ANNALES DE L’I. H. P., SECTION C

JEAN-PIERRE AUBIN

GUISEPPE DA PRATO
Contingent solutions to the center manifold equation

Annales de I'l. H. P, section C, tome 9,n°1 (1992), p. 13-28
<http://www.numdam.org/item?id=AIHPC_1992_ 9 1_13_0>

© Gauthier-Villars, 1992, tous droits réservés.

L’acces aux archives de la revue « Annales de 1'l. H. P, section C »
(http://www.elsevier.com/locate/anihpc) implique 1’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPC_1992__9_1_13_0
http://www.elsevier.com/locate/anihpc
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré,

Vol. 9, n° 1, 1992, p. 13-28. Andlyse non linéaire

Contingent solutions to the center manifold equation
by

" Jean-Pierre AUBIN
CEREMADE,; Université dé Paris-Dauphine,
75775 Paris, France
and
Guiseppe Da PRATO

Scuola Notmale di Pisa,
56126 Pisa, Italy

ABSTRACT. — Given a system of ordinary differential equations with
hpschxtz:an right- hand s1des we stafe an existence and unigueness theorem
for a “contingent solution” of the first- -order system of partial differential
equations characterizing center manifolds, as well as the convergence of
the viscosity method.

ResuME. — Solution contingente @ une équation de variété centrale.
— FEtant donné un systéme d’équations différentielles & second membre
lipschitzien, on démontre unt théoréme d’existence et d’unicité d’une sol-
ution “contingente” du systéme d’équations aux dérivées partielles du
premier ordre caractérisant les variétés centrales, ainsi que la convergence
de la méthode de viscosité.

INTRODUCTION

Let us consider the system of differential equations

{ x'(=f(x(), y (1)
YV (@O=-ry(+gx (), y(®)
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14 J-P. AUBIN AND G. DA PRATO

where X, Y are finite dimensional vector-spaces, f* XxY+>X and
g: XX Y'Y are lipschitzian maps and A>0.

The problem of finding maps r: X+ Y whose (closed) graphs are viabil-
ity domains of this system (which can be called center manifolds) has been
studied in several frameworks: see [11], [12] to quote a few and their
applications (see [4], [8], [7] for instance). Knowing a center manifold and
a solution x(.) to

X' (O)=f(x (@, r(x(1)
starting at x,, then the pair (x(.), y(.)) is a solution to the system of
diffential equations starting at (x,, y,) where y (£):=r(x(?)).
We can characterize the maps r: X+ Y whose (closed) graphs are center
manifolds of this system thanks to Nagumo’s Theorem: it states that

VXGX, (_f(x’ r(x))’ _)“r(x)+g(xs r(x)))eTgraph r (xa r(x))
where Ty (x) denotes the contingent cone to K at xe K defined by
pe +hv, K
veTy (x) if and only if liminf Y&/ K _ ¢
h- 0+
(See [1], [5] on viability and invariance domain for instance.) We recall
that for any map r, the contingent cone to the graph of r at (x, r(x)) is
the graph of the contingent derivative, which is the set-valued map from
X to Y defined by
r(x+hu)—r(x) }
v— mh =0 ;.

Naturally, Dr(x)(w)=r'(x) u coincides with the usual derivative when-
ever r is differentiable at x. It has nonempty values when r is lipschitzian.
(See [3] for more details on the differential calculus of nonsmooth and
set-valued maps.)

Therefore, we can translate this characterization by saying that r is a
solution to the quasi-linear first-order system of ‘“contingent” partial
differential inclusions.

Ar(x)eg(x, r(x)=Dr(x)(f(x, r(x))).
One can say that such maps r are contingent solutions to the quasi-linear
first order system of partial differential equations
. or;(x)

Vi=1, ...,m, Arj(x)=g;(x, r(x)— ) :
i=1 0x;

Dr(x)(u):= {veY|liminf

h—-> 0+

fi (x, r(x))

(called the center manifold equation), which we shall write in the form

Ar(x)=g(x, r(x)—r' (x)f(x, r(x))

because D r(x) (u) =+ (x) u whenever r is differentiable.

Annales de ['Institut Henri Poincaré - Analyse non linéaire



CENTER MANIFOLD EQUATION 15

The classical Center Manifold Theorem states that there exists a local
@“®-solution to this system when g is €®, vanishes at the origin and when
f(x, y)=A x+f,(x, y) where the eigenvalues of A have zero real parts, f,
is € and vanishes at the origin. The latter requirements are used for the
study of the asymptotic properties of the equilibrium.

