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ABsTRACT. — It is proved that there exist solutions of the nonlinear
Dirac equation, smooth in time, on a time interval which is independent
of ¢. Moreover after multiplication by a phase factor (dependent on c)
these solutions converge to the solution of a coupled system of nonlinear
Schrodinger type equations.
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RESUME. — La limite non relativistique de I'équation de Dirac non linéaire.
— On montre qu’existent des solutions de I’équation de Dirac non linéaire,
réguliéres en temps, sur un intervalle en temps indépendant de c. En plus,
apreés la multiplication avec un facteur de phase (c-dépendant) ces solutions
convergent vers la solution d’un systéme couplé d’équations du type
Schrédinger non linéaire.

Classification A.M.S. : 35Q20, 35B25, 81 C05.
Research supported by Fond za znanost Hrvatske.

Annales de I'Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 9/92/01/03/10/$3.00/© Gauthier-Villars



4 B. NAIMAN

INTRODUCTION

We consider the initial value problem for the nonlinear Dirac equation

oY —icaV'¥+c? BW + 214 (B¥ | ¥) B
ot (D
¥ (0)=Y,,.

where A and ¢ are positive constants, ¥ is a function from R> into C*,
3

oV stands for ) o;0; and o; and B are 4x4 matrices satisfying
j=1

o0+ 0;=28, 1, o;f+Ba;=0, B is diagonal and p2=1.
This equation has first been investigated by the physicists; see the
references in [1], [2], [3]. L. Vazquez, T. Cazenave er al. ([3], [2], 1))

recently started the investigation of the existence of localized (or stationary)
solutions of (1).

We are interested in the solutions of the equation with arbitrary (i. e.
not necessarily radially symmetric as in the above references) initial condi-
tions and their convergence as the speed of light ¢ increases to co.

. 1 . . .
Introducing e= 5.7 we write (1) in the equivalent form
¢

iai: —i\/EOLV\I"F L[3‘LI‘+2)»(B‘P|‘P)B‘I’
2¢ 2¢

ot (2
¥(0)="¥,,.

We first prove the existence of a classical solution of (2) on an interval
independent of .

In the following theorem as well as in the rest of this paper HS stands
for the Sobolev space H®(R*)* and L? stands for L2 (R%)*,
THEOREM 1. — Let £5>0. Assume that ¥, ,eH* (0<e<t,) and

sup || W, ||n2 < oo.

£Zgg

Then there exists an interval J=[—T, T such that Jor every e with 0<e<g,
there exists a unique solution
Y. eC*(J,LH NC'J, HYNC(, H?)

of the initial value problem (2).

Next we investigate the nonrelativistic limit g — 0 [i.e. c—> o0 in (1))
Since ‘¥, cannot be expected to converge, motivated by the linear theory
(see [3], [6]), we introduce the new function ®=2¢' Bt/ . Inserting this
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THE NONRELATIVISTIC LIMIT 5

into (2) we obtain an equivalent initial value problem
aQ —_—

1, ir
== [P qvo— (B0 | @) O
PPV E™ 2(l3 |®)B

€)
?(0)=2.,

with @, . =28Y¥,..

Theorem 1 evidently holds verbatim for @, Differentiating (3) with
respect to ¢ we conclude that the smooth solutions of (3) (their existence
is shown in Theorem 1) is also the solution of the initial value problem

2 [0}
rvo_ 1 A<I>+2iBa— —A(B2|D)® | =F, (D)
orr  2g ot
oo @
®(0)=2,,, E(O)=<Dw

A
where @, £=\/210£V®05— %(B(I)Oslq)o o B® . and
£

xz
Fs(t, (D)= - ?(B(D!(D)Z(D

ix — i 3 i &
- ~2~8 1”Z{e Be[0, (B | D)) o, PO+ 2 Re (PR |e'P o0, 0, D) B }.
J
Conversely, as the initial value problem (3) is equivalent to the initial value
problem (2) which has a skew-adjoint linear part, standard arguments show
that a solution of (4) which is C? in time is also a solution of the first
order system (3).
This suggests that the solutions ®, of (3) converge to the solution @,
of the nonlinear Schrédinger type equation
o 1 A
T = ipao - (po| ) po
a2 2 )
@ (0)=Dgo.
We shall prove an existence result for ®, and the convergence of @,
to @y:

