F. DUZAAR

M. FUCHS
On removable singularities of p-harmonic maps

Annales de I'l. H. P, section C, tome 7,n°5 (1990), p. 385-405
<http://www.numdam.org/item?id=AIHPC_1990__7_5_385_0>

© Gauthier-Villars, 1990, tous droits réserveés.

L’acces aux archives de la revue « Annales de I'l. H. P, section C »
(http://www.elsevier.com/locate/anihpc) implique 1’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPC_1990__7_5_385_0
http://www.elsevier.com/locate/anihpc
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré,

Vol. 7, n® 5, 1990, p. 385-405. Analyse non linéaire

On removable singularities of p-harmonic maps
by

F. DUZAAR and M. FUCHS

Mathematisches Institut,
Universitat Diisseldorf, D-4000 Diisseldorf, F.R.G.

AssTrACT. — For the unit ball B, in R" and a Riemannian manifold
M we consider mappings u:B, —{0} - M of class

C'(B,~ {0}, M) H' *(B,, R¥

which are stationary points of the p-energy functional
E, (w): :J | Du P dx
By

for some exponent p=2. We shall prove that the point singularity at the
origin is removable provided the p-energy E, (u) is sufficiently small. There
are no a priori assumptions on the image of u in M.

Key words : p-harmonic maps, removable singularities, regularity theory, degenerate
functionals.

RESUME. — On considére la fonctionnelle d’énergie d’ordre p :
E, (w): =f | Du | dx
By

ou B, est la boule unit¢é de R", M est une variété riemannienne, et
u:B;—{0} > M est de classe C! "YH" ? avec p=2. On montre que si u
est un point critique de [E,, la singularité a I’origine disparait dés que E, ()
est assez petit, sans qu’il soit besoin de faire d’hypothése sur I'image de u
dans M.

Classification A.M.S. : 49, 35 ], 58 E.
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386 F. DUZAAR AND M. FUCHS

1. INTRODUCTION AND STATEMENT OF THE RESULT

In our paper we investigate the regularity problem of p-harmonic maps
in higher dimensions. More precisely, we consider the following situation:
the parameter domain is the unit ball B, in R", n=2 (equipped with the
flat metric). As target manifold M we have a Riemannian manifold of
dimension m>1 which is isometrically embedded in some Euclidian space
R¥, k>m. We are then interested in mappings u: B, - M of Sobolev class
H' ?(B;, M) being defined as the set of functions u from the linear
Sobolev space H' #(B;, R¥) such that u(x)eM a.e. on B,. The p-energy
of ue H" ?(B,, R¥) is defined as

(1.1) [El(u):=j | Du P dx,

and u is said to be weakly p-harmonic if u is a weak solution of the
Euler-Lagrange equations associated to the energy functional (1.1), i.e.
u satisfies for all peC{ (B,, R¥):

(1.2 f |DulP~2(D,u.D,¢+¢.A (u)(D,u, D,u))dx=0,
By

where A (g) (., .) is the second fundamental form of M at g. For exponents
p>2(1.2) is a nonlinear system in the first derivatives and the modulus
of ellipticity degenerates at points where the first derivatives of % vanish.
If in addition « is also a critical point of (1.1) with respect to compactly
supported variations of the parameter domain we say that u is p-Stationary.

The purpose of the present paper is to prove the following removable
singularity theorem for p-harmonic maps.

THEOREM. —  Suppose ueC'(B,—{0}, M)N\H" ?(B,, R*) is p-har-
monic and n23, 2<p<n. If the p-energy E,(u) of u does not exceed a
certain constant €>0 depending only on n, p, k and the geometry of M then
u belongs to C (B, M) for some y€]0, 1[. The Holder exponent 'y
depends also on the absolute data n, k, p and M only and is independent

of u.

Remarks. — (i) For minimizers of the p-energy the above theorem is a
special case of a more general partial regularity result, see [F 1], [F 2], [HL]
and [Lu].

(i) If p=n, then the conformal invariance of the n-energy implies that
it suffices to assume F, (u)= J | Du |"dx<oo to prove our removable

By
singularity theorem.
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SINGULARITIES OF p-HARMONIC MAPS 387

(iii) The smallness assumption E,(#)<e is necessary for 2=<p<n.
Indeed, Coron and Gulliver [CGu] proved that the map u,:B; - 0B,
defined by u, (x): =|x|™' x is p-energy minimizing in the class

4:={veH" ?(B,, 0B,):v=id on B, }.

Therefore, u, is a p-stationary map with finite p-energy and isolated
singularity at the origin.

(iv) In the quadratic case p=2 of (stationary) harmonic mappings
several theorems on removable singularities have been proved by various
authors; we refer to [Gr], [Lil], [Li2], [SaU], [Sch], [Tal], [Ta2] for a
detailed discussion.