In this paper, we shall show that there exists a global bounded and
lipschitzian contingent solution to this problem when f and g are only
lipschitzian, when

Vx,y, |lgC, | e+ |y]D

and when A is large enough. It is unique when A is even larger.

This type of result is known for equations (see [13], [17] for instance)
and is announced by P.-L. Lions and Souganidis in more general cases
by other methods (private communication.)

Denote by Ar the map of components Ar;(i=1, ..., m).

We shall prove futhermore that these solutions can be approximated in
the spirit of the ‘“‘viscosity method” by solutions r, to the second-order
system

Ar(x)=eAr(x)=r' (x)f(x, r(x))+g(x, r(x))
when € —» 0. We use for that purpose the fact that the graph of such maps
r, are stochastic viability domains of the system of stochatic differential
equations
{ dx=f(x, y)dt+2edW (?)
dy=(—ry+g(x, y)di+k. (x, »)dW ()

where W(f) is a Wiener process from X to X, provided that
k. (x, r.(x))=¢er.(x). (We refer to [2] for general results on invariant
manifolds by stochastic differential equations.)

The outline of the paper starts with the study of linear contingent partial
differential inclusions

Ar(x)eV (x)—Dr(x) (¢ (x))
where we prove that the solution is still given by the classical formula
r(x)=-— J e M (S, (x, 1) dt
0
where S, (x, .) is the unique solution to the differential equation
x' (=0 (x(1)

starting at x at time 0. In the process, we provide a priori estimates of the
sup-norm (the classical maximum principle) and the Lipschitz and Holder
semi-norms for first and second order systems.

Vol. 9, n® 1-1992.



16 J.-P. AUBIN AND G. DA PRATO

In the second section, we use these results and fixed point theorems to
prove the existence of contingent solutions to the first and second order
quasi-linear systems and prove the convergence of the viscosity method.

1. THE LINEAR CASE

1.1. Contingent solutions to first order systems

Let X:=R" and Y:=R" be given. We introduce two maps ¢: X — X
and {: X - Y.

We shall look for solutions r: X — Y to the first-order system of partial
differential equations

Ar(x)=vy(x)=r' (x) ¢ (x). ey
Actually, we shall look for Lipschitz (or even, closed graph) solutions r
to this equation. Usually, a Lipschitz map r is not differentiable, but

contingently differentiable in the sense that its contingent derivative associ-
ating to every direction ueX the subset

has nonempty values (*). Naturally, Dr (x) (1) =# (x) u whenever r is differ-
entiable at x. So, we shall provide contingent solutions to the first-order
system of differential equations (1), which are by definition the solutions
to the contingent inclusions

Ar(x)ey (x)—Dr(x) (e (x)). 2
We recall that the (closed) graphs of solutions to the contingent inclusion
(2) are viability domains of the system of differential equations
{ x' (=0 (x(®)
V(0= —ky@)+ ¥ (x(1)
thanks to Nagumo’s Theorem.

We shall also consider second order elliptic systems of partial differential
equations

Dr(X)(u):I{veYlliminf o Hx ) 7 r(x)

h—-> 0+

Ar(x)=eAr(x)+ ¥ (x)=r (x) ¢ (x) 3)

(") We recall that for any map r, the graph of the contingent derivative is the contingent
cone to the graph of r at (x, r(x)).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CENTER MANIFOLD EQUATION 17

which possess unique twice differentiable solutions whenever the functions
¢ and ¥ are lipschitzian.

We shall establish a priori estimates independent of & enjoyed by the
solutions to the first and second order systems.

1.2. The maximum principle and other a priori estimates

We introduce the Fréchet space ¥:=% (X, Y) of continuous maps
r: X -»Y supplied with compact convergence topology, as well as the
spaces €™ :=%" (X, Y) of m-times continuously differentiable maps. We
set

|7 ]le := sup||r(x) || €0, o]
xeX
and

1= sup 7O g oy

S el

We recall that on the space ), the semi-norms ||r||, are equivalent to
the semi-norms (again denoted by)

Irle= tim  sup ATOZrO]

n—0+ [[x—ylln ”x_y”m

and that for a=1, they are both equivalent to the norm ||’ || .

