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ABSTRACT. — We show that there are no non-trivial (potential) energy
stable minimal cones in R"x R* with singularity at 0, if 2<n<5. The
sharpness of this result is demonstrated by proving that a certain six
dimensional cone in R’ is stable. Moreover, we extend all results to the
more general a-energy functional.

Key words : Stable cones.

ResuMi. — L’on démontre que, si 2<n <5, il n’existe pas dans R" x R*
de cones minimaux stables en énergie. Ce résultat est optimal, car I'on
exhibe dans R7 un cone de dimension 6 qui est stable. On étend également
ces résultats a des fonctionnelles d’énergie plus générales.

A well known result due to J. Simons [S]] states that there are no non-
trivial n-dimensional stable minimal cones in R"*! (with singularity at
zero), provided n=<6. One of the crucial ingrediences in his proof is an
important identity for the Laplacian of the second fundamental form for
minimal hypersurfaces. Using sharper estimates than had previously been

Classification AM.S. : 49F 22.

Annales de I'Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 7/90/06/589/13/$3.30/© Gauthier-Villars



590 U. DIERKES

realized, Schoen-Simon-Yau[SSY] gave a considerably simpler proof of
Simons’ result.

Simons also proved that the seven dimensional cone
x34+ ... +x2=x2+ ... +x%in R® is stable and, in fact, it was proved by
Bombieri-De Giorgi-Giusti [BDG] that it even minimizes area in R8. This
result dashes the hope for general interior regularity of codimension one
solutions to the problem of least area in RS.

In two papers [D 1] and [D 2] the author has investigated the cones

' e
C::={x=('x17 LRI xn+1); O§Xn+1§ —1[X%+ e +X'2‘]1/2}CR"+1
n—

which have boundaries of least a-energy
‘D@azszﬂ |Doy| in R"XRT,

provided one of the following conditions holds:

(1) a+p=6, where a=2 and p:=n—122,
or

(i) a+p=7, fora=1and p=1.

Here R*={120}, UcR"xR*, and | Doy ]| is the n-dimensional Haus-
dorff measure restricted to the reduced boundary of U. Also a set
CcR"xR* with characteristic function @. has a boundary of least
a-energy in R"x R*, if and only if for each ge L} (R"x R*) with compact
support KcR"x R* we have

J x:+1|D(PC|§j Xpv1|D(Pctg)|-
K K

Furthermore it could be shown in [D 2] that the six dimensional boundary
of the cone C. does not minimize the energy &, in R®x R*. Similarly,
the cone C3 does not minimize &5 in R x R*.

We wish to emphasize the physical relevance of the problem. Namely if
we regard the boundary M=0U of U as a material surface of constant
mass density, then &, corresponds to the potential energy of M under
gravitational forces. Here we have of course assumed that the gravitational
force acts in the —x,,; direction. Therefore, we refer to &, as the
a-energy, and, in particular, if o= 1 we shall simply omit the addition “o’.

In this paper we will employ the method of Schoen-Simon-Yau [SSY]
to obtain a result on the non-existence of non-trivial o-stable minimal
cones in R"x R*"i.e., cones which are stable with respect to the a-energy
&, We in fact prove (Theorem 2) that such a result holds true provided
that

0(+p<3+\/§, p=n—1.
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NON-EXISTENCE OF ENERGY STABLE MINIMAL CONES 591

On the other hand we show in Theorem 1 that the cones_

o 1/2 .
Xn41= ; [xf +... +x,f] are a-stable, if

oc+pg3+\/§.

Note that this in particular implies stability, if a=1, n=6, or =5, n=2,
but because of [D 2] the boundaries of the set C} or C3 do not minimize
the corresponding a-energy in R"x R*. In fact, we might even obtain a
field of a-stable and non-minimizing minimal cones, e.g. the two-dimen-
sional cones x;=_ /o [x?+x2]'? in R® where 2+ _/8<a<5.