(v) The example described in (iii) shows that even for minimizers a
linear growth condition of the form
(1.3) lim sup | x| |Du(x)|< o0

x—0

is not sufficient to deduce everywhere regularity. As an application of our
main theorem we prove in section 4, theorem 4.1, that the origin x=0
is not contained in the singular set of a p-harmonic mapping
ueC!(B,—{0}, M) provided u satisfies (1.3) as well as the small range
condition Im (#) =B for a regular geodesic ball B< M. This result corre-
sponds to the everywhere regularity theorems obtained in [F 1], [F 3] and
[F 4] and is optimal as the example in section 4, remark (iii), shows.

(vi) With some minor modifications our main theorem extends to the
general Riemannian case of p-harmonic mappings

ueH: 7(Q, M) N C' (Q—{x,}, M)

where Q denotes an open region contained in some n-dimensional Rieman-
nian manifold and x, is a given point in Q. If

lim inf r2~" j || Du||” dvol=0
Brv (x0)

vV = 0

holds for a sequence {,v (xo)} of geodesic balls in Q shrinking to x,,
then x, is a regular point of . W

In this paper we assume that M is a closed (complete) m-dimensional
submanifold of R* of class C3. Since we do not assume that M is compact
we additionally require a bound k on the extrinsic curvature of M which
can be expressed in the form

2

(1.4) |TI; (4—q)

§§|q—q’ for ¢, q' eM,

where II; e Hom (R, R¥) denotes the orthogonal projection onto the nor-
mal space (Tan, M)*. Condition (1.4) implies that the norm of the second
fundamental form A of M in R* is bounded by x and that M has a tubular
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388 F. DUZAAR AND M. FUCHS

neighborhood M, , of distance 1/x in R*. The nearest point projection n
. . . 1
onto M is defined on M, and has Lipschitz constant 1% on My, for

0<d< 1. Moreover, we need a bound k' on the covariant derivative of A,
namely

(1.5) IVA| <.

For a detailled discussion of the conditions (1.4) and (1.5) we refer to
[DS], paragraph 1.

2. A POINTWISE ESTIMATE OF THE GRADIENT

In this section we want to prove the following result:

2.1. THEOREM. — There exist constants g, >0 and C, depending only on
n, p and the curvature bounds x, x' such that for any p-harmonic map
ue C! (B,, M) satisfying the smallness assumption r’~" E,(u) <€, we have

Br/2

@.1) supIDul”gcor_"J Dufrdx. m
B,

As a first step in the proof of theorem 2.1 we have the following estimate
valid for weakly p-harmonic maps of class C' which are defined on an
open domain Q in R".

2.2. LEmMA. — Suppose ueC*(Q, M) is a weakly p-harmonic map.
Then V [Du]:=|Du|?"?2Du has weak derivatives which lie in
L2, (Q, R™), and for all B, ,ccQ we have

2.2) J |DV [Du] [2 dx

<Cy(n, p, %, x)r *(1+||Dulff= g, ) j | Du [P dx.

By,

Proof. — Let A, ju(x): = % [u (x+ he;))—u (x)] the difference quotient

in the ith direction. Then, for a given ¢ e Cg (B;;,,) with =20, ¢=1 on
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SINGULARITIES OF p-HARMONIC MAPS 389
4
B, and |V ¢ |< - we have
r

2.3) 0=J [A,, ; F [Du].D (¢*A,, ;u)
Ba,
+A, ;(|DulP2 A (u)(D,u, D,uw).@*A, u] dx
>| ¢2?A, ; F[Du].DA, ;udx

Bar

—2 sup IV(plj ¢|A, iul.|Ay, ; F [Du]|dx—1
B2,
where

I:=

j A, i (|DulP™? A (u) (Dyu, D,u)). 0% A, ;udx
B2,
Similary to [U], lemma 3.1, we further derive

1
2.4 (p2|A,,’,-Du|2J‘ | Dy [P~ 2 dhdx
0

B3/2,

0

1
<c, |:||V(p[|fwf [Ah,,.upf |Dul|”"2d)»dx+l]
B3/2r

where we have abbreviated u,: =u+AhA, ;u. Here we denote by C,,
C,, ... constants which depend only on n, p, x and «'. To treat I we
observe that for all xeB;,,, we have

|u (x+he)—u (x)|<]h|.|| Dufly = g, -
Therefore, choosing 0<h<[2 k|| Du|| »] "' we obtain for all 0<A<1:
(2.5) dist (4, (x), M)=dist (1—1A) u (x)+Au (x+he;), M)
Slu (x)—u (x+he)|< —L
2k
Thus, w, (B3;;,)=M,,,,, and we may use the nearest point projection

T |R":>M1/,t — M to define the mappings =, : =n°u, : B;;,, = M satisfying
7o (X)=u (x) and m, (x) =u (x+ he;) for any xeB,,,. Next, we compute:

Ay, (|DulP~2 A (u)(Dyu, D,u)
1
_! J 4 1 Duy P72 A (1) (I1,, D, 4, TI,, D, )]
hJo d\

1
=(p—2) J | Dy, lp—4 Dy, .D (Ah, i) A (my) (Hm D,u, Hnl D,w)d\
0

1
+j | Dy, P72 [DA (m,) Drt () A, ;u (T1,, D,u; .11, D, u)]d\
0

Vol. 7, n° 5-1990.