THEOREM 2. — Assume that ®, € H?. Then there exists an interval
J=[—T, T] such that the initial value problem (5) has a unique solution
®,eC'(J, LY NCJ, H.
THEOREM 3. — Let £,>0. Assume that ®,,e H?> (0<e<g,) and moreover
sup || @y, ||z < c0. (6)

£<gg

Vol. 9, n® 1-1992.



6 B. NAJMAN

Further assume that there exists some a0, 1] such that

lim ®,,=®,, in H* 7

e—=>0

Let J=[—-T,T] be such that there exists a unique solution
®©.ecC>*(J, LHYNCL{J, HYNCJ, H?) of the initial value problem (3) for
£>0 and a unique solution ®,eC' (J, L)\ C(J, H?) of the initial value
problem (5). Then

lim ®,=®, in C(J, HY. ®8)

£~ 0

Proofs

LEMMA 4. — There exists K >0 such that for all ue H? following inequali-
ties hold:

e[l SK 2 ]l22" | Aue[E2, 9)
1Vie oo <K a2 | A |2 (10)

Proof. — Let 4 be the Fourier transform of u. The Plancherel Theorem
implies that

- < [laf g( j
Ix| SR

+<j | x*d
|x| ZR

~

)(].,.*)
N[ o) se (R o)
Ivule= it = | 2>2<£xl<klx|“dx>

([ ) (] s (Rl g el )

1/2
ﬂﬁlnﬁ> we obtain (9) and (10).
u L2

LEMMA 5. — Assume £,>0 and

~

u

Setting R= (

sup || ¥o,|laz< .
0<e=Z¢gg

Then there exists an interval J=[—T, T such that if for each €€(0, g,) the
initial value problem (2) has a solution ¥,e C' (J, L*) N\ C(J, H?) then

sup [|'¥, [lc o, n2 <0, (1)
0<esgegg
sup { [|'P, (1) [[L=: 0<e =g, teT } <o0. (12)
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THE NONRELATIVISTIC LIMIT 7

Proof. — Tt is sufficient to prove (11) since (12) follows from (11) and
the embedding theorem. In fact it is sufficient to prove

sup ||, llc o, 1, ) < %0, (13)

0<e=gg

since te[—T, 0] is treated similarly.
In the proof of (13) we need the conservation of L norm

[P O f2=[Poclhz e (14)

which follows easily from (2) by scalar multiplication in L? by ¥,.
Now we turn to the proof of (13). Apply the operator A to both sides
of (2). It follows that @=AY is the solution of the initial value problem.

e = _\/IocV(x)-!- i[30)4-27\.([3‘{’|‘I") Bo
2e 2e

+20[ABY | P)IBY+21 Y [0;(BY|W)IBO; ¥ 15)
j
00)=0y,: =AY,
Multiplying by ® and taking the imaginary part we find

d
0.0l <K [(9. Pl + 0. ve.P)

SK(||'We|Bo | o [IE2 + [|We [luw [| Ve |2 | @ [|e2)-
From (9), (10) and (14) it follows that

1.2

d
Zllo0h <K [l0.0) 5.

From this it follows that if KT ||¥, |27 <1 then

o i\
sup ||[AP (0] < M—‘ .
e E““'(1—KT||%£||”

H2
Together with (14) this implies (13).
Let y be a matrix and j, ke {1, 2, 3}. Define the functions

L@ =Gulu, S =vu]u’s,
f3: =6jf1’ Ja: =a,gkf1’ fs: =ajf2, fe: :j}ku'
LemMA 6. — The functions f;, i=1, ..., 6, are locally Lipschitz continu-

ous functions from H? to L?: for every K>0 there exists Cy >0 such that
| #|lz <K, || u|lx2<K imply

175 @) =f;@) [ < Cic [l u = 2 (16)
Moreover for a=0 and 1
/1 @) —f1 @) ||gx S Cc || = ||y a7

Vol. 9, n® 1-1992.



