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ABSTRACT. — We prove several first and high order inverse mapping
theorems for set-valued maps from a complete metric space to a Banach
space and study the stability of the open mapping principle. The obtained
results allow to investigate questions of controllability of finite and infinite
dimensional control systems, necessary conditions for optimality, implicit
function theorem, stability of constraints with respect to a parameter.
Applications to problems of optimization, control theory and nonsmooth
analysis are provided.
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184 H. FRANKOWSKA

1. INTRODUCTION

Consider a set-valued map G:X —» Y between two metric spaces and
define its inverse G ':Y —» X by

G '(n)={xeX]|yeG(x)}

Let xe X, yeG(x) and let B, (x) denote the closed ball in X centered
at x with radius A>0. This paper is mainly concerned with sufficient
conditions for:

1. the uniform open mapping principle at (x, y):3¢>0, k>0, p>0 such
that

V (x, )€ Graph (G) N B, (x) x B, (3),
Vhel0,¢], By (»)eG(B,(x))
2. the Holder regularity of the inverse mapG~! at (y, x):3k>0, £>0,
L >0 such that

V(x;, y1) € Graph (G) N B, (x) X B, (¥),
VyZEBa(j;), diSt(xla G_l(yZ))éLdY(yla y2)l/k

3. necessary conditions verified by boundary points of G (B, (x)).

A classical result of functional analysis states that if a (single-valued)
C!-function f: X —» Y between two Banach spaces has a surjective deriva-
tive f*(x) at a point xe X, then for all #>0, f (x)eIntf (B,(x)) (i.e. the
open principle holds true) and the set-valued mapf ~! is roughly speaking
Lipschitzian at f (x). It implies in particular that if f’ (x) is surjective, then
Kerf”(x) is tangent to the level set { xeX: f(x)=f(x) } [31]. We refer to
[11], [10], [28] for historical comments and an extensive bibliography. The
open mapping principle part of the above theorem is sometimes referred
as Graves theorem ([24], [25]).

However the above classical result is not strong enough to answer many
questions arising in Control Theory and Optimization:

We may have to deal with maps defined on metric spaces (which have
no much regularity) rather than with C!, single-valued functions. On the
other hand the sets of constraints are given by set-valued maps. This is
then a first source of motivations to use new tools adapted to these
purposes.

Actually set-valued maps are in the background, even when many efforts
where devoted to hide them. Indeed there have been many attempts to
overcome the difficulties, and most of them are actually based on a careful
construction of a selection f(x)eG(x) to which one or another open
mapping result can be applied. However very often this is neither a direct
nor a simple way to follow.

Let us mention also that beside the above theorem used together with
such selection f [6], several different open mapping arguments have been
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INVERSE MAPPING THEOREMS 185

applied to f, for instance the one based on Brouwer’s fixed point theorem
(see for example proof of Pontriagin’ principle in [30]), a “degree theory”
open mapping result [39], extensions of Grave’s theorem to nonsmooth
functions [43], etc. We also refer to [33], where a number of fixed point
theorems and their applications to infinite dimensional control problems
are given.

Our strategy is then to deal directly with inverse and open mapping
theorems for set-valued maps from a complete metric space to a Banach
space and to replace the notion of derivative (which needs a linear struc-
ture) by a notion of variation, which describes the infinitesimal behavior
of a map at a given point.

The inverse function theorem for set-valued maps is also a very conven-
ient tool to be applied to optimization problems, even those whose data
are given by single valued functions. We refer to [1], [4], [28] and their
references, where this issue is illustrated by many examples.

Most extensions of the above classical result are of the first order
involving surjectivity of the first derivative. Such assumption excludes
from consideration those functions whose derivative is not surjective or
simply vanishes. A high order open mapping principle for single valued
maps taking their values in a finite dimensional space was proved in [25]
using Brouwer’s fixed point theorem and for set-valued maps in [18] on
the basis of Ekeland’s principle. I would like also to acknowledge the
private communication of J. Borwein, that, still using Ekeland’s principle,
it is possible to show that the sufficient condition for openness proved
in [18] implies as well the Holder continuity of the inverse.

Finally a convenient extension of the inverse mapping theorem is neces-
sary to treat nonsmooth problems. Some generalizations in this direction
can be found in [8], [43].

In this paper we prove first and high order sufficient conditions for
openness and regularity of the inverse map which allows to obtain several
new results concerning controllability, optimality and Lipschitzian realiz-
ations. Sufficient conditions for invertibility are expressed in terms of
variations of set-valued maps defined on metric spaces.