Acknowledgement. 1 would like to thank Leon Simon for directing my
attention to the problem which is treated in this paper.

1. NOTATIONS AND RESULTS

In this section we set up our terminology and, in particular, we give
simple expressions for the first and second variation of the a-energy.
Finally, we formulate our main results.

Let M be an n-dimensional submanifold of class C? contained in the
open half-space R"+R*cR"*!, R*={r>0}, and let UcR"xXR* be
open with UNM#JF, (clos M—M)N U=, #,(M N K)< oo for each
compact set K< U; here &#,, =0, denotes ¢-dimensional Hausdorff mea-
sure. We consider one parameter families {(I),}, —1=Zt£1, of diffeomor-
phisms from U into U, with the following properties:

@(t, x)=:D,(x)eC*((—1,1)x U, U), )
®,(x)=x forall xeU, 2

®,(x)=x forall te(—1,1)
and allxe U —K forsomecompactset K= U. (3)

Put
oo
X(x):=~(t’ x)lt:Oa
ot
and
0% d
Z(x):= o (t, %) ;=0

to denote the initial velocity and acceleration vectors of ®, respectively.
Then, because of (3), X and Z have compact support K< U, and further-
more

(D,(x)=x+tX(x)+§Z(x)+o(tz).

Vol. 7, n® 6-1990.



592 U. DIERKES

Let M,:=®,(M) denote the image of M=M, under ®, then we are
interested in the first and second variation of the a-energy functional

ga(M)=J x:+1d'%m
M
where x=(x,, ..., x,, X,;,)€R"XR*, a>0, i.e. we want to compute
d
36, (M, X)=— XZ+1d=7f,.|:=o,
and
2 d2 o
M, X, Z)y=— | X3y dH,|=0
ar® Ju,

Choose a local field of orthonormal frames t!, ..., 1", v such that
t!, ..., 1"eT, M are tangent to M. For a given vectorfield Y on M (not
necessarily tangential) we denote by D, Y the directional derivative of Y
in the direction t'. Also

divY= i DY)
i=1
stands for the divergence on M, and
V- z Dy )7
denotes the gradient of the function e C' (M, R) respectively. We shall

also employ the symbol A to denote the Laplacian on M, i.e. A=V,V,

where V;=D,i, and Y=Y — Y (Y.v/)t’ stands for the normal part of Y.
j=1

J
LEmMMA 1. — Let M, @,: U - U and

Xx)=X, (), - .-, Xpi1 (%)),
Z2(x)=(Zy(x), .-, Zy11 (X))

be defined as above. Then

Séau(M9 X)=j {X:+1diVX+U.X:;}X"+1}d%n (4)

M
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NON-EXISTENCE OF ENERGY STABLE MINIMAL CONES 593
and

Szgu(M’ X, Z)=j {a(a— 1)xﬁ:fo+1+otx:1{Z,,H
M
+2ax2 X, . divX+x®,, [divZ+ (divX)?

+2|(DTiX)J‘|2— Z (‘tiD,jX)(‘t"D,iX)]}de,,. ®)
i=1

i, j=1

Proof. — From the general area formula (see e.g. [SL], §8, or
[FH]3.2.20 Cor.), we infer that

&, (®,MNK))= W1 IV dH,

MnK

where y,=®,|y v, JV, denotes the Jacobian of Y, and (y,)%,, is the
(n+1)-th component of y, to the power a. The Jacobian J{, may be
computed as in [SL], p. 50,

2 n
J\ll,=1+t.divX+—g—{din+(divX)2+ Z I(Dr‘X)lIZ
i=1
- z (' DyX) (' D, X)}+0(t2)‘
i, j=1
Similarly we find
(\I/,);+1=x:+1+taxﬁ‘,;}X,,+,

t2
+’2‘[°‘ (@— DX i X2 taxgiiZ,, ]+ o(r).
Now the result follows immediately by computing the coefficients of ¢
2,
and 5 in the product (y,)%,,.JV,. O

Lemma 1 motivates the following definition.