390 F. DUZAAR AND M. FUCHS

1
+2 j |Du, [P~2 A () (DII (m,) Dt () A, ;u D, u

0
+11, D, A, u, 11, D, u,) d\.

Now, from Lip (t)<2 on M, ,, and |3, II,n|<x|&|.|n| for yeM and
& neTan,M we infer |(9,11,) | <2 k|A, ;u|.|§|. Using also |Dn|<x
onM,,,, ||VA||<«’ and Young’s inequality we derive the estimate

(2.6) |A,,,,-(|Du|"‘2A(u)(Dmu,Dau)).A,,,iu|
1 1 1
gij |Dul|p—2|DA,,,,.u|2m\+c3j D | A, .
0

0

Inserting (2.6) into (2.4) and recalling | Vo |< 4 we get
r
1
2.7 J (pZ[A,,’,.DuFJ’ | Dy, [P~2dhdx
B3/, Y

1
§C4r_2(1+||Du||fw(Bzr)) |Ah, iull J IDuXI”_Zd)»dx.

B3/, 0

Finally, we estimate the left hand side of (2.7) from below. For this we
observe that

2 1
|Ah,,-V[Du]|2§p?|DAh'iuIZJ‘ | Dy, |P~2 d\ dx,
0

hence

J- |Ay, : VD] 2 dx<Csr™?(1+|| Dulf= g, )
B,

1
xj |A,,’,-u[2j | Du, |P~2 d). dx.
B3/2r 0
Passing to the limit, i.e. £ | 0, we obtain the desired estimate (2.2). W
As the second step in the proof of theorem 2.1 we derive for weakly p-
harmonic maps of class C' an equivalent for the Bochner-Weitzenbdck
formula for smooth 2-harmonic maps (see [EL] for a derivation in the
case p=2).

2.3. LEMMA. — There exists a constant K < oo depending only on p and
the curvature bounds x and x' such that for any weakly p-harmonic map
ueC' (Q, M) we have

2.8) j[aaﬂ(.,Du)Dﬂ(|Du|”)Da(p—K|Du|”+2(p]dx§0
Q
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SINGULARITIES OF p-HARMONIC MAPS 391

for all @eCi(Q,) with ¢=0. Here we use the abbreviations

Q,:={xeQ:|Du|>0} and

D,u.Dgu
| Dul|?

Proof. — For veC®(Q, R) and {e C} (Q) with {=0 we readily verify

a,p(., Du): =8,5+(p—2)

xﬂ+‘

2.9) fDa(leI”‘zDav).DB(CDBv)dx
=J~ DB(|Dv|"_2Dav) D, ({Dgv) dx
Q
=j DB(|Dv|"_2Dav).DBvDquX
Q

+J Da('DUIP_ZDa‘U),DaDp-UCdx-
Q

Since Dg(|Dv[?~?D,v)=0 a.e. on {xeQ:|Dv|=0} the domain of integ-
ration in (2.9) may be restricted to {xeQ:|Dv|>0}. To estimate the
right hand side of (2.9) from below, we use

D‘,(|D‘u|"_2 D,v).D,v).Dyv

1

[Du(|Dv|")+(p*2) M
p

D, (|Dv|?

|D'0|2 B(| v|)]

and

D,,(|D-v|"_2Dmv).D,,,D,,1)=|D-a|"'2|D2-u|2
+(p—2)|Dv|”’4(Dmv.DpDav)(Dyv.Dprv)

>4 |pv Dy
p+2
on {xeQ:|Dv|>0} to infer for all {eCj(Q) with {=0

(2.10) JDu(|Dv|”‘2Dav).DB(§DBv)dx
Q

1 4 +
gL (; (-, D?) DaCDB(|Dv|")+;—5 |DV [Dy] |? 2§> dx,

Now, since Du is continuous on Q we get from lemma 2.2
|Dul e HE 2 N LY (Q,) for any reR. In view of

Du=|Du|' "7 |Du|”*~! Du
this and lemma 2.2 immediately imply that D*ue L2 (Q.).

loc
Now, let peC}(Q,) be a fixed test function with ¢ =0. To prove our
lemma we approximate u by a sequence of smooth maps u;€ C* (Q, R¥)

such that Du; — Du locally uniformly on Q and D?u; > D*u in L2, (Q.).

Vol. 7, n° 5-1990.