Variations measure infinitesimal behavior of a map and seem to be a
very (may be the most) natural notion to be used to study the uniform
open mapping principle (see Remark following Definition 5.1 from
Section 5). In several examples of applications provided here, we show
how variations can be computed. In particular this leads to a short and
direct proof of the maximum principle in control theory (both for finite
and infinite dimensional cases).

In summary our extensions deal with:

1. nonsmooth functions and set-valued maps;

2. set-valued maps defined on a complete metric space;
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186 H. FRANKOWSKA

3. maps taking their values in a Banach space;

4. high order sufficient conditions.

The strength of these results is showed by examples of applications to:
1. reachability of nonlinear infinite dimensional control systems;

2. necessary conditions for optimality;

3. small time local controllability;

4. some problems of nonsmooth analysis.

The outline of the paper is as follows. We first show equivalence of the
uniform open mapping principle and Hoélder continuity of the inverse
(Section 2). So the problem of regular inverse reduces to sufficient condi-
tions for the uniform open mapping principle. We use Ekeland’s varia-
tional principle to investigate this problem. In particular we prove that
whenever Y is a smooth Banach space, then the uniform open mapping
principle is equivalent to a “convex uniform open mapping principle”,
which can then be applied together with separation theorems (Section 3).
In [17] we derived from these results some second order conditions for
invertibility of a C2-function taking its values in a Hilbert space and for
stability with respect to a parameter of a system defined by inequality
constraints.

Applications of Ekeland’s principle appear often in nonsmooth analysis
to derive necessary conditions for optimality and sufficient conditions for
invertibility. In this paper Ekeland’s principle is rather used to prove
stability of the uniform open mapping principle (Section 4). Necessary
conditions for optimality can be seen as a violation of the open mapping
principle. For nonsmooth problems, necessary conditions can be seen as
a violation of the uniform open mapping principle for smooth approxim-
ations. This approach to nonsmooth problems was pioneered by J. Warga
([41]-{43]). In Section 13, we derive several “nonsmooth” results based on
stability of the open mapping principle.

To express sufficient conditions for the uniform open mapping principle
we introduce in Section 5 ““variations” of set-valued maps, which describe
infinitesimal changes of a map on a neighborhood of a given point. We
shall consider two different types of variations. The first one is called
contingent variation and is related to the (first) Gateaux derivative. It
allows to prove the first order sufficient conditions. The second type of
variations is much more regular (similar to continuous Fréchet derivative)
and is defined for all orders. Naturally it leads to higher order results.

Several extensions of the first order conditions to set-valued maps on
Banach spaces can be found in [1], [4], [28]. A high order open mapping
principle via high order variations of set-valued maps was proposed in [18].
Their proofs use Ekeland’s principle but now can be derived directly
from Theorem 2.2 (Section 2). The proof of Theorem 2.2 is based on a
constructive argument, similar to the one used in [24], [11], which allows
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to estimate the Holder constant, the neighborhood where the map can be
inverted and errors. Although several proofs of this paper are also based
on the variational principle, it is applied mainly to bring some convexity
arguments, while in earlier works this was not exploit at all.

The first order inverse function theorems for a map G taking its values
in a Banach space Y are proved in Section 6. Special attention is given to
the case when the norm of Y is Géiteaux differentiable away from zero.
This also allows to derive necessary conditions satisfied by boundary
points of the image of G. They are used to prove necessary conditions for
optimality for an abstract infinite dimensional mathematical programming
problem in Section 11, which in turn is applied to an infinite dimensional
optimal control problem with end point constraints and to a semilinear
optimal control problem.

First order inverse function theorems are also used to investigate Lipsch-
itz behavior of controls for finite and infinite dimensional control systems
(Section 10) and the implicit function theorem (Section 9). This last theo-
rem allows to make a Lipschitz realization of an implicit dynamical system.

A high order inverse function theorem for maps with values in a
uniformly smooth Banach space is proved in Section 7. An application of
this result to question of small time local controllability is given in
Section 12. Finally Section 13 is devoted to some finite dimensional
nonsmooth problems. One can find in [17] some further applications of
set-valued inverse mapping theorems.

CONTENTS

. Introduction.

. Uniform open mapping principle and inverse mapping theorem.
. Uniform open mapping principle in smooth Banach spaces.

. Stability of the uniform open mapping principle.