1.2.1. The maximum principle
We begin by adapting the maximum principle to the case of systems:

ProposITION 1.1. —~ Assume that re%'®. Then the following a priori
estimates independent of €=0

VASO, |75 [Artro—ear], @

hold true.

Proof. — Assume first that there exists x achieving the maximum of
|7 ()] The first-order necessary conditions for a maximum imply that

VueX, {r(®),r &u>=0.
The second-order conditions yield

Vu,veX, {r(X),r" (X)(u, v))+{r (®)o, r(X)u)<0.

Vol. 9, n° 1-1992.



18 . J.-P. AUBIN AND G. DA PRATO

By taking u=v=e¢;, we infer that

0% r (%)
ox?

Vi=1, ...,m,  r(®),

lIA
o

so that
{r(%), Ar (%)) <0.
Let us consider now a twice differentiable solution r to equation (3).
By applying r(X) to both sides of equation (3), we infer that
{ MirlZ=Mr@ P =<r @), eAr®—r (Do @)+ (®)
<@ VEDE ol

so that we derive the a priori estimate

VA0 [lrll. =¥ )

If the nonnegative bounded function x(.):=||r(.)|| does not achieve
its maximum, we use a standard argument which can be found in [10],
[19] for instance. One can find approximate maxima x, such that y (x,)
converges to sup x (x), ' (x,) converges to 0 and x" (x,)(., .)<0. O

xeX
1.2.2. A priori estimates in €V

Let a: X - R,be a positive twice differentiable function outside of the
origin. Denote by

e sap @=L
x#y  a(x—y)
In particular, n (r)= || r||, when we take a(z):= ||z ||

We adapt to the case of systems a priori estimates known for equations
(see [9] for instance):

ProrosiTION 1.2. — Consider a twice differentiable solution to the second-
order equation (3).

Let us set
@)z inf RO =), 0 =0
x#y a(x—y)

— o0, 0].

If n(Y)< + oo and p(@)< + oo, then the a priori estimate independent of ¢

nW)

Vi , <
>p(e), n() = (o)

(6)

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CENTER MANIFOLD EQUATION 19

holds true. In particular, if ¢ is monotone, then

VA0, ||r||a§% @
and if @ is lipschitzian, then

vas ol rfhs ¥l ®
—alol;

Proof. — Assume first that exists a pair (¥, ) achieving the maximum
of
lr G)—r () |*/a(x—»)*.
The first-order conditions imply
Yu, veX,
r@=—r(@, r @u—r'(Poy=n()a@-y<{a' (x—7), u—v)
and the second-order condition that
Yu,u,v,v,eX,
@ uy—r oy, ¥ D u—r (7)o
@ =r (), r (%) (g, W= r" () (o1, 0))
=N’ @E@-p)a’ (x—7) (,— vy, u—0)
+d (=), u=v){d (X—)), uy—vy)).
By taking u=u, and v=v,, this formula yields
Yu, veX,
|7 @ u—r' (P o]?+<{r@—r @), r' @ @ w)—r" (5 (v, v))
=N (@@E-pa’ (=7 u—v, u—v)+(a (X—5), u—v))?)
and consequently, by taking u=v, that
VueX, (r(x)=r(@), r'" (%) (u, u)=r"(y) @, u))=<0.

In particular, we obtain the following inequality
r(@®)—r (), Ar(x)—Ar (7)) <0

by summing up the above inequalities with u=e,, i=1, ..., n.

Consider now a twice differentiable solution to the second-order equa-
tion (3). By applying »(x)—r () to both sides of this equation, we infer
that ‘

AMr@—-r(d|?
=(r(®) —r(), e(Ar(®) — Ar(P)) — (' ® 9D —r P o (M) + ¥ (D) — V¥ (7))
Sr@—rMIvE -V |

—n@)?aE@—pd &=y, ¢ @— o ().

Vol. 9, n® 1-1992.