392 F. DUZAAR AND M. FUCHS

Then, for arbitrary te R we find

(2.11) D,(| Dy D,u;) - D,(|Dul' D,u) in LZ.(Q,)asi— o,
and

2.12) D, (|Dy[") - D, (| Du;|) in L2, (Q,)asi— oo,

and from the locally uniform convergence Du; —» Du on Q we also see
that

(2.13) ay (., Du)=5,4+(p—2) Dati-Dsth
| Dy, |?
X Xix e Duyx) [>0) ™ o (-, D))

onQ, ={xeQ:|Du (x)|>0}. By (2.10) we have for each u; the inequality

(2.14) j D, (|Dw;[P~2D, ;). Dy (¢ Dy ;) dx
Q

1
gj <_ 4ug (.. D) D, @ Dy (| Di )+ —— DV [Dui]ll(p> dx.
a \P pt2

From (2.11)-(2.13) we see that (2. 14) and the Euler-equation for » imply
1 4
J <~ ay3 (., Du) D¢ Dg(|Dul?)+ —— |DV [Du][2(|)> dx
o \P pt2
s- f ¢ Dg(A () (V,[Dul, V,[Du])). D, udx
Q

§6[ ¢|DV [Du][zdx+8‘1C6J ¢ |DulP*?dx.
Q Q
Here, >0 can be chosen suitable to give for any e C} (Q,) with ¢=0

JaaB(.,Du)D“(pr(IDuP’)dx§KJ ¢|DulP*2dx. ®
Q

Q

2.4. LEMMA. — Inequality (2.8) extends to € C} (Q) with ¢ 20.

Proof. — We first observed that |Dul? is in the space Hj; 2 (Q) N L.
Hence (2. 8) holds for g e H}' 2(Q.) with compact support in Q and ¢ =0.
In fact we can find a sequence @;eC} (Q.), ¢;=0, such that ¢, > ¢ in
H' 2(Q) with the additional property that the supports of the ¢; are
contained in an uniform compact subset of Q. Passing to the limit i » oo
we arrive at (2.8) for functions ¢ as above.

Now, if ¢ is as in the statement of lemma 2.4 we define for £>0

w
¢,: =¢ —eHy *NL*(Q,),
w

€

Annales de I'Institut Henri Poincaré - Analyse non linéaire



SINGULARITIES OF p-HARMONIC MAPS 393

with

w: =|Dul"?, w,: =max {w, g},
and use @, as an admissible test function in (2.8). Letting € — 0 the proof
is completed. [

As a third step in the proof of theorem 2.1 we show that weakly
p-harmonic maps of class C, are also p-stationary.

2.5. LeMMA. — Assume that ue C' (Q, M) is weakly p-harmonic. Then
(2.15) O=J (|Du|PdivX—p|Dul?"?D,u.DyuD, XP)dx
Q

holds for all X e C}(Q, R").

Proof. — Since u is of class C* on Q,:={xeQ:|Du(x)|>0} it is
easy to check that (2.15) is true for X with compact support in Q. For
general X we proceed as follows: We choose a sequence n,;eCg (Q,),
0<n;=1, such that n; T xq,. By (2.15) we have

O=f (div(n;X)|Du|?—p|Du|P~2>D,u.DguD, (n; X?)) dx
Q4+
=—J (V|Dul?.n;X—pD,(|Dul?~?D,u.Dgu) XPn,) dx
Q4
“_°'i—J (V|Dul?. X~ pD,(|Dul’ 2D, u.Dyu) XP) dx
Q4

=J (divX|Du|?—p|DulP~?D,u.DyuD, XP) dx.
Q

Here we make use of the facts (compare lemma 2.2) that
|DulPe HE! (Q), |Du|P~?D,u.DyueH! (Q),

loc

and that the derivatives of these two functions vanish on Q—Q,. M

2.6. CoroLLARY (Monotonicity formula, see [F3], [HL], [P]). — Let
ueH"?(B,, M) denote an arbitrary p-stationary map, 2<p<n. For xeB,
and 0<o<p=1-—|x| we have

2

Ou dy,

0P "E, ()~ 0" "E, . ()=p j |x—y [P~ Dulr~>

By (x) = Bg (x)

where Ou/0r denotes the radial derivative of u with respect to the center x. R
Here and in the sequel we abbreviate

[Ex,p(u):=J‘ | Du |P dx
By (x)

Vol. 7, n® 5-1990.



394 F. DUZAAR AND M. FUCHS

and if x is the origin of R" we write E, instead of E, .

Remark. — Corollary 2.6 easily extend to the case of p-harmonic maps
of class C' (B, — {0}, M) H"?(B,, R¥) with an isolated singularity at
the origin.