. Variations of set-valued maps.

. First order inverse mapping theorems.

. High order inverse mapping theorems.

. Taylor expansion and the inverse theorem.

. An implicit function theorem.

O 00 NN L AW~

10. Lipschitz behavior of controls.
10.1. Finite dimensional control system.
10.2. Infinite dimensional control system.
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188 H. FRANKOWSKA

11. A multiplier rule for infinite dimensional problems.
11.1. A semilinear control problem with end point constraints.
11.2. Optimal control of a problem with state constraints.

12. Small time local controllability.

13. Applications to nonsmooth analysis.

2. UNIFORM OPEN MAPPING PRINCIPLE
AND INVERSE MAPPING THEOREM

Consider a set-valued map G from a complete metric space (X, dy) to
a metric space (Y, dy). That is for every xeX, G(x) is a (possibly empty)
subset of Y. Recall that graph of G is a subset of the product space
XxY:

Graph (G)={(x, y)|yeG(x)}.

When it is not otherwise specified explicitly, we shall use on it the
following metric:

V(x,y), (x',y)€Graph(G),  d((x,y),(x', y)=dx(x, x)+dy(, ).

In this paper we restrict our attention to those maps whose graph is
closed. From now on we posit such an assumption. The inverse map G ™!
is defined by

VyeY, G '(y):={xeX|yeG(x)}.

In the other words (x, y) € Graph (G) if and only if (y, x) e Graph (G ™).

In this section we study a relationship between the uniform open map-
ping principle and the regularity of the inverse map G~'. For all xeX,
h>0 denote by B, (x) [respectively B,(x)] the open (respectively closed)
ball in X of center x and radius 4#>0.

THEOREM 2.1. — Let k>0, p>0, xo€X, yo€G(xy). The following
statements are equivalent:

(i) For all (x, y)e Graph (G) near (x,, y,) and all small h>0

B, () =G (B, (x)). M
(ii) For all (x,, y,) € Graph (G) near (x,, y,) and all y,€Y near y,
disty (x;, G™' (1)) Sp~ Y dy (v, y)'-. (2
Remark. — When Y is a Banach space and B denotes the open unit
ball in Y, then the inclusion (1) can be formulated as
y+phBcG(B, ()
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INVERSE MAPPING THEOREMS 189

or equivalently as
B GBIy
hk
The implication (ii) = (i) in the above theorem is immediate. The oppo-
site claim results from the more precise:

THEOREM 2.2. — Consider y,€ G (x,). If there exist k>0, £€>0, p>0,
0<B<1 such that for all (x, y)eGraph(G) N B,(xo)*B,(y,) and all
hel0, €]

sup  disty (b, G (B, (x))) <Bp K"

b e Bppk (v)

then, for all (x,, y,)€ Graph(G) N\ B, (xo) X B, (vo), for all h=0 satis-

Sfying max{l_LBm, 2 ph"}< g and all y, e B« (y,)

) 1
dist, (x:, G -1 )= Bl/k —h

or equivalently for all (x,, y,)eGraph (G) M B,5 (x0) X B, (vo) and all
v, €Y satisfying dy (y,, y,) <min {4, p <2> <1 - B”") }

. 1
disty (x;, G 1()’2))_ Bl/k Ny dy (i, y)U-.

Proof. — Fix any B<a<1 such that h/(l—cx”")§§. Then for all

(x, y)€ Graph (G) N B, (x,) x B, (¥,) and all £€]0, €]
sup disty (b, G (B, (x)))<ap h*. 3)

be Byyk (v)

Let xy, y, ¥,, h as in the conclusion of theorem. It is enough to consider
the case h#0. We look for x,e G~ (y,) satisfying dy (x,, x,) <h/(1 — o'/
as the limit of a sequence we shall built. Set u,=x,. By (3) there exists
(uy, v,) € Graph (G) such that dy (uy, u,)=dx (x,, u;)<h, dy (v, y2) <ap k-,

Assume that we already constructed (u;, v;)€ Graph(G), i=1, . ..,n such
that
dy (;—q, u) <o~ Vkp 4)
dy (v, y2) <p o B*=p (@' h)*. )
Then

i—1

dy (xp, )< Y dy(uj_y, u)<h Y oi*<
j=1

ji=0

6

1—od*
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190 H. FRANKOWSKA

and
h

-y (xo, ) Sdx (xo, X,)+dy (x,, u)S = + ——_ <¢
2 1-alk

€ .
dy (vo, v) Sdy (yo, y)+dy (i, y)+dy (vy, v) < 5 +Phk+ P“’hkéﬁ-

Hence by (3) and by (5) applied to (u,, v,), there exists
(U, + 1> Vn+1) € Graph (G) such that

dx(u,., “n+1)§a"/"h’ dy(v,,+1,y2)<poc"“h“.