8 B. NAJMAN

We omit the easy proof (which repeatedly uses Lemma 4 and the Embed-
ding Theorem).

Define the mappings N, (¢ =0) by
A
Ny (@):=~ E(BQ)NJ)(I)
N, (®):=eF (D) + N, (®) (¢>0).

Lemma 7. — (a) For >0 the mapping N, is a locally Lipschitz continuous
map from H> to H': for every K>0 there exists cx>0 such that
|2 =K, || ¥ |2 <K imply

[N (@)= N, (¥) [lyr S C [| @ =¥ 2.

(b) The mapping N, is a locally Lipschitz continuous map on H>.
(¢) There exists C>0 such that for all ®, ¥ e H? and o.€[0, 1] the estimate

[No @) —No () [l SC(| @ flz + | ® [0 @ =¥ |l (18)

Proof. — (a) and (b) are straightforward consequences of Lemma 6. To
prove (¢), fix @®,¥ and define the linear map Ry by
Ry, o (0)=(B®| D)6+ (BD|06) ¥+ (0|B¥)P. Then

Ny (®)— N, (W)= R@, ¢ (@)

It is easy to show that ||Re 4 (0)|lu=<C(||®@|jy2+ ||¥|42)? |0 ]| for
a=0 and a=1 (in fact such estimate appears in the proof of Lemma 6).
Since Ry, y is linear, the same estimate holds for all ae0, 1].

Proof of Theorem 1. — As mentioned in the Introduction, it is sufficient
to prove the statement of Theorem 1 for the solution of the initial value
problem (4), since it follows by standard methods that this solution is also
solution of (2).

The substitution U=e"*P¥2@ transforms the initial value problem (4)
into

*U 1

£ —_
o 2

AU+ LU=N£(U)
4¢

oU B (19)
i
U0)=U,,: =0, —0=U,,: =0, ,— ~,,.
ot 2¢

Converting this equation into an integral equation (cf. [4]) we find that
any smooth solution of (4) is also a solution of

@, (=1, Py .+ () D, + 1JiJg(t—S) N (D (5)) ds (20)
€Jo
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THE NONRELATIVISTIC LIMIT 9

with
Ig(t)=e““/2‘(cos tA,— ;—BAa‘lsint&), 21
€
J,()=ePU=Atsint A, 22)

1 1 1
and A, the positive square root of —2<£A+ Z)’ A= — —2-A, naturally
€

defined in L2

We shall use the following well known result: let &/ be a m-dissipative
operator in a Hilbert space X and let D (/) be its domain endowed with
the graph norm. Let F be a locally Lipschitz continuous mapping on
D (&¢). Then for every x,€D (/) the initial value problem

d—x=,g¢x+F(x)
dt

x(0)=x,
has a maximal classical solution
xeCH ([0, Tpay)s X) N C ([0, Tpap), D ().
Moreover if T,,,, < oo then
lim (|| x@|x + |[|x(®]|x)= -

t 7 Tmax

Fix £>0. We apply the above result to the space X=D (A,) x L?=H* x L?
endowed with the norm

([ @ 0)|lx= ([ Acullt2 + [|2[|E2)"",
to the operator A in X defined on D («/)=D (A2)x D(A,)=H?x H' by
o (u, v)=(v, —AZu),
and to the mapping F defined by
F (u, v)=(0, N, (v)).

Then o/ is skew-adjoint and F is locally Lipschitz continuous on D (&)
by lemma 7. We conclude that there exists T,>0 and a unique classical
solution U, of (19) on [0, T,) and moreover that

lim <||Us(t)||Hz + >= o0
Hl
if T,<oo.

t »Tg
Since (19) and (4) are equivalent, it follows that there exists a unique
classical solution ®, of (4) on [0, T,) and moreover that if T, < oo then

lim<||<I)E(t)||ﬂz+||&(—t)——iE >=oo.