We now come to the proof of Theorem 2.1 in which we make use of
ideas due to R. Schoen [Sch]: We define

F(x):=<§—|x|>|Du(x)|

and choose x,€B,, such that F(x,)2F(x) for all x in B,,. In case
| xo|=r/2 the statement of our theorem is obvious. Therefore we may

assume
1/r

This gives

sup |Du|= sup F(x)<£—|x|>_1§ sup F(x)<%—|x|)_1

Bg (x0) Bs (x0) 2 B + | xq 1(0)
r -1
gF%)(5 - lx0|> 2| Duxo)].
We now distinguish two cases.
Case 1. — |Du(x,)| <o~ . Then according to lemma 2.4 we have for

all g e Cq (B, (xo)), 20, that
+2 4K
02 |(a,3D,|Du?Dyo—K @ |DulP*?)dx 2 || gy D,wDgo— — @ w )dx,
c

where we have abbreviated w: = |Dul?. Applying [GT], Theorem 8.17,
and [Gia], p. 95, we get

|Du(x0)|”§C7c_"J | Du | dx

Bg (x0)

Annales de I'Institut Henri Poincaré - Analyse non linéaire



SINGULARITIES OF p-HARMONIC MAPS 395
with a constant C, depending only on n, p, and K. This implies

-p
sup |Dul|= sup F(x)"(i— |x|>
By/4 (0) By/a (0) 2

<4Pr7PF(xo)

p

=4rr7P %— |xo] ) |Du(xo)|?

=87r P o”| Du(x,) |’

<C,8°r Po?" | Du? dx

Bs (x0)

p—n
.§C78"r“"<£> J | Du [P dx
2 By)2 (x0)

§C8r_”J | Du | dx.
B, (0)

Case 2. — |Du(xo)| o7 ! Let 6:=|Du(x,)|™'<o. This implies
|Du(x)| <2/c on the ball Bj;(xo) = B,(xo). Applying again [GT],
Theorem 8.17, and [Gia), p. 95, on the ball B;(x,) we find

o P= |Du(x0)|”§C75_”J | Du |? dx,

Bg (x0)

hence (by the monotonicity formula)

15¢, |

Bg (x0)

|Du|”d)c§2"_”C7r‘""J~ | Du | dx.

B, (0)
So if we impose the smallness condition
p—n DulPdx< . = 1
r | Du| x=€1(",P,K,K)~—W,
B, (0) 7

case 2 can not occur and we have proved (2.1) with a suitable constant
C, N

A simple application of theorem 2.1 and the monotonicity formula is
the following

2.7. CorOLLARY. — There exist constants €,>0 and Cq depending only
on n,p and the curvature bounds x, x' such that any p-harmonic map

ueC' (B, — {0}, M) with E, (u)<g, satisfies for all 0< |x| < %:

|x|”|Du(x)|"§C9(2|x|)”"‘f | DufP dx.

B2 x|

Vol. 7, n® 5-1990.



396 F. DUZAAR AND M. FUCHS

Proof. — Using the monotonicity formula we get for | x| <

N.I.’-‘

1 p
<5|x|) Eexp2 @S2 E, (u).

Thus, if we impose E, (u)<2? "¢, where g, denotes the constant from
theorem 2.1 we may apply theorem 2.1 on the ball B, ,),,(x) and obtain

1 —-n
DU PEColb (S]] ) " Enaia @S Co @15l 7 0.

3. THE REGULARITY THEOREM

In this section we give the proof of our removable singularity theorem.
To show that a p-harmonic map ue C* (B, — {0}, M) N H"?(B,, R¥) with
sufficiently small total energy E, («) is Holder continuous on B; it suffices

. . . 1
to prove that there exists a radius r with 0 <r =< 5 and a€]0, 1] such that
1
for any xeB, and 0<p=< Er we have

3.1 p? "E, ,(u) <const. p™,

where we have defined

E, ,w)= J | Du|Pdx.
By (x)

First we state a discrete version of (3.1).

3.1. PrOPOSITION. — There exist constants €,=¢gy(n, p, M)>0 and
c=o(n, p, M)€]0, 1] such that for any p-harmonic map

ueC'(B,— {0}, M)NH"?(B,, R}
with E, (u) <, we have
1
o "E, (w) = 5 E, ().
Proof. — We proceed as in [Li2] and prove our proposition by contradic-
tion. For this we assume that the conclusion is false. Then, we may

find a sequence of p-harmonic maps ;e C'(B;— {0}, M) which satisfy

Annales de I'Institut Henri Poincaré - Analyse non linéaire



SINGULARITIES OF p-HARMONIC MAPS 397
E, (u)<i™ ' and
o 1
o "k, (w) 2 5"51 (u;)

for any ¢ €]0, 1{. The associated normalized sequence

Lo WiT U
vi. - —‘——1/p,
E, ()

where u; ; denotes the mean value of «; over By, i. e.