DEFINITIOI:I 1. — A C'-submanifold McR"x R* is called a-stationary
in UcR"xR*, if £,(M N K)< oo for all compact sets K< U, and

f (0 divX+axiilX,,, }d#,=0, ©)
M

for all vector fields Xe C! (U, R**1).

LEMMA 2. — Suppose M is a-stationary in U and of class C2. Then the
mean curvature H of M with respect to the unit normal v=(v, ..., V,,,)
is given by

Hx)=ax, !, v,+, forall xeMNU.

Vol. 7, n® 6-1990.



594 U. DIERKES

Proof. — Take some arbitrary function §eC!(M, R) with compact
support in U and put X=E&.v. Then we infer from (6)

0=j (X, divE V) HaxiT By, }d,
M
=J‘ {divOg i & vV)+axpiiE v,y yast
M
== {XZ+1E.»‘V'I;I_ax:;%E.\'Vn+1}d‘%n’
M

where H=vH is the mean curvature vector of M. The lemma follows by
applying the fundamental lemma in the calculus of variations. [J

We take again the special variation X=§.v, EeC!(M, R) and find
successively,

divX=-X.H=-av,,, x5} &
Y DaX)H|*= Y |vD.E|*=|VE]?,
i=1 i=1

and

Y ('DyX) (D X)=¢? l A |2‘,
i, j=1
where | A | denotes the length of the second fundamental form A =h,;T7'®7,
ie.

AP= T

i, j=1

Thus we have proved

LEMMA 3. — Suppose McR"x R* is a submanifold of class C* which is
a-stationary in UcR*xR*, (clos M—M)NU=. If X=&.v for some
function £eC} (M, R) with compact support in U, then the second variation
is given by

68 M, 9= | (50 |VE[ ~axis i 8 af [APE) o, O

M
Hence it is reasonable to define stability as follows.

DEFINITION 2. — Suppose M < R" x R* is a n-dimensional submanifold
of class C? which is a-stationary in UcR*x R*, (clos M—M) N\ U= .
Then M is called a-stable in U, if

[ alvefahi, g s AP eyanz0 o)
M
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NON-EXISTENCE OF ENERGY STABLE MINIMAL CONES 595

for each £eC!(M, R) with compact support in U. In particular, if
#=closM is a cone in R"XR* with singularity at {0}, and if
M=¢—-{0}cR"x R* is a-stationary in R" x R*, then € is called o-stable
if (7) holds for all £Ee C! (M, R).

Put ¢2(y)= E[yf+ . P22 yeR", >0, p=n—1 and define the
p
cones

G={0, ) yeR"},

then we have

THEOREM 1. — The cones €% are a-stable, if o.+p=3+ \/ﬁ

Observe that the critical number 3+ _/8 also enters the discussion of
the ordinary differential system [11] in [D 1]. Here, it appears as a neces-
sary, though not sufficient condition for the construction of a minimal
foliation about the cone €%.

THEOREM 2. — Suppose € <R"xR" is an o-stable n-dimensional cone
with singularity at {0}. If a+p <3+ \/8 then € is a hyperplane 2. Further-
more, P must be perpendicular to the plane {x,,,=0}.

COROLLARY. — In particular, if 2<n<5 there are no non-trivial (poten-
tial-) energy stable cones in R" x R™ with singularity at {0}.

2. PROOFS

Let £€C; (#7— {0}, R) be arbitrary and put X (x)=x.|x| 2&2 for
xeR"xR* where |x|>=(x2+...+x2,,). A standard calculation yields
(see [SL], § 17)

divX=Y (DgX)t=2|x|"2(xVE)E

i=1

+(n—2) €% |x|72+2 | x| 282 |(D |x|)* 2
Since 42— {0} is a-stationary in R"x R*, we conclude from (6) that
f Xy {2]x]72 (1VE) B+ (n—2+a) |x| 2 £2} dot, <0,
€5-(0)

We apply Schwarz inequality and obtain

_2+ 2
(" “) f Xa |x]72 g2 d%ngf Xooy |VE] dot,.
éx—1{0} én—{0)

2

Vol. 7, n° 6-1990.