[ ot 2g

£

(1)

Vol. 9, n® 1-1992.



10 B. NAJMAN

Since @, is the solution of (3) and since (3) is equivalent to (2), we can
apply lemma 5 and conclude that if T,<T (T is the number in that lemma)
00, (1)

then lim || @, (¥)||y2 < o0, consequently lim p
t

t ~Tg t ~Tg

0, (1) ’
ot ||ut

= 0. However the
Hl

equation (2) implies <C||®,(?) |42 which leads to a contradic-

tion.

This implies T, = T. From the symmetry of the equation (19) with respect
to ¢ we conclude that the maximal existence for @, (hence also for W) is
in fact (—T,, T,).

Proof of Theorem 2. — Using the notation from the proof of Theorem
1, the initial value problem (5) can be written as

‘;3=—iBAq>+iBNo(cp)
t

@ (0) =Dy, 9

Since —iP A is a skew adjoint operator in L? and Ny, is a locally Lipschitz
map on D(A)=H? by Lemma 7, the conclusions of Theorem 2 are a
straightforward application of the classical existence result that was used
in the proof of Theorem 1.

Proof of Theorem 3. — Denote
I,()=e 1BAL

Then the solution of the initial value problem (23) [and consequently (5)]
satisfies also the integral equation

D () =T, (1) Do+ lf BIo(2=5) No (Do () ds; 24

note that B, A and I, (¢) are diagonal commuting.
Using the representations (20) and (24) of the solutions ®, and ®,, their
difference can be written as

6
. ()—D, (= Y LY (D),
i=1

where
LY ()= [I,(1) — I, ()] Pg,
L& () =1, (1) (Do, — Do)

LY 0)=1.()®,,

L (0= Jt [1 J(t=9)=iBlo(1— S)} N (@ (s)) ds
€

0

Annales de I'Institut Henri Poincaré - Analyse non linéaire



THE NONRELATIVISTIC LIMIT 11

L (0= é j ' J. (1= ) [N (@, (5)) — No (D, ()] ds
0

LO (=1 f '3, (6= ) INo (@, ()~ No (@, ()] ds

€Jo
We shall prove
lim LY =0 in C([0, T]; H*) 25,
e—=>0
fori=1, ..., 5.
Since ®y,€H* and N, (®, (-))e C ([0, T]; H?) by Theorem 2, the state-

ments (25,) and (25,) follow directly from Lemma 2.2 in [5]. Noting the
estimate

Sup(”Is(t)ll.‘Z(Lz)+
e>0
te R

15
€

) <00, (26)
2 L2

we see that (25,) is a consequence of (7).
Similarly, the estimate

e]| @y, |l C (72| Do, [luz +& || No (@o) [l
SCE" || o [luz + &l o[22 | Po. [lur)

together with (6) and the Sobolev embedding theorem imply lim e®; ,=0

£ 0

in H?, therefore (25;) follows from (26). Next
[F. @) [l <C e[| @[t +&" || @ 2= || @ fluz +&"*{| @ [Gy14 || @ |e),

hence it follows from (26) and Lemma 4 that

| L& (1)

t t
- §C$J~ ||F£((I)£(s)||Hads§Csj || F, (@, (5)) ||sz2 ds
0 0

Using Lemma 4 and Lemma 5 [recall that in (11) and (12) ¥, can be
replaced by ®] it follows that ||L{Y (#)||y= SCte'/?, hence the equality
(24,) is also proved. Using (26) once again we see that

1L (1) e <C j 1, (5)— @0 (5) e .
0
It follows that
||a>g<z)—a>o<t>uﬂa§c(ae+ j'||<1>g<s)—a>o<s>nﬂuds) 0<r<T)

with lim a,=0. This implies (8) on [0, T}; the proof for [—T, 0] is identical.

e—>0

Vol. 9, n° 1-1992.
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