, the asymptotic behavior of solutions { u} as A | 0 has
been studied by [15]. Singular limits of (P) are classified in the following
way for the general domain Q<= R?2,

THEOREM 1. — Let h= (;) be the classical solution of (P), and set

Z=J retdx. 3)
Q

Then { £} accumulates to some 8 nm as A | 0, where m=0,1,2, ..., + 0.
The solutions { u} behave as follows:

(@) If m=0, then ]u|Lco(m—>0, i.e., uniform convergence to the trivial
solution u=0 for A=0.

b) If 0<m< + oo, then there exists a set ScQ of m-points such that
uls— + oo and |u| g a5 €0 (1), i.e., m-point blow-up.
(¢) If m= + o0, then u(x) > + oo for any xeQ, i.e., entire blow-up.
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ELLIPTIC EIGENVALUE PROBLEM 369

Furthermore, in the case (b) the singular limit u, = u, (x) and the location
of blow-up points ScQ are described in terms of the Green function
G=G(x, y) of —A under the Dirichlet boundary condition in Q. For
instance, if m=1 then the singular limit u, = u, (x) must be

Uy (x)=8nG(x, x) 0]
and the blow-up point k€ Q must satisfy
VR (x)=0, A (5)

where R (x)= [G (x, y)+ —21— log|x—y| ] denotes the Robin function.
n

y=x
When Q is a ball B={|x|<1} only the cases (a) and (b) with m=1
occur in Theorem 1, and for the latter case

1
k=0 and Uy (x)=8nG(x, K)=4logﬁ.
X
On the other hand all possibilities m=0,1,2, ..., + co are expected when
Qs an annulus A={a<|x|<1}, where 0<a<1, See[11] and [14].
A natural question is how these singular limits are globally related
to each other in A—wu plane. In fact if Q=B, the singular limit

1 .. . .
Uy (x)=4 logm is connected to the trivial solution u=0 (Fig. 1).

FiG. 1

Our purpose is to show that this phenomenon holds in more general
situations. We can prove the following theorem, which is a refinement of
our previous work [18]:

THEOREM 2. — Let Q be simply connected. Suppose that there exists a
family of classical solutions{u} of (P) satisfying £= J Le*dx T 8mwith

Q

Vol. 9, n® 4-1992.



370 T. SUZUKI

A | 0. Then the singular limit in Theorem 1, uq (x)=8 1 G (x, ¥), is connected
to the trivial solution u=0 in A—u plane through a branch S bending just
once.

As for Weston-Moseley’s branch S* of nonminimal solutions, we have
a quantitive criterior for X to tend to 8 & from below ([18], Proposition 1).
Namely, given simply connected domain Q<= R?2, we take a ke Q satisfying
(5) and a univalent holomorphic function g, :B={|x|<1}—>Q with
2,.(0)=x. It follows from (5) that g, (0)=0. Under some generic assump-
tion for x other than |g;” (0)/g. (0) | #2, Weston-Moseley’s branch S* can

be constructed, of which solutions { u*} make one-point blow-up at keQ
as A | 0. Then the relation

j re dx=8n+Ch+o(d) (as\]0) (6)
Q
holds with
C by w k2
—=—|a, |+ 2 7
n l II kg'g,k—Zlakl M
where
g.(@D=x+az+ > az* 8)
k=3

Therefore, if C<0 then S* is connected to S, the branch of minimal
solutions.

(Weston-Moseley’s branch is constructed by a modified Newton method.
The generic assumption on x stated above is related to the degree of
degeneracy of the linearized operator, and is rather implicit and compli-
cated. However, in the case that Q is convex with two axile symmetries,
say, a rectangle, that condition holds. Furthermore, we have
| g (0)/g..(0) | <2 in this case. See Moseley [13] and Wente[19].)

In the previous work [18, Theorem 3] we actually showed that pheno-
menon of connectivity when Q is close to a ball. But we could not give a
quantitative criterion about how Q should be close to a ball to assure us
of such a connectivity of S* and S. In fact we have q,=0(k=3) when Q
is a ball in (8) and hence C/n= —|a, |* <0.

As Bandle [1] reveals, the problem (P) with =2 has a geometric
structure other than complex one. This structure will be fully utilized in
proving our Theorem 2. Namely, employing the technique of rearrange-
ment, we can reduce the theorem to the radial case Q=B. The assumption

of simply connectedness of Q is necessary in developping those procedures
of rearrangement (Proposition 9).
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ELLIPTIC EIGENVALUE PROBLEM 371

2. STRATEGY FOR THE PROOF

We recall the problem (P):

—Au=Lré*  (in QcR?) )
u=0 (on 0Q). (10)

The basic idea is to parametrize the solutions {h= (;)} in terms of

2=J A e dx. (11)
Q

This is nothing but to introduce the nonlinear operator

@ Cc©

Y=¥(.,%): X o X
R R
for given ¥ through
+ U
v s= 2T N\ here h=(:>. (12)
retdx—X
Q

Here, C*(Q) denotes the usual Schauder space for O<a<1 and
Ci**(@)={veC?***(Q)|v=0 0ndQ}. Then, each zero point of ¥ (., X)

represents a solution A= (:) of (P) satisfying (11).