596 U. DIERKES

Therefore €7 is a-stable, if
—24 2
(” . °‘> 2xP AP +ox |x Vi ®

An elementary calculation shows that for the cone € the length of the
second fundamental form is given by

|A|2=~O:—_‘l—7—r'2=oc|x|'2 for all xe%3—{0},
oTp

where we have put r?=(x?+...+x2). Then along %2, x,,,= \/g r and
p

we infer from (8) that &7 is stable, if

n—2+a\? _
( 2 )gmxnmwvsﬂ

2
—a+ 2P 14+ L =a+p.
atp X1

This is true in case that a+p=3+ \/g. Theorem 1 follows.

Proof of Theorem 2. — In the follov\{,ing we shall always assume that
M=%—{0} is an o-stable cone in R"x R", so that in particular (7) holds
true. Replacing & by |A| € in (7) we get
[ Gaerlal e raxt i A &) a,

M
gJ o {|APIVEP+H|V]A|PE2+2E|A]| (VEV|AD} d#,. (9
M

Now

2[ Xn+1 |Al§(V€V|A|)de7fn=J Xn+1 (V&Z)V<%|A|2)d=7fn

1 1
- [ wea(] AP) ot | SUEWILE (AF)r,. (10
Jm 2 M 2
In order to conclude further we need a sharp estimate for the Laplacian
of | A |?. This will be provided by the following

LemMA 4 ([SSY], [SL, appendix B)). — If M=% —{ 0} is a cone, then

— L AIAPSIAR=2 |x|72 [AP[VIA[F =y~ Hhuihhy ()

() The summation convention is used freely here!
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NON-EXISTENCE OF ENERGY STABLE MINIMAL CONES 597

Here H ;; denote the second covariant derivatives of the mean curvature H
with respect to ' and 7/, and, as above, A;; are the coefficients of A.

Proof of Lemma 4. — B.8 Lemma and B.9 Lemma in [SL] yield the
relations

A<%|A|2>= T ALyt H
Js

k

i

here H=h,, =trace A and h;; , denotes the covariant derivative of A with
respect to t¥; also

h: . —|VIA|?=2|x|7?|A|* forall xeM.
Js

i J, k

Both relations imply Lemma 4. [
From (9), (10) and Lemma 4 we conclude that

| IGR EENTERINER S INGEN
M

1
+V (i )V <§ |A|2>+xﬁ‘,+1h,.jH,,-j+x:Jr1 Hhm,-hmjh,-j} ax,

§J . |AR|VERA®, (1)
M

Relation (11) will be of crucial importance in what follows.
To begin, select an orthonormal frame t!,...,1"eT,M so that

x
= ~|~—| and t', ..., T are constant along the ray through x. Also we
x

can assume that t},,=t2,,=...=1",1=0. Then h,=h,;=0 for
ie{1,...,n} and, since h; Ax)=A""h;(x), A>0, we have
hij, n= _le—lhij.

We first compute the expression

Liap

—axiy x| 72 AP, (12)

1
(Vxai1) <V 5 |A|2>=°‘x:11 (D x4 1) <D1k<

— a—1 k
=oxpy1 b k T

N

Vol. 7, n° 6-1990.