20 J.-P. AUBIN AND G. DA PRATO

Therefore, if we set

1(¢):=inf min (0, {a’(x—y), q)(X)—cp(y)>)e]_
x#y a (X - y)
and if we assume that p(p)< + oo, we obtain the a priori estimate (6)
after dividing both sides of this inequality by a (¥ — j)%.
The %* estimates of the solutions are obviously obtained by taking
a(z):=||z|]* the derivative of which is equal to a'(z)=o||z||*"2z. In this
case, |1 (p) measures the lack of monotonicity since

. . min (0, X)— ,X—Y
()i =a inf TR0 (0 () (pgy) )
x# [x=xll
We observe that p(@)=0 whenever ¢ is monotone (in the sense that
(@ (x)=@(y), x—y)=0 for every pair (x,y)) and that p(e)<al ol
whenever ¢ is lipschitzian.
When the function y(x; y):= ||r(x)—r(y)||/a(x—y) does not achieve
its maximum, the argument used above allows to find approximate maxima

x, such that y(x,, y,) converges to n(r), x' (x,, y,) converges to 0 and
X G v ()20, O

oo, 0]

1.2.3. A priori estimates in €*

ProposiTiON 1.3. — We assume that the functions © and \y are continu-

ously differentiable. Consider a solution to the second-order equation (1).
Then

Wl
o ll: = lle'll
Proof. — Actually, we shall prove a more general a priori estimate. Let

a: X - R, be a positive twice differentiable function outside of the origin.
Denote by

> o' it e == ©)

nl(r):___ sup |'|(V'(X)_r'(J’))u”.
xtyuen  a(x—y)|ul|
In particular, n' (r)= || r'||, when we take a(z):= || z]|].
Let us assume that there exists (X, y, #) achieving the maximum of
[ =7 ) ulPlae—y)? ||ull?.
The first conditions imply
Yu, ug, v, vy, WX,
F@ia—r (Pa, (¢ ()—r' (GHw)
+r@a—r(@a, r' (@ (ug, )= r" (5) (v, @)
=n' (" (@(Z—p a &—7) @ —vp||a]]*+a@=7)*<{a w)).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CENTER MANIFOLD EQUATION 21

By taking u, =v, and w=0, we infer that

Vu,eX, }
@ a—r (pyi, r' () (uy, @)= r" (9) (uy, #)y=0.
Let r be a €®-solution to the linear equation (1): it satisfies the equation
A () uy =V () uy =1 () @' (X)uy — 1" (x) (uy, ¢ (x)).
By applying (' (X)ii—r(p) &1) to both sides of this equation, we obtain
M @—rGyal?
=@ =r(Ma, W @D- GNa—F @ (@—r (7)o (7)a
=" @@ e (X)—r" (5 @ o (M)
<[ @ —r G)all (|0 @ =V (pa|
+aG=p)?lalP (I o n" @+n' O] o']| )

(10)

thanks to (10).

Therefore, after dividing both sides of this inequality by a (¥—7)?||i]|?,
we obtain

A=l ' M= W+ |7 | ' (0).

If the function
| )= ) u|

a(x=y)llull
does not achieve its maximum, we use again the approximation argument.
In the case when a(z):= ||z ||, we obtain the estimate (9).

(x, y, u) >

1.3. Existence of contingent solutions

When ¢ is lipschitzian (and thus, with linear growth), we denote by
S, (x, .) the unique solution to the differential equation
X' (D=0 (x()

starting at x at time 0.

ProrosiTioN 1.4. — Assume that ¢ is lipschitzian and that Y e 6* is
bounded. Then for all \>0, the map r defined by

r(x)=— Jwe““\b(sq,(x, ) dt

0

is the unique solution to the contingent inclusion (2) and satisfies

[Vl o K218
7] = . and VA>u (o), ”r“aél—u((p)’ an

Vol. 9, n° 1-1992.



22 J.-P. AUBIN AND G. DA PRATO

Proof. — Let p be a nonnegative smooth function with compact support

. 1
and integral to one and set p, (x):=—’;n p(—; > We approximate the maps
¢ and V¥ by their convolution products
Qu:=ppk® and Y=ok

which are smooth functions satisfying

leslli=lloll,  [alle=ll¥Wll. and  [lle= V]
We recall that the explicit solution r, to the first-order system
Ar ()=, (x) =7 (x) 9, (x)

is given by formula

)= r MY, (S, (x, D) .

0
By the a priori estimate (4), we infer that

N2
-

”rh“ooé

The graph of r, is a viability domain of the system of differential
equations

{ X' ()=, (x (1)
Y (0)==k O+ (x ()

By Nagumo’s Theorem, the solutions (x,(.), y,(.)) to this system of
differential equations satisfy

V20, y,(0)=r,(x,(9).