satisfies
E .
E )=o) E)=1,  v,=0, f |, ? dx < co,
E, () By
where we have used Poincaré’s inequality. By cq, ¢;, ... we denote in

this section constants which depend only on n, k and p. Then, the weak
compactness of {veH"?(B,, R":||o|y1.»SC<oo} implies that there
exists a subsequence (again denoted by v;) such that v, » v, weakly in
H!'?(B,, R¥). On B, we have for all ¢ C}(B,, R"):

(3.2) J (|Dv; [P~ ?Dyv;. D@+, (u)''”
By
x | Do, [P~ 2 A (u;) (D, v;, D, ;). ) dx=0.

o 1

In view of

(3.3)

E, (”i)l/pj | Dv; [P~2 A (u;) (D v, Dyvy). @ dx| SE; ()P x| @[
By
we find for all peCj (B,, R¥)
(3.9 lim J |Dv;[?~2D,v;. D, ¢ dx=0.
i wJB;
To prove that v, is weakly p-harmonic on B,,, we argue as follows. By

the monotonicity lemma we get for any 0< |a| < % and 0<r=< %
r”A"J‘ |Dui|pdx§2”‘"J | Du; [P dx=27""E, (u)).
B, (a) By
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Thus, we find i, e N such that

r"“”f |Dy; [Pdx<e,
B, (a)

1 1
for all izi;, 0 <|a| < 5 and 0<r< Ewhere €, denotes the constant from

theorem 2. 1. Using again theorem 2.1 and the monotonicity formula we
get

|Dui(a)]"§C0|a[_"(2|a|)”""f |Du; [Pdx <C, E, () |a| .
B2|41(0)
In this chapter C,, C,, ... denote constants depending only on n, p

. 1
and M. Thus, for any a with 0<r< la| < 5 we have

|Do(a)| £C,r .

Hence, we can pass to a subsequence of v; (again denoted by v;) which
converges uniformly on B, — B, to v,,. Using (3.2) for v; and v; we find

J (IDviI"_ZDavi—|va|”_2Davj).Da(pdx
By
=, (”i)l/pf |D'Ui IP_ZA(ui) (D, v;, Dyv). @ dx
By

—E, (vj)l/pf |Do; P72 A (#;) (Dyvj, D, v;)). @ dx.
By

Choosing ¢ =17 (v;,— v;) with ne C} (B, 2~ B,, R) we get using the uniform
convergence || v;— v;]|,, > 0 as i, j - 0 and E, (4,) = 0 as i — oo

f (| Do~ D, v, [ Do, P2 D, v)
B1/2—B,

X(D,v;=D,v)n?dx -0, asi, j— oo,
and with [FF], lemma 3.2, we estimate the integral from below and obtain
3.5) f IDvi—val”T]pdx—>oo, as i, j > oo.

B1/2—B,
Obviously, (3.5) implies the strong convergence v, > v, in
H'?(B,,~B,, R¥). To show the strong convergence on B, ,, we consider

first the case p<n. The monotonicity lemma yields for all 0<r<1

rrn f | Dy; [P dx <, (u)),
B,
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which is equivalent to
(3.6) j |Dvi|"dx§r"‘".
B,

Now, let e C}(B,, R¥). Applying (3.6) we find for any fixed §>0 a
radius p: = p(3) such that for any 0<r=p we have

1
3.7 |Dell. <28

f(|Dvi|P‘1+|Dvm|P‘1)dx
B,

Moreover, by the strong convergence v; = v, in H»? (By,—B, R¥) we
find i, € N depending only on & such that

3

(ER) =

N | —

J (|Dv; [P 2Dyv;— | Doy, [P~ 2Dy v,,). D, ¢ dx
By2—B,
for any =1, (8). Combining (3.7), (3.8) and (3.4) we get
3.9 J | Dy, |P"2 Dy, . D, @ dx=0, V@ eCq(By),, RY).

Bi/2
If p=n, we find using E(v;)=1, E, (v,,) <1 and Holder’s inequality

J (|Dvi|"_1+ |Dvo0 "'_l)dxéc1 P,

which obviously implies (3.7) and we proceed as in the case p<n to
deduce (3.9).

Now, since v, is weakly p-harmonic on B, we can use the “Uhlenbeck-
estimate” [U], theorem 3.2, to infer for all balls B, (x) = B, ,

1/p
(3.10) sup|Dvm|§c2|:J; |Dvw|"dx] .
B, (x)
B, (x)

For 0<r= % we easily conclude from (3. 10) for all Ge]O, %r:l

G.11) J Do, P dsSes sup | Do, < )J Do, |7 d.

1
Let 0'6]0,—2], p>0 and p<n. Applying (3.6) again we find a radius
p=p()>0 such for any 0<r=p(p) we have

3.12) f (|Dvm|”+|Dvi|")dx§%u.
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To show (3.12) in the case p=n we argue as follows: On account of
the weak convergence w;:=Dv;»>Dv =:w, in L" the Ilimit
lim (L" L w;) (C) exists for any set C = B,. Moreover the total variation
of 1" L w; is finite. Thus, by the Vitali-Hahn-Saks theorem {L" L w;};
forms a sequence of uniformly absolutely continuous measures, that is,
for any >0 there exists 6>0 such that (L"L w;)(A)<e for all ieN
provided L"(A) <. This obviously proves (3.12) in the case p=n.