This formulation has a geometric meaning. The solution h=(:> of (P)
is associated with a conformal mapping g from Q<=R? into a two-dimen-
. . 1 .
sional round sphere of diameter 1. Then, £'= —f A e* dx indicates the area
o

of g(Q) as an immersion. Therefore, we are trying to parametrize those
surfaces by their area. This idea was also taken up in [14] in classifying
radial solutions on annului. See [14] for details.

Later we shall show the following lemmas.

LemMMA 1. — For each >0 the set {h=(;t>|‘l’(h, 3)=0 for some

2el0,8m— 9] } is compact.

Vol. 9, n® 4-1992.



372 T. SUZUKI

Lemma 2. — If W (h, £)=0 with some Ze[0,8m), then the linearized
operator

Ci* (@ C©@
d,¥(.,3): X o X
R R

is an isomorphism.

Lemma 3. — If W (h, 2)=0 for some £e(0,87) and h=(:>, then

1, (p, Q)>0, where p=1»e".

Here and henceforth, p;(p, Q) (j=1,2, ...) denotes the j-th eifenvalue
of the differential operator —A—p in Q under the Dirichlet boundary
condition. That operator will be denoted by — Ay () —p. Thus, Lemma 3
indicates that the second eigenvalue of the linearized operator for (P) with

respect to u is positive whenever 2=J he*dx<8m.
Q
Those lammas imply our Theorem 2 in the following way. First, consider
the set of zero points of ¥ in £ —# plane. Every zero point (4, £) of ¥
generates a branch of its zero points whenever 0<X <87 by the implicit
function theorem and Lemma 2. That branch continues up to =0 by

the compactness in Lemma 1. However, only the trivial solution h=<0>

is admitted for the problem (P) satisfying (11) with £=0. This implies
the unique existence of a non-bending and non-bifurcating branch C of
zeros of W:{(Z,h)|¥(h, Z)=0} in ZT—h plane starting from

FiG. 2
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ELLIPTIC EIGENVALUE PROBLEM 373

¥, 2 mon- mirimal Yromc R

A1(p. S0 <0
O@UE)
X_ . ,,,A;,\/;mm»Q, \DY‘L\V\(“?\, U
e Y > Q N
FiG. 3

Z, h)=(0, (g)) to approach the hyperplane =28 n. On that hyperplane

X =8 = lies the singlar limit (8 m, (8EGO(' > K)>>.

Therefore, in the case that X tends to 8 n from below, the branch C

connects the trivial solution (O, (g)) and the singular limit
(8 . (8“G()("")>>. More precisely, C={Z, h(X))|0<Z<8r} with

lim A (Z)= (g) and lim 4 (Z)= <8 m GO( o ")> (Fig. 2).

£lo Ztn

Now the problem arises to represent { ()= <; g;) [0<Z<8n } in

A—u plane. Lamma 3 and the implicit function theorem imply that u is
locally parametrized by A unless p, (p, Q)=0, where p=A(Z)e*® with
some Ze(0,8 7). However, at the degenerating point p, (p, Q)=0 works
well the theory of Crandall-Rabinowitz[5]. That is, on account of the
convexity of f (#)=e¢" and the positivity of the first eigenfunction of the
linearized operator — Ap, (Q)—p, the family { (A (), u(X)) } forms a bend-
ing branch around X=X which changes the solutions from the minimal
to the nonminimal (Fig. 3).

Regarding the uniqueness of minimal solutions, we see that only one
possibility of such a degeneracy p, (p, Q) is permitted, and the proof of
Theorem 2 will have been completed.

We prove those lemmas in later sections.

Vol. 9, n® 4-1992.



374 T. SUZUKI

3. A PRIORI ESTIMATES FOR SOLUTIONS AND EIGENVALUES

The following proposition implies Lemma 1:

ProrosiTiON 1. — If h= (:) solves (P) with X =j he*dx <8, then the

Q
inequality

%
Iu‘Lm(mé‘—Zlog(l—S*) (13)

s
follows.

In fact we have the elliptic estimate for « and the existence of an upper
bound for A described as Fact 1 in Section 1. Therefore, the a priori

estimate (13) for |u| «(Q) implies the compactness of the solution set

AR (9))
{h|¥ (h, £)=0 for some £€[0,8n—38]}in x  throught the bootstrap
R

argument.
On the other hand Lemma 3 is proven by the following proposition:
ProposITION 2. —~ If the positive function pe C*(Q) N C°(Q) sarisfies
~Alogp<p (in QcR?) (14)

and Zsj‘ pdx <4, then
Q

v (o, Q)Einf“ |V o dx|ve H @), J vadx=1}>1. (15)
Q Q R

We note that if h= (;‘) solves (P), then p=A\.¢* satisfies (14). Then the

following corollary to Proposition 2 implies Lemma 3.

CorOLLARY. — If p satisfies (14) with2=j pdx<8m, then w,(p, Q)>0
Q
follows.

Proof of Corollary. — First, we note that v, (p, Q)>1 is equivalent to
1 (P, ©2)>0 because of the Dirichlet principle for p, (p, Q).

By the argument of A. Pleijel [17], the second eigenfunction Y, of
~Ap (@) —p has two nodal domains Q, ={ £\y,>0}. That is, both Q,
and Q_ are open connected sets. Their boundaries consist of a number of
piecewise C? Jordan curves by a theorem due to Cheng [5]. In fact, extend-

ing ¥, outside Q through a suitable reflection, we can regard dQ as a
portion of its nodal lines {{,=0}.