They remain in a compact subset of % (0, co; X xY) because they
enjoys the same linear growth, so that a subsequence (again denoted by)
(x,(.), yn(.)) converges uniformly on compact intervals to a function
(x(.), y(.)). Since the maps ¢, and {, remain in an equicontinuous set,
we infer that (x(.), y(.)) is a solution to the system

{ x' (=0 (x (1)
V' (@©==2yO+Y(x ).

On the other hand, it is easy to check that when x, converges to x, the
solutions S,, (x;, .) converge to a solution S, (x, .) uniformly on compact
intervals. Since the maps \, remain in an equicontinuous set, we infer
that \, (S,, (x;, 1)) converges pointwise to (S, (x, .)). Therefore, the map

y being bounded, r,(x) converges also to the map r defined by the
theorem, which satisfies

V120, y(0)=r(x(@).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CENTER MANIFOLD EQUATION 23

This amounts to saying that the (closed) graph of a map r is a viability
domain of this system of differential equations, that is to say that r is a
solution to the contingent inclusion (2).

Uniqueness follows from inequality || 7 || , < || V]| »/A-
Finally, a priori estimates (8) imply that r, are hélderian with
e el
Ao

(These estimates can also be obtained directly from the explicit expres-
sion of r,.) O

2. THE QUASI-LINEAR CASE

We consider now the quasi-linear first-order systems

Ar(x)=g(x, r(x)—r x)f(x, r(x) (12)
of partial differential equations, and, more generally, their contingent
version

Ar(x)eg(x, r(x))—Dr(x)(f(x, r(x)). 13)
We recall that the (closed) graphs of solutions to the contingent equation
(13) are viability domains of the system of differential equations

x' (O=f(x(®), r(x(1)) }
YV (@O==ky@®)+gx@®), r(x))
thanks again to Nagumo’s Theorem.

(14)

THEOREM 2.1. — Assume that the maps f X XY » X and g2 XXY >Y
are lipschitzian and that

g Y| e+ |yl

Then for A>max (c, 4||f||,||gll,), there exists a bounded lipschitzian sol-
ution to the contingent inclusion (13). It is unique for A large enough.

Actually, we shall also prove the convergence of the ““viscosity method”
by introducing the second-order system

Ar(x)=eAr(x)=r' () f(x, r(x))+g(x, r(x)). 15)
We shall prove that solutions to the second-order system converge to
contingent solutions when & — 0.

Vx,y,

THEOREM 2.2. — Assume that the maps f: X XY » X and g: XxY -»Y
are lipschitzian and that

VX, p gt || Se@+ | y|).

Vol. 9, n° 1-1992.



24 J.-P. AUBIN AND G. DA PRATO

Then for . >max (c, 4|, ||g||,), there exists a solution r, to the second-order

system (15) converging to a solution to the contingent inclusion (13) when
e—0.

Proofs.

1. A priori estimates. — We shall denote by H, the operator defined on
lipschitzian maps s by

r:=H,(s) is the solution to Ar(x)=eAr (x)—+ (x) f(x, s (x))+ g (x, s(x)).

(This makes sense since this (linear) elliptic problem does have a #®-
solution whenever ¢>0 and f(., s(.)) and g (., s(.)) are lipschitzian.) and
by H,, the operator defined on lipschitzian maps by

r:=H, (s) is the solution to Ar(x)=g(x, s(x))—r (x)f(x, s(x)).

We observe that the functions ¢ (x):=f(x, s(x)) and ¥ (x):=g (x, s(x))
satisfy

ol < I+ 5], 1
IWli<lgla+ sl and  [[¥].< C(_*%SM

By above a priori estimates, the map H, obeys the inequalities

IH ) ]| < §<1+ lI51] )

and (16)

ol < lelia+ sl
PO sl

which are independent of €e€[0, oo[. We first observe that when A>c,

4 c
v < HE)|| < —.
P LT

When A>4|f]|, ]| g||;, we denote by

e 74 P T g VESR LU 7 P PR 72 Pl 1
2|11

p():

0

the smallest root of the equation

rp= /1l p* + (A1l + el e+ gl
We observe that for large A,

im ApM)=| gl

A=+

We thus infer that
Vislige), [[H.®]:Sp ).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CENTER MANIFOLD EQUATION 25

Let us denote by AL () the subset of twice continuously differentiable
maps defined by

c

- and ||r||1§p(k)}.