598 U. DIERKES

and then
1 n+1
— ,J— - V V H=V, V
o Xn+1

=Vi{ =Xt (ViXas 1) Var 1t X030 ViVay o
=2 %, Vixye1 Vixpiy Var 1~ Xu i1 (ViViXpi1) Vars
X, i1 ViXus1 ViV
X, V‘ixn+1_Vjvn+1+xt:+11 ViViViig
=2 xn_+31 Tn+1 Tfu+1 Vi1 _
n+1 Vit Vae1 —Xni1 oot Vi Vass
=Xt Tuer Vi Vas 1t X0 Vi Vv

By virtue of

Vi V= _h” Tl and Vi Tj=hu A%

we obtain
! H.=2x23 1t J
& Lij = 4 Xn+1 Tnt1 Tnt1 Va+a

-2 2 -2 j 1
Xn+1 hij Var1 T X000 Tt By Thay
-1 1
+ X, 21 That hj Toe 1~ Xpi1 Vi (7 Ts 1]
Using the Codazzi equations we conclude

11— ! I

Vi [hjl 17n+1]—hﬂ, i Tn+1+hjz Vit
— 1
_hij, 1 Tn+1+hjl hig Vi1

whence
1h H,=2x31t,, v, hv |A]> v}
o ij L ij n+1 “n+1 “n+1 %ij Vn+1 n+1 n+1
+x, 4 hij hy Thoy Ther T X051 hij hj Thet Tns
= X1t hyy g Totr 1~ Xt hij hjy by Vs
Thus
ihin,ij n+1|A|2 n+1+|x‘ 2lA|2_xn+1h hjy by Voo,

and finally
hyH = —ox, 2 |AP v to | x| 72 |AP=Hh; hy by, (13)

Annales de I'Institut Henri Poincaré - Analyse non linéaire
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(12), (13), and (11) yield the relation
2 [ st X AP E a5 [ e AR VER ar, a8
M M

for all £eC! (M, R).
If £ does not have compact support in M=%—{0} then (14) continues
to hold, if only

f x| 72 |AP €2 dotr, <o, (1)
M

In fact, replace & by & .y, where v, is a suitable cut off function with
1 for |x|e(e, &™)
Ye=

0 for |x|<§ or |x|>2¢7!

and 05y,<1,|Vy, (x)|£3 |x| ' inall of R"x R*. Then & ., is admissible
in (14) and the assertion follows by letting € - 0* and using (15).
Note that (15) is satisfied, if

J |x|""2]A|2 E2 d#, < 0. (16)
M
From the coarea formula we infer that

j ¢ (x) d#, (x)=J.o0 ol j o (ro)yd#,_, dr a7
M 0 >

for all non-negative @ € C°(M), where E=M N S”, and S"cR"*! denotes
the unit n-phere. Also, since M is a cone, we find

|A (x)[*=]x|"%|A (x/|x])|> for all xeM.
Hence, we readily infer from (17) and (16) that
E_,=IX|1 +s—u‘|x|}+u—-(n/2)—2 e’
where

| x|, =max (1, | x|),

is admissible in (14), if £> ;i(where we have of course assumed that n>2).

Furthermore we find

(1+s—oz)2|x|2 =2 in M B, (0), B, (O)={|x|<l},
|V§l2§ _h_ 2 izem—zs n+l_
2 5 e) |x| in (R B, 0)NM

Vol. 7, n° 6-1990.
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and (14) implies

zj AR X2 e dor,
M AN B;

+2j X,y AP <[22 e ao,
Mn@®"1-By)

<(1+e—a)? j Xy |AP |x]? o2 doe,

M AN By

2
Hate) | Ko [AP [ ap,
2 M~ (R*T1-By)

We would like to choose n, €, a so that

o ) n 2
s>5, (1+te—a)*<2 and §+8—2 <2. (18)

(18) is equivalent to

~1- /2+a<e< f+a-1  and %<s<2+\/§—g. (19)

Ifat+tn<4+2 \/Q then a suitable choice of ¢ is

where

a=g+8,
2

5=N"1|2+ 2-"-%|50
s

with NeN large. Thus we conclude that |A|*=0 i.e. M is a hyper-

\ .
plane 2. Because of 0=H=0 ' we must have v, , =0 as required.

[BDG]
[D1]

[D2]

[FH]

Xn+1
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