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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By means of Jacobi’s argument we can show that

By (pa Qt)Elnf{J |V‘0 |2dxl T)GH(I) (Qi)'s J‘ va dx=1 }zul(pa Q)‘
Q1 Q. )

In fact, for p=p, (p, Q) the function
0:= VY], eC*QINCQHNHFQY)

satisfies

—AQ,=ppos, 0:>0 (in Q) and  ©.=0 (ondQy).

Hence
f Vo, Izdx=uj poidx.
Q4 Q4

On the other hand for any v,eCy(Q.), the (function
Ny =0v./0;€C3(Q.) is well-defined so that

j Vo, ?dx
Q3
=J (03]VN: P +20.:M: Vo, . Vn.+tni|Vo,|*}dx
Qs
=j (02| Vne ' +0. VL. Vo, +nd Vo [} dx
Qy
=f (@2 |VNn:P-MiV. (@ Vo) +ni| Vo[ }dx
Q+
=I (02|VneP-nio: A0, fdx
Q3
=j q>i{|VniP+upni}dx>='uj pol dx.
Q4 Q4
Therefore, we have

J |Vvi|2dxguj. poidx  [veHg(QL)]
Q4 Q4
This means that

R=p, (P, D=p, (p, Qy).

Vol. 9, n® 4-1992.
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On the other hand we have Z=J‘

Q

pdx+ j pdx<8m. Therefore,

either j pdx<4m or J pdx<4mn holds so that p,(p, Q)>0 by
Q4

Proposition 2.

Propositions 1 and 2 are known when p is real analytic. For instance,
see [18], Proposition 2 and [3], p. 108, respectively. That is enough for
showing Lemmas 1 and 3. However, we shall perform the proof here,
because it is necessary for us to describe that of Lemma 2.

4. ALEXANDROV-BOL’S INEQUALITY
AND ITS CONSEQUENCES
It is well-known that the relation (14), i.e.,

—Alogp<p (inQ<R? (16)
implies Alexandrov-Bol’s inequality

1(69)2%(8n—m(0))m(n), (17)

where ds denotes the line element,

l(@Q)=j pi?ds and m(Q)=j pdx. (18)
o0 Q

An analytic proof is given in Bandle [2] when p is real analytic. In the
present section, we just refine her argiment and show (17) even for non-
real analytic p, to prove Proposition 1 in more general situations.

PRrOPOSITION 3. — If a positive function pe C?(Q) N C° (Q) satisfies (16),
then the inequality (17) holds.

Proof of Proposition 3. — Let h be the harmonic lifting of log p, that
18,
—Ah=0 (inQ) (19)
and
h=log p (on 09)). (20)
For each subdomain w<=Q with sufficiently smooth boundary, the

inequality
2
{J e"’zds} g4njehdx 21)
oo @

Annales de I'Institur Henri Poincaré - Analyse non linéaire
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holds true. This is essentially due to Z. Nehari [16].
In fact, there exists an analytic function g=g(z) in Q such that |g' |P=¢",
and hence

j e? dszj | g’ | ds=the length of g (0w) as an immersion
oo oo

f e"dx=j

Therefore, (21) is nothing but an isoperimetric inequality for the flat
Riemannian surface g ().
Now, we introduce the function ¢=pe ™", which solves

—Alog g=ge*  (inQ) (22)

and

2 dx=the area of g(0w) as an immersion.

gl

and
g=1 (on 0Q). (23)
We shall derive a differential inequality satisfied by the right continuous

and strictly decreasing functions

K@= [ ge" dx (24)

Ji{g>r}

and

(= e"dx. (25)

J{g>1}

In fact, co-area formula implies

ge" e
—K' ()= ds=zJ ds=—t10' () (a.en. (26)
(=03 [Va| (a=1y | V4|

On the other hand, Green’s formula gives
1
J (—Alog q)dx=J Mds=—f |V q|ds (a.e.t>1),
{g>1) tqa=1y 4 tia=1

because of Sard’s lemma and the fact that 0 {g>t}={g=1} for t>1.
Hence we have from (22) that

1
—f |Vq|ds§f g dx=K () (a.et>1), @7
Lig=1) {a>1)

Vol. 9, n® 4-1992.



378 T. SUZUKI

Therefore, we get from Schwarz’s inequality and (21) that

1
—K(t)K’(t)g—J ]Vq|ds.tf
tJig=1y {q=t;|V4|
> e"/zds} ;4nf e dx
{g>1}

{g=1} =4mp(f) (a.e.1>1). (28)

ds

In particular,
d _ 1wy
Z{u(t)t K(t)+8nK(t)}
=p(t)+4LK(t)K'(t)§0 (a.e.t>1). (29)
n

Here, we note that
K(@+0)=K(® and K(—-0)=K(©®).
On the other hand, the function

j(t)EK(t)—u(t)l=j (g—edx

{g>1t}

is continuous as j(t+0)=j(®)=j(t—0). In fact, j(z+0)=/j(¢) is obvious
and j(1)—j(t—0)= (g—0e"dx=0.
{a=1}
Therefore, (29) imr;’lies that -

t= oo

[u(t)z—K(t)+iK(t)2] = —{u(l)—K(lHiK(l)Z}go. (30)
8n 8x

t=1

However, we have

K(l)*u(1)=j(1)=f (q—l)e"ab@J (q—l)e"dx=m(ﬂ)—J etdx
{ Q Q

q>1}
as well as
K(1)*=m(Q)?,
so that
1 2 h
mQ)——m(@Q)>< | dx. (€2))
8= a
Combining the inequalities (31) and (21) with @ =, we see that
1 1 2
mQ)——m(Q)*<— ptds; ,
8= 4w ( Jsa

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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because A=1log p on dQ. This is nothing but (17).
The following theorem implies Proposition 1 of the previous section.