Observe that (4) implies that {ui} is a Cauchy sequence and that (5)
implies that lim v;=y,. Let x, be the limit of {}. Since Graph(G) is

closed, (x,, y,)eGraph(G) and thus x,eG~'(y,). Moreover by (6),

dy(xq, x,)< 1 and therefore

—(lllk

1

1—al/k h.

dx(x1, GTH() =

Since a€]B, 1[ may be chosen arbitrary close to B, the proof is complete.

3. UNIFORM OPEN MAPPING PRINCIPLE
IN SMOOTH BANACH SPACES

In the previous section we have shown that the uniform open mapping
principle (1) is a necessary and sufficient condition for the “Hélder conti-
nuity of the inverse map” (2). However verification of the open mapping
principle may be a difficult task. In this section we replace it by a “convex
uniform open mapping principle” which, thanks to separation theorems,
is more simple to deal with. We assume that Y is a Banach space and
that its norm || . || is Fréchet differentiable away from zero. We denote by
d the metric of the complete metric space X and by co the closed convex
hull. We start by a first order result.

THEOREM 3.1. — Let yoe G (x,). If for some p>0, €>0, M>0 and all
(x, ¥) e Graph (G) N B, (x,) X B, (yo) and all he]0, €]

pgcg<&h$‘))10MB> )

or equivalently

inf sup{(p, v>|ve%"§lxp——yﬂMB}gp

llpllys=1
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INVERSE MAPPING THEOREMS 191

then for all (x, y) € Graph (G) N B, (x,) X B, (yo) and all he]0, -;-[

b GBIy

P ®)

Remark

(a) Assumption (7) may be seen as the convex uniform open mapping
principle (compare with Remark following Theorem 2.1).

(b) It is clear that if (8) holds true on a neighborhood of (x,, ¥4, 0) in
Graph (G) x R, then so does (7). Hence uniform open mapping principle
and the convex uniform open mapping principle are equivalent in those
spaces whose norm is Fréchet differentiable away from zero. O

Proof. — 1t is enough to prove that for every A>0 and all x, y, 4 as in
the conclusion of the theorem

P g CBO)—y
1+ h )

Fix A>0 and assume for a moment that for some

(t, )€ Graph (G) N B, ; (x,) X B, (vo) and k€], %[, there exists

®

yez+ %ﬁ, 7¢G (Bi(0) (10)

Define 0<®<1 by @*=||z—y||(1+A)/ph. Applying the Ekeland
variational principle [12], [13] to the complete metric space
K :=Graph (G) N B;(#) X Y with the metric

dxxy ((x, y), (%', y))=d(x, x') + %Ily—y’ll an

and the continuous function (x, y) —||y—y|| we prove the existence of
(x, y) e K N Bgj(?) X Bgj(z) such that

- - ®p A
Y (u, K, =y|IS|w—y||l+ —(du, x)+ —|[w— 12
WK, [yl + 55 (4 0+ lwyl) a2

From (10) we know that y#y. By differentiability of the norm
of Y, for some peY* of |p|y.=1 and all veY of |[v|<M,

o)

ly+ho—=y||Z||ly—y||+ <p, hv> +0(h), where lim =0. Hence for

h—->0+

all (u, y+ hv)eK with ||v||<M

_ _ ®
ly=7lIlly=7ll+<{p, ko Y+oh)+ ﬁ(d(u, X)+Ah)

Vol. 7, n® 3-1990.



192 H. FRANKOWSKA

and therefore, for all small 4> 0
Ve I Bi(x)—y

h
This yields that for some ¢, - 0+

—(G(Bh(X))—y
h

NMB, {(p,v)= —(®p+ %)

Yveco ﬂMB), (p,v)2—0Op—g,

Let v€Y, ||v]|<1 be such that {p, v){—_/©. By our assumptions, for
all h€]0, €], pv belongs to the right-hand side of (7). Hence for all small
h>0 we have — é/@p_z_ —®p—¢g,, which leads to a contradiction and
ends the proof.