From the strong convergence v; - v, in H"?(B,,, — B,, R¥) we conclude
that there exists i, =1, (u) € N such that for all iz,

(3.13) <

!
=2

[ pe.p=ipupa]<in
By —B,

Combining (3.12) and (3.13) we see that

1
o? "E,(v;)) > 0P "E (v,,) asi— oo, VGG]O,EJ.
) 1 . . .
Recalling E, {v;)=1 and 6 "E,(v;) = 5 we immediately obtain

op‘”lEc(vw);% and E;(v,) =1, Voelo, 1].

Taking (3.11) into account this implies

%§o"‘"J |Dvw]”dx§csc”j | Do, [Pdx < cg 07,
By B

1/2
. . 1 -
and if we impose of < 5c6 we get a contradiction. M

Now, we prove our main result. For this suppose that
ueC' (B, — {0}, M) " H"?(B,, R¥) is p-harmonic and satisfies [, (1) <&,.
Then, by proposition 3.1 we find 6€]0, 1] such that

3.14) cr”‘"[Et,(u)gélEl(u)‘
Since the rescaled function u, (x): =u (o x) also satisfies the hypothesis of
proposition 3.1 we can iterate (3.14) to obtain
()Y "Ei(w)<27'E, (w), VieN,.

This implies for 0 < p<1 (choosing i so that ¢'"* < p<oc’)
(3.15) PP E, (W) S2p"E, (u),
where B is defined by

B:=—(log2)/(plogo)
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1
Together with corollary 2.7 we get for 0 < | x| < 3

(3.16) |x|P|Du(x)|P<C;(2 |x|)"_"J |Du|Pdx<C, E, ()| x|?P.

B2 x| (0)
This implies that DueL?(B,) for some exponent g>n. Therefore by the
Sobolev imbedding theorem we get ue C® ! ~"4(B,) which proves

3.2. THEOREM. —  There exist constants ge=¢g(n, k, p, M)>0,
C=C(n, k, p, M)< oo and B=B(n, k, p, M)€l0, 1[ such that each p-har-
monic map ue C' (B, — {0}, M) with E, (u) <t satisfies a Holder condition

|[u(x)—u@)| <C|x—y|® forall x, yeBy,.

Using the continuity of u we can localize the regularity problem in the
target manifold M and we can proceed as in [F1], theorem 7.2, and [F2],
theorem 3.2, to get C* "-regularity for some y€]0, 1[.

4. APPLICATIONS : GEOMETRIC CONDITIONS
FOR REMOVABLE SINGULARITIES

In this section we consider p-harmonic maps u: B, —{0} - B,(g)cM
of class C* (B, —{0 }, M) which have an isolated singularity at the origin.
Here, B,(q):={q'eM:disty(q’, g9)<r} denotes a regular geodesic ball in
M of radius r and center g (see[H], p. 3, for the definition). With this
notation we state the following result:

4.1. THEOREM. — Suppose ue C' (B — {0}, M) is p-harmonic, 2<p=<n,
and satisfies the smallness condition

4.1 M(Bl—{O})CBr(q)CM
for some regular geodesic ball B,(q) in M as well as
4.2 |Du(x)|.|x|<K<oo, forall x#0

for some constant K €0, co[. Then the isolated singularity at the origin is
removable.

Remarks. — (i) From [F 1], theorem 7.1, and [F2], theorem D, we
know that for local minimizers in low dimensions n— 1 <p <n the singular
set is discrete and that the behaviour of the derivative near a singular
point x, is characterised by the linear growth condition

4.3) lim sup | Du(x)|.|x—x,|< oo,

x=x0

so that linear growth is a rather natural hypothesis.
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402 F. DUZAAR AND M. FUCHS

(ii) Using a slightly stronger definition of regular geodesic balls B, (g)
[requirering the condition r<w/(4 _/x), k=0 denoting an upper bound for
the sectional curvature of M on B, (g)] it is possible to show everywhere
regularity of weakly p-stationary mappings ue H'> ?(B,, M) with range in
B,(g) without imposing any growth condition of the form (4.3): the
argument uses a partial regularity theorem from [F 3], Theorem 1.1, for
weakly p-harmonic mappings v: B, — M saying that under the condition
Im(v)=B,(g) a point xeB, is a regular point if and only if the scaled
p-energy of v calculated on small balls centered at x is small enough. If in
addition v is also p-stayionary, the nonexistence of nontrivial homogeneous
tangent maps shows that the partial regularity criterion holds for all xeB,.
For the details we refer to [F 3], Theorem 1.2.