We have only to take p=2»Ae* for the solution A= (:) of (P).

ProposITION 4. — If a positive function pe C?(Q) N C°(Q) satisfies (16)
and Ej pdx <8, then the inequality
Q

3 -2
maxp__<__(1——> max p (32)
a 8n o0
holds.

Proof of Proposition 4. — As in (30), we can derive from (29) the
estimate

j(t)zK(t)—u(t)tgginK(z)z (12 1) (33)
or equivalently,

K@ f 1 1 : :
p@®=2 ; {K—(t) 811:} (rz1). (34)

Setting

_BO kO 3

10 K@) 8n’ (33)

we have
J(+0)=1 (). (36)

Furthermore, we note that

K(-0-K@O=| gdde=t(u(t=0)=n()20
{a=1}
to deduce
PN S S
=03 0-m0O-ka-0){  HO -0

because of (33) and p(H)—p(t—0)=— J et dx <0.

{g=1}

Vol. 9, n® 4-1992.
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On the other hand we have
L K' ()
J(@=n (t){K(t) on } u(t)K(t)2
@@ _p@OK (t)=0
- K@ K (9?
by (34) and (26). The relations (36)-(38) imply for 7,=maxgq that
Q

(a.e.t>1) (38)

1

v (@ !
K() 8n

thTrgJ(t)—thTr?oK (t)_l/toZJ(t) u(t){

} (i<t (39)

However,

J<z>>K<’>2{L—L}2
= ¢ |K@® 8=

L . K(1))\? > \2
by (34), of which right hand side tends to | 1 — e = 1— S, ast] 1.
b

In this way, we obtain

> -2
to=maxpe"’§(1——> ,

so that

>\ 2 -2 T\ "2
maxp§<1 ———> maxe"§<1 _x maxe"=<l —-—) max p,
o 8= a 8m o0 8n o0

where the maximal principle for the harmonic function 4 is utilized.

5. SPHERICALLY DECREASING REARRANGEMENT

In this section we shall give an outline of the proof of Proposition 2
described in paragraph 3. We follow the idea of C. Bandle, employing
some new arguments.

Proof of Proposition 2:

&
Step 1. — We introduce the cannonical surface A*= (L) for given
T (0, 8m), as u*eC?(Q*) N C°(Q*) and A*>0 solve
— Au*=)* " @inQ*={|x|<1}<=R?), (40)
u*=0 (on 0QY) 41)

Annales de I'Institut Henri Poincaré - Analyse non linéaire



ELLIPTIC EIGENVALUE PROBLEM 381

and
j A¥e*dx=X. (42)
nt

Here, we note the following proposition.

*

PROPOSITION 5. — The solution h* = (:*

> of (40) with (41) is parametrized
by L= J A*e" dxe(0,8m). In other words for each £ €(0,87) there exists
o* .

*
a unique zero h*= <:*> of

Ci @) @

WE=WH(,5): X o x
R R
with
Au*+ 1% e
vk, D)= T

J A*e dx—X
Q‘

%
This fact is well-known. We can give the solution h*=(:*> explicitly.

In fact,
« 8
pPrx)=r*e (N)=—1b 0 (43)
(|x|*+w?
holds for some p=p(X)e (0, + c0). We furthermore have
lim p(X)=+ o0, lim p(X)=0 (44)

ZlO0 X1 8n
and
—Alog p*=p* (in Q*). (45)

See [18] for the proof, for instance.
- By virtue of (45), we can show that the equality holds in Alexandrov-
Bol’s inequality (17), when p=p* and Q is a concentric disc of Q*.

Step 2. — We shall adopt the procedure of spherically decreasing
rearrangement. Namely, given a domain Q<R? and a positive function

Vol. 9, n® 4-1992.



382 T. SUZUK1

peC?(Q) satisfying (16) and m(Q)= J pdx <87, we prepare the cannoni-
Q

.*
cal surface h*= (;;) such that T= J p*dx=m(Q).
Q*

For given non-negative function v=v(x) in Q and a positive constant
t>0 we put Q,={v>1}. We can define an open concentric ball QF of Q*
through

J p* dx=J‘ pdx=a(t)e[0,8 m). (46)
o (o

Then, Bandle’s spherically decreasing rearrangement v* of » is a non-
negative function in Q* defined as
v* (x)=sup { 1| xeQ}}. 47)

It is a kind of equi-measurable rearrangement, and the relation

j pvldx= Jtz d(—a(®))= j p*v*? dx (48)
Q o

holds true.