In the high order result stated below we assume that Y is a uniformly
smooth Banach space, i. e. its norm ||l . || is uniformly Fréchet differentiable
away from zero. That is, for a function o: R, - R, satisfying

lim o(f)/t=0 and for yeY with 0<||y||<1 there exists

t->0+

JeY*, [T
s [y o]~y ~1<30), 03|50 (]1])

y+=1 such that for every reR

where (., .) states for the duality pairing on Y*xY. Recall that a
uniformly smooth Banach space is reflexive. Every Hilbert space is
uniformly smooth and a space Y is uniformly smooth if and only if its
dual Y* is uniformly convex. In particular L? spaces are uniformly smooth
for 1<p< oo [5].

THEOREM 3.2. — Assume that Y is uniformly smooth. Let Vo€ G (x),
k1. The following statements are equivalent:

(i) For some p>0 and for all (x, y)eGraph(G) near (x9, ¥o) and all
small h>0

o GBI~y
hk
(ii) For some p>0, M>0 and for all (x, y)€ Graph (G) near (x,, y,)

and all small h>0
e SO )

(iii) For some p>0, M>0 and for all (x, )€ Graph (G) near (x,, y,)
and all small h>0

inf sup{(p, v>|ve§i"}(;»—_zﬂMB};p.

Ilplly*=1
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Prof. — Because of separation theorems (ii) is equivalent to (iii).
Obviously (i) yields (i) with M= p. To prove the implication (ii) = (i) we
proceed by a contradiction argument. Assume contrary that for some
(t;, z;) € Graph (G) converging to (xo, y,) and h; - 0+ there exist

viez+2 M RB, 3¢ G (B, (1) (13)

Applying the Ekeland variational principle [12], [13] to the complete
metric space K;:=Graph(G) B, (z)*xY and the continuous function
(x, y) = ||y —:||*"*, we prove the existence of (x;, y;) € K; such that

1 - 1
d(x;, 1)+ ”yi—zillé —hi l|yi—y: ||1/k§ Py h; (14)
2i 2i

_ _ 1
Vx, ek,  lyi=yll* < ly—nl|*+ ;(d(x, x)+||y—y:l) (5)

From (13) we know that y;#y,. Since Y is uniformly smooth for some
pieY* of || p;||y»=1 and all y,

ly=:l|Ellyi=y:ll+<ps y=yid>+o(||y=x]D-

Hence

_ _ — . —. 1/k
”y_yi“l/ké”yi_yi||1/k<1+<pi, ly Vi >+0(”J’ )’;“))

i~ ¥ill 1yi=yill

sl (1 (22 o222
kN =l lyi—y:l
°® =0 and, by (15), for all

for a function 0:R, — R, satisfying lim
h—- 0+

(x3 y)GK,-

|1/k

— — 1 — -
=yl Syl =yl Ko y =27

+nn—ﬁnwa(ﬂliéﬂ)+laamxo+ny—nn)
||y,~—yi|| !
or equivalently
1 . —v.
0= —{p; y—yi>+llyi—y.-||0<M>
k Ily,-—yl.-ll
+ ;”yi_;i”(k‘”/k (d(x, xi)+”y—yi”)'

Set

R g, A= SN

1

Vol. 7, n° 3-1990.



194 H. FRANKOWSKA

1

and observe that, by (14), d(x, t)+h< 21 h,+ E'hiz —lfhighi. Thus
l 1 1

B;(x) =B, (t) and
VoeA,, 0§1<pi,v>+\/;5<m>+i—(k+l)/2k(l+h-i.¢_1”v“).

Hence for a sequence g; —» 0+ and for all ve A;MB, (p;, v)= —¢,
Consequently

VYveco(A;NMB), {(p,v)=—¢ (16)

On the other hand, by our assumptions, for all large i,
inf  {(p;, v)< —p. But (16) yields— p= —¢;, which contradicts the

veto (A; n MB)
choice of ¢;.

4. STABILITY
OF THE UNIFORM OPEN MAPPING PRINCIPLE

The main aim of this section is to establish “stability” of the uniform
open mapping principle. Namely we prove here that if a sequence of set-
valued maps with closed graphs G;: X — Y from a complete metric space
X to a Banach space Y approaches uniformly a map G on a ball B, (x,)
and satisfies the uniform open mapping principle on a neighborhood of

(x0> ¥o), then so does G. This result is helpful for investigation of
nonsmooth problems.

TuEOREM 4.1. — Consider a sequence of set-valued maps { G, };5, from