(iii) The = equator ~map  ws«:R">B;—{0}—>S" defined by
Wi (X) : = (ux (x), 0) is p-stationary for n=>3 and 2 <p<n. By direct calcula-
tion we also see that | Dws (x)|.|x|= \/anor all x#0. Thus, the equator
map shows that even in the class of p-stationary mappings with isolated
singularities of linear growth the small range condition (4.1) is necessary
and sufficient to prove removability of singular points. We conjecture that
Theorem 4.1 remains valid without assumption (4.2). Moreover, one
should try to calculate an optimal K, such that | Du(x)|.|x|<K, x#0,
for K <K, implies 0e Reg () without imposing further smallness condi-
tions on the range of u. M

Proof. — According to our main theorem we only have to show that

4.9 lim infp”‘”j | Du|? dx=0.
plO B,

To prove (4.4) we fix a sequence A; | 0 of positive numbers and consider
the scaled maps ; (x):=u(A;x). Then, from (4.2) we get

E (ui)=7»f’j

By

[Du(kix)["dng”j | x| Pdx<coKP< 0,

By

where ¢, depends only on # and p as the constants ¢y, ¢,, ... below.
Passing to a subsequence we may assume that u; converges weakly in
H» 7(B,, R¥) to a map u,e H' ?(B,, R*) and from (4.5) we infer for all
x#0

4.5 | Dy; (x)| <K |x| ™"

Hence, we can pass again to a subsequence u; which converges locally
uniformly on B, — {0} to u,. Now, for any fixed >0 let r>0 be a radius
such that r"~?<$. Then, we obtain

4.6) E,(u)Sco KPr'"P<c,K?s.
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Since u is weakly p-harmonic on B, the scaled maps u; are also weakly p-
harmonic on By, i.e. we have for all peHj,;,» N\ L* (B, R"):

4.7 j|Dui|"'2Dmui.Da(pdx
By

= —j |Dui|"_2A(ui)(Duu,., D,u;). ¢ dx.
By

For yeC!(B,, R) with 0=y <1, y=1 on B,—B,, spty=B,—B,, we
decompose

4.8) J (|Dw;|P~*D,u;— | Du; [P~ D, uy)
By
X Du(ui—uj)\l!pdx=IU+Iﬂ+J”-+Jﬂ

into a sum of four integrals

Iij::J |Dui|"_2Duui.Du(\jl”(ui—uj)) dx,
By

Ji= —pf VD, | Dy, [P~ 2 D, u;. (u;— uy) dx.
By
Using Holder’s inequality we obtain the estimate
1/p
|Jij|§sup|D\|1|[El(ui)l‘l/"I:J |ui—uj|"de .
By By
With the help of (4.6) and the curvature bound for the second fundamental

form A of M we further derive
(4.10) |1;;| S ey k Ey () sup|u;—u;).

spt§
From (4.9), (4.10), the definition of V, the LP-convergence u; — u,, the
uniform convergence u; — u, on compact subsets of B, —{0} and [FF],
lemma 3.2, we see that (4.8) implies
j |D (u;—u;)|Pdx >0, asi, j— oo.
B1—B,

Combining this result with (4.6) we obtain

J 'D(ui—uj)|"dx§cz(K”6+J |D(ui—uj)|”dx>,

By By —B,

and since >0 was arbitrary we get the convergence u; — u, in the H!» 7-
norm on B,. Thus, u, is also p-stationary on B, and satisfies 0,,4u,=0,

which can easily be seen by the use of the monotonicity formula for u,.
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Now, let U, be a representation of u, with respect to normal coordinates

on B,(g9) centered at ¢. By virtue of [F1], [F4] we have for all
0eCy(B,, R):

J a(U,, DUg) (D, U, .D, (¢ Ug) - r;'k (Uo) D, U§ D, Ug Ujy 9) dx =0,
By

with a(U,, DU,):= (g, (U,) D, Ui D, Uk)?>~ 1, Here g; denotes the fun-
damental tensor on B,(g) and I'%;, are the Christoffel symbols of second
kind. We now choose ¢ (x):=¢ (| x|) (see [F 1], [F 4]) and obtain

J a(Ug, DU,) ¢ (| DU, |~ T%, (U,) D, Uj D, Us Uh) dx =0,
By

and since u, takes its values in the regular geodesic ball B, (¢) the quantity
|DU, |2~ T% (Up) D, U D, Ug Uj, is bounded below by a constant times
g« (Ug) D, Ui D, U§. Thus, for ¢ =0 we obtain

j (g (Ug) D, Uj D, US)?2 g dx <0,
By

and hence Du,=0 on B,. Since u; - u, strongly on B, we conclude that
E,(;) —» 0 as i — oo for any 0<p <1 which immediatly implies

Apy "E,(w) >0, asi>occ. W
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