The following proposition can be proven, which is referred to as the
decrease of Dirichlet integral:

PROPOSITION 6. — If v=v(x) is Lipschitz continuous on Q, v=0 in Q,
and v=0 on 0Q, then the inequality

j |,Vv|2dxgj |V 0¥ [P dx 49)
Q (23

holds.
From this proposition, it follows that

v, (p, Q)=inf{j |Vv|?dx |veH (Q), f pvzdx=l}
LV Q Q
>v, (p*, Q*)=inf{j Vo |2 dx|ve HE (Q¥), J pv*2dx=1}, (50)
* Q

provided that m(Q)= J pdx=X= J p*e(0, 8w). Hence the proof of
Q *

Proposition 2 will be reduced to the radial case.

Originally, Proposition 6 was proven for real analytic functions by
C. Bandle.
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Proof of Proposition 6. — The function a=a(f) in (46) is right-continu-
ous and strictly decreasing in ¢>0. Since v=0 in Q, co-area formula gives

—d ()= P_ds  (ae.1>0) (51)
(=0 | V2]

and

—ﬁt |Vv[2dx=f |Volds  (ae.1>0). (52)
Q fv=t}

From Schwarz’s and Alexandrov-Bol’s inequalities we obtain

2
—EJ |Vv|2dxg<j p”zds) /(J _P ds)
dt Jo, (o=t} (o=ry | Vo]

=I({o=t})?/—ad ()Z@n—a@®)a@®)/—d @) (ae.t>0). (53)

Here, the function j(f)= —J |[Vo|*dx is continuous and strictly
Q

decreasing in tel. To see this, we have only to note that v is Lipschitz

continuous so that

j(O—j—0)= |Vo[>dx=0.
{v=t}

Therefore, j(¢) is absolutely continuous and hence

L|vv12dx=fdz<-%L‘[vv[zdx)

> J Cat@n—a®)a)—d ®. (54)

o

On the other hand, v*=1v*(x) is a decreasing function of r=|x/|. There-
fore, equalities hold at each step in (53) for Q=Q* and v=v*. Therefore,
we have the equality in (54) for this case, in other words,

J |Vv*|2dx=j dt(—ﬁj‘ |Vv*|2dx)
Q* 0 dz Q* -‘.

= joo di@n—a(@)al)/—a (). (55)

0
This means (49).

Step 3. — We finally show that v, (p*, Q*)>1 in (50), or equivelently,
1, (p*, Q*)=the first eigenvalue of — Ap(Q*)—p*>0, under the assump-

tion of‘2=j‘ p¥dx<4m.

*
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This has been done by C. Bandle from the study of

—Ap=Ap*(D@  (in Q*={|x|<1cR? (56)

and
o=0 (on 0Q%) (&)
for p*(r)= with r=|x|. By the separation @=® (r)e™® and the

(*+p)?
transformation &= (u—r?)/(n+r?) of variables, the problem is reduced to
the associated Legendre equation

[(1-E) Q). +[2A—m?/(1-EH] =0
-l - (58)
<£"_ pt1 <E"<l>

with
®(1): bounded and ® (£,)=0 (59)

Let @ solves (58) with A=1, m=0 and ®(1)=1. Then, the relation
v, (p*, Q*)>1 is equivalent to @ (§)>0(§,<&<1). Since such a ® is given
as Py (§)=E&, we see that v, (p*, Q*)>1 is equivalent to ,>0, or p>1.

From (43) we see that p>1 if and only if 2=J p*dx<4m. Thus the
ﬂ‘
proof has been completed.
This fact, however, can been proven more easily if we note that the

*
bending of {h* = < :* )} in A—u plane occurs at £=4r in Proposition 3.

In fact, then £ <47 indicates that p is a minimal solution, from which
follows p, (p*, Q*)>0.

Concluding the present section we show that the inequality (50) can be
regarded as an isoperimetric inequality for the Laplace-Beltrami operators.
In fact, take a round two-dimensional sphere S of area 8 w. Its cannonical
metric and the volume element are denoted by do and dV, respectively.
Let 1:S— R?(U{ o0} be the stereographic projection from the north pole
neS onto R? U { oo | tangent to the south pole seS.

Let ®*<S be a ball (or boul, more precisely,) with the center seS, and
—Ag(0*) be the Laplace-Beltrami operator in o* under the Dirichlet
boundary condition on dw*. Then the injection 1:w* — R? transforms
—Ag(®*) into —A/p* in Q* =1(w*) under the Durichlet boundary condi-
tion.

Since the Gaussian curvature of S is 1/2, the radial function p*=p* (| x|)
satisfies

—Alog p*=p*  (inQ¥), (60)
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and
2=J p*dx=J av. (61)
* o*
If 1* denotes the pull-back by 1, the relations _
J |d(1*v)|2dV=I |Vo|*dx (62)
o ar
and
j (1*0)? dV=J p* v*? dx- (63)
o* . Q*

hold, and hence v/1 (p*, ®*) is nothing but the first eigenvalue of — Ag(0*)
under the Dirichlet boundary condition on dw*. This consideration reveals
the reason why the assoicated Legendre equation has arisen in the study
of (56).