A;(X):={re‘£2(x, Y] =

We have therefore observed that whenever A>max (c, 4|f]|;]/g]|,), the
maps H, send A% (}) to the compact subset BL (1) defined by

B;(x);={re(g(x, V555 and ||r||1gp(x)}.

We now check that they are uniformly equicontinuous on AL (A).
Indeed, let s, and s, given in AL (1) and let us set r :=H_(s,), 5 :=H,(s,)
and r:=r, —r, their difference. The map r is a solution to the equation

Ar(x)=eAr(x)—r'(x)f(x, s, (x))
+g(x, 51 (D) —g (X, 55 () —ry () (f(x, 51 () =S (x, 55 (x)))-

By the maximum principle, we deduce that

1 7
Irllo= o Cllell+ 2l LAl 1 =521l

because

{ WG s (=G sa (Mo = AN 51 =52 ] w
leCosi(N=gCosa(Nw=llgllllsi=s:2]lw
Since the semi-norms ||r'(.)|| . and ||r]|; are equivalent on ¥V, we
infer that there exists a constant v such that ||| o V|| r|l; Svp V).
Hence, for every £>0, s, and s, given in AL (L), we obtain the inequality

llglli+ve M)Al I|s
1

A
Therefore, we can extend by continuity these maps H, to maps (again

denoted by) H, mapping the ball BL (A) to itself and satisfying the same
inequalities.

||H5(51)—Hs(sz)”oo§ _32”00- a7

2. Existence and uniquenes. — Assume that A>max(c, 4||f]l:]g|l)-
Since the ball B! (A) is compact and convex and H, is continuous from
this ball to itself, there exists a fixed point r,e BY (A) of the map H, by
the Brouwer-Schauder-Fan Fixed-Point Theorem in locally convex spaces,
i.e., a solution to the equation (15).

For £=0, r,=H, (r,) is a solution to the contingent inclusion (13).

Uniqueness is guaranteed for large enough A’s, actually when

lelli—vp M IAf <A
This is possible because lim Ap(A)=| g||;- O

A— +o

Vol. 9, n° 1-1992.



26 J.-P. AUBIN AND G. DA PRATO

3. Convergence of the viscosity method. — Since the maps r, remain in
an equicontinuous and pointwise bounded subset, which is compact, a
subsequences (again denoted by) r, converges to a map 7. It remains to
prove that 7 is a solution to the contingent inclusion (13).

For that purpose, we observe that the graph of a solution to the second-

order equation (15) is a viability domain of the system of stochastic
differential equations

dx=f(x, y)dt+2cdW (1) } (18)

dy=(=hry+g(x, y)dt+k,(x, y)dW ()

where W(#) is a Wiener process from X to X, provided that
ko (x, r,(x))=gr,(x).

Indeed, if the graph of a ¥®-map r is a viability domain of this system

of stochastic differential equations, then, for any initial state (xg, F(x0),
the solution to .

x(t)=xo+jrf(X(S), y(s)ds+2e W (1)

0

YO =yo+ j (&(x(9), y(s)—Ay(s)ds
0

+fh@®m®ﬁwm

0
satisfies y (1)=r(x (1)) for every >0, so that Ito’s formula implies that r
is a solution to (15).
Conversely, Ito’s formula implies that for any #®-solution r to the
system (15) satisfying e r' (x) =k, (x, r(x)), we have

r(x(0)=r(xo)+ J t (r (x (DS (x(s), r(x(5))
0

t

—eAr(s))ds+e J ¥ (x (5)) dW (5)

0

=mm+f@u®nu®»

t

—Ar(x(s))ds+e J r'(x(s)) dW (s)

0

so that (x(f), r(x(#))) is a solution to the system of stochastic differential
equations.

Let (x,(.), y,(.)) be solutions to the system
dx=f(x, y)dt+2edW (1) }

(19
dy=(=ry+g(x, y)di+k.(x, y)dW (1)

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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satisfying
Viz0, r (x (D)= ).

Since ||7.|| o <p (&), it is well known that when & converges to 0, the
solutions (x,(.), y.(.)) converges almost surely to a solution (x(.), y(.))
to the system of differential (14). Since the maps r, remain in an equiconti-
nuous subset, they satisfy

Vez0, r(x@)=y®.

This shows that r is a solution to the quasi-linear contingent inclusion
(13). O
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