In fact, let us take the variable y=x/R, where R denotes the radius of:
Q*={|x|<R}. Then the positive radial function p¥(y)=R? p* (x) satisfies
for Qf={|x|<1}<=R? that

—Alog pt=pt  (inQ}) (64)

Furthermore, we have for ve H} (Q*) that

J|Vv|2dx J‘*|Vv1|2dy
* — Y2

Jp*vzdx f proidy
o Q

where v, () =v(x). Hence the eigenvalue problem for —Ag(®*) is reduced
to that of —A/p* on the domain of unit ball:

—Ap=Apte (inQf={|y|<1}=R? (66)

) (65)

and
=0 (on 0QF). 67

Hence we note that

J p’{‘dy=f p¥dx=X¢€(0, 8m). (68)
o* o*

For M*=p¥|,0;€R,, the function p} is realized as p¥=»XA*e*, where
u*=u*(|y|) solves

—Aur=A*e"  (in QF) (69)
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by (61) and
u*=0 (on 09Q%). (70)
Therefore, it holds that
8p
rO)=———73 (71)
' (¥ +w?

with a constant p>0, as we have seen in Proposition 5. The parameter p
is determined by (68).

In this way the eigenvalue problem for — Ag(0*) is reduced to (66) with
(67) through those transformations. Via the usual separation of variables
for —Ag(w*), or three-dimensional Laplacian

0% 0? 0%
—A= —(—2+ —+ —2)
0x3 Ox3 0x3
the associated Legendre equation arises, and so does in (66) if the inverse
transformation, &= (u—r?)/(n+r?), is applied.
From those considerations, we see that the spherically decreasing rear-
rangement described here is nothing but the Schwarz symmetrization on

the round sphere. Namely, given a domain Q = R? with sufficiently smooth
boundary and given a positive function pe C*(Q) N C° (Q) satisfying

—Alogp=sp (inQ) (72)
and :

s= f pde <8, 73)
Q

we take a ball ®*<S so that

J dV=%. (74)

Then, for a non-negative function v in Q we define a function
v* 1 0* - (— 00, + oo0] through the relation

v* (x)=sup {¢| xevo)', } (75
where ®,< S denotes the open concentric ball of o* such that
f av =j pdx. (76)
o {v>t}

The following propositions are the consequences of the present section:

ProposiTioN 7. — For each continuous function y: R — R we have

JA p(p°vdx=j Yev*dV an
Q o*
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ProposiTION 8. — If v is Lepschitz continuous on Q, v=0 in Q and v=0
on 0Q, then the relation

f |Vv|2dxgj |do* |2 av (78)
Q o*

holds.

6. ANNULAR INCREASING REARRANGEMENT

Now we can perform the proof of Lemma 2.
First we note that the lemma is obvious when X£=0. In fact, then

h=<g> follows from ¥ (4, 0)=0 and hence
C2+a(ﬁ) Ca(ﬁ)
+ u 3 0
4,2k 0)= [ ATHe ¢ =<‘3 lflll): X o x
jke".dx fe“dx R R
Q o

In the case of £>0 we have A>0 from ¥ (h, X)=0 with h=<:i), SO
that W (h, £)=0 is equivalent to ® (4, £)=0, where
Ci™ (@ C(Q

O=0(., X): X - X
R, R
with
Au+dre* D y
D(h, )= Je"dx—% for h=<x). (79)
Q

Hence the isomorphy of d, ¥ (h, X) is reduced to that of 4, ® (k, £) when
z>0.
The linearized operator

At+der e\ (@) C* (@)
d, ® (h, )= . >} X X (80)
Jﬂe.dx = R R
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L (©)
has a natural self-adjoint extension in  x , which is denoted by —T
R
H3 (@ NH?*(Q)
with the domain D(—T)= X . By wirtue of the elliptic regu-

R
larity the isomorphy of d, ® (h, X) is equivalent to that of T.
The operator T is associated with the bilinear form A=A(.,.) on

H;(Q)
< -
R
A(E, n)=J Vv.dex-f {he*ow+e kw+e*vptdx—Zxp/A?, (81
o o
H; (Q)
v w . .
where§=< )andn=< >are1n x . That is,
K P
R
AE M=(TE )
H5(©Q)
holds for £eD(T) and ne x , where
R v

{E, n>=j vwdx +kp
Q

for §=<v> and n=<w>. See Kato [7], for instance, as for the bilinear
K p '
for associated with a self-adjoint operator.

Since X =J Ae*dx, we have
Q

N n)=f Vv.dex—J xeu<v+ 5) <w+ 9) dx (82)
Q Q A A
for §=<v> and n=<w>. We put
K p

H! (Q)={veH'(Q)|v=Const.on Q},
to see the isomorphy of the mapping
Hj (Q)

&C% XHﬁgmm» (83)
R
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for each A >0. Therefore, T= —d, ® (h, X) is an isomorphism if and only
if A has no zero spectrum, where A, denotes the self-adjoint operator in
L2 (Q) associated with the bilinear form B 2 @ <1 @ With

B(v, w)=f Vv.dex—I powdx (84)
Q

Q

for p=2Aé*.
The spectrum of A, is composed of eigenvalues: o (A,)={p;(p, Q) }2,
with — oo <y, (p, Q)< u2 (p, Q)<... We have

i (p, Q) =inf { B(v, v)[veH}(Q),[vlezl}g—ﬁjpdx<0, (85)
Q

because {= o llmeHl(Q) and |(|2=1.
On the other and we can prove the following proposition.
ProposITION 9. — If a positive function pe C*(Q) N C°(Q) satisfies
—Alogpsp (nQ) (86)

with
ZEJ pdx<8m, (87)
Q

then we have _
Kzinf{j |Vo|*dx|veH! (Q),j pvzdx=l,f pvdx=0}>1. (88)
Q Q o

By virtue of Courant’s mini-max principle, (88) implies that

ﬁ'Z (pa Q) = sup

X1 <H (Q), codim X1 =1
Xinf{f ]Vv]"dx—f pvidx|veX,, Iv[L2=l}>0.
Q Q

Hence Lemma 2 follows.
We finally give the

Proof of Proposition 9. — First -we note that K in (88) is nothing but
the second eigenvalue for the following eigenvalue problem (E.P.): To
find pe H}\\{0} and K €R such that

J V(p.Vvdx=Kj povdx for any veH} (Q). (89)
Q Q
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In fact, the first eigenvalue and eigenfunction of (E.P.) are 0 and

{=Const.#0, respectively. Hence the second eigenvalue of (E.P.) is given

by the value K of (88). '
In particular, the minimizer ¢ e H} () of K in (88) satisfies

—Ap=Kpo (in Q) (90)
and
7
@=Const. (on 0Q), — ds=0, “On
a0 OV

where v denotes the outer unit normal vector on Q.

Let {Qi},-el be the nodal domains of ¢, that is, the set of connected
components of { #0}. Then, 8Q; consists of a number of piecewise C2
Jordan curves by Cheng’s theorem [4]. We have

J aipq)a’sz() for each iel (92)
o,

; OV
from (91).
In fact, each 0Q; is composed of some portions of nodal lines { (p=0}
and/or the boundary 6Q. That is, 0Q,=y,\y, with y,=dQ and
vic{e=0}. If v, Ny, #, then Yo={®=0} and hence =0 on 3Q,.

Therefore, it holds that f

oQ;
Yo#J because QR? is simply connected and 4Q has only one com-
ponent. Therefore, in this case we have also that

13L0) j 15L0) o0
O —ds= ©—ds=¢ — ds=0.
J;Qi ov Y Iaﬂ an OV

By virtue of Pleijel’s argument [17], this fact (92) implies #I=2. In

8
0 6_‘-" ds=0. Otherwise, y,=0Q follows from
v

fact @ cannot be definite because of J P ®dx=0. Suppose that there exist
Q
three nodal domains Q,, Q,. and Q, of ¢. Each zero extension to Q of

@ o, (i=1, 2, 3), which is denoted by @;, satisfies

—Ap;=Kpo, (in Q) 93)
and
j %% g, ds=0. (94)
20; OV

There exist constants a, and a, such that

f Fpdx=0 and F+#0, (95)
o
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where F=a, ¢, +a, @,. Obviously, Fe H* (Q) satisfies
F=Const. (on 0Q). (96)
Furthermore, (93) and (94) imply that

[1vrrav=at [ [Vo.parat [ |vosPas
Q Q

Q3

=K{af J podx+al J‘ p(p%dx}zK f pF2dx. (97)
Q Q) Q

These equalities (95)-(97) indicate that Fe H! (Q) is a second eigenfunc-
tion for the eigenvalue problem (89). Therefore, F is smooth and satisfies

—AF=KpF  (in Q). (98)

However, F [93 =0 implies F=0 (in Q) by the unique continuation theorem,
a contradiction.

Thus, each of Q,={+¢>0} becomes a nodal domain of ¢, that is,
open connected set of which boundary consists of a number of piecewise
smooth Jordan curves.

Let k=0 |,qeR.

In the case of k=0, ¢ € H! (Q) satisfies

—A¢=Kpo, £0>0 (inQ,) (99)
and
0=0  (on dQ.). (100)

Now (87) implies either f
Q4
from Proposition 2 of section 3.
In the case x#0, any nodal line of ¢ cannot touch Q. Hence either
Q. or Q_ is simply connected.
Without loss of generality we suppose that _ is simply connected and

pdx<4m ofj pdx <4m so that K> 1 follows

Q-

0Q, 20Q (Fig. 4). We put X, =J pdx. Since X +X_ =X <8m, we have

Q
either
T _<4n (101)
or
T, <4n<3z . ' (102)

In the case of (101), K>1 follows again from Proposition 2 because
¢_=¢lo_eHi(Q_) holds by the topological assumption for Q.
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FiG. 4

Supposing the case (102), we put '=0Q and y=0Q_. The function
¢, =0y, solves

—A¢p,.=Kpo,, ¢,.>0 (nQ,), (103)
¢:=0  (onvy), (104)
and
9,
¢, =Const. (onT), ds=0. (105)
r V

Therefore, it holds that

K=inf{f |Vo|?* dx [veH' (Q,), v=0 (on ),
Q4
v=Const. (on T), J pvidx=1 } (106)
Q4+

The minimizer y>0 of K in (106) is defined in Q, and is given by
Const. X @.

Putting 1=V |, we set Q, ={y =<1} and Q,={y>1}. The latter might
be empty, but otherwise we take the spherically decreasing rearrangement
V% of \,=V|q, described in section 5. Namely, let S be the round sphere
with area 8, and let do? and 4V be its cannonical metric and volume
element, respectively. We prepare a ball Bc S with

J.'dV?j pdx. (107)
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Then the function Y% on B is defined through
Vi (x)=sup {7|xewm,},
where o, denotes the open concentric ball of B satisfying

f dV=f pdx.
® {V2>1}

We have
j p\llzdx=f(\|!3‘)2dV, (108)
Q, B
f |V\I/zl2dxzjld\lr§|2dV (109)
Qs B
and
\l’ﬂaB:T- (110)

On the other hand we take the following procedure for \; =V |, , which
may be called the annular increasing rearrangement. Namely, we take
open concentric balls B, =B, =S so that

jdv=f pdx(=X_)  and Jdv=f pdx (=%). (111)
B, Q_ B; Q

The function Y, on the annulus A=B,\ B, is defined through
Yy, (x)=inf {1|x€A,},
where A, denotes the closed concentric annulus of A such that A, (U B,<=S

is a closed ball and
j dv = f pdx.
Ay {V1=t)

It is an equi-measurable rearrangement and the relation

f p\llzdx=f (1,07 av (112)
Q) A

follows. On the other hand the decrease of Dirichlet integral is derived
from Alexandrov-Bol’s inequality as in Proposition 8. Namely,

[ vvrasz] jan,pa. (113)

because 0=y =<7 in Q,, y=0 on y and y=1 on 9Q,\y. Finally, the
relation

V., =0 (onvy* and V., =T (onT%#) (114)
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is obvious, where y*=0B, and I'*=0B,. We note that JA=v* JT*. In
this way we obtain

KgK*Einf{J |dv|*dV|veH (0,), v=0 (on v*),
o+

v|r*=v|aB=Const.J‘ vde=l}, (115)

o+

where w, =A \U B<S is regarded as a disjoint sum. Therefore, the proposi-
tion has been reduced to showing K*>1.

Recalling the assumptions X, <4n<X¥_ and X, +X_<8mn as well as
the relation (107) and (111), we arrange the ball B and the annulus A so

FiG. §

that are concentric with the center seS of the south pole (Fig. 5). Then,
o, =AU B is contained in a chemi-ball of S.

Though the stereographic projection i: S — R? U { oo }, the value K* in
(115) is realized as the first eigenvalue of the following problem. That is,

—Ap=Kp*o (inQ) (116)
o=0 (onT)) (117)
and
ob=ol,=Cont, [ 2] Lm0 iy
I, ov | dv

Here, Q*=A*{ B*, ', =i(y*), I',=i('*), and I';=i(0B) (Fig. 6). The
function p* comes from the transformation by the projection i of the
Laplace-Beltrami operator — Ag on S. The annulus A* and the ball B* in
the flat plane are concentric and disjoint.

Through the scalling transformation as we introduced at the end of the
previous section, we may suppose that the outer radius of A* is equal to
one. Then, the function p* in (116) is given as

8p
*(x)= — 119
p*(x) (P (119)

Annales de I'Institut Henri Poincaré - Analyse non linéaire



ELLIPTIC EIGENVALUE PROBLEM 395

with some constant u>0, which is determined by

j p*dx=J dv. (120)
Q* o+

The set o, =A U B is contained in a chemi-ball of the round sphere S,
and hence

j pr¥dx<4n. (121)
QX

The first eigenfunction for (116)-(118) is radial and positive. Therefore,
in terms of the variable &= (u—r?)/(u+r?) it satisfies for some constants a
and b in a<b< 1 that

[(1-8) D+ (2/K*) @=0

p—1

(&u—ﬁ<§<a,b<§<l> (122)

with

DE)>0, E,<&<a, b<t<l),
D (b)= (a), D' ()=’ (a), ®(E,)=0 (123)
in the case of Q,= (¥ and that

[(1-E) Q). +(2/KH =0 (§.<&<a) (124)

with
®E)>0 (E,<&¢<a), P’ (a)=0, ®(E)=0 (125)

in the case of Q, = (J, respectively.
Therefore, the desired inequality K*>1 is proven if the relations

DE)>0 (E.<&<a b<t<]) (126)
and
DE)>0 E.<E<a) (127)
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are obtained respectively, whenever @ solves

[(1-&)D],+20=0 (—l<&<a, b<t<])) (128)

with
o(H=1, D (b)=D(a), D' (b)=D' (a) (129)

and
[(1-E&) D) +20=0 (—1<é<a) (130)

with
D (a)=1, D' (a)=0. (131)

The fundamental system of solutions for (128) or (130) is known. That
+
is, P, (§)=¢& and Q, (§)= —1 +—§ log:—z . Therefore, solutions for (127)-
(128) and (129)-(130) are given as

13 b<g<l)

@)= {1+(b—a)(1_a210g1+a+a>}§
2 l—a
~(1—a2)(b—a){—1+§10g—llé} (—l<t<a) (132)
2 T1-¢
and
ey B g 1m0 D) » 13
DE)=(1 a){ 2log(1+a)(1_§)+1}+a§ (—l<t<a), (133)
respectively.

As we have seen in the previous section, the condition (121) implies
that &usi;—: >0. Hence (126) and (127) follow from the elementary
computatiﬁns that

DE)=E>0 O<E<a, b<t<]) (134)
and

OE)ZD0)=1—a*>0 0<&<a) (135)
in (132) and (133), respectively. Thus the proof has been completed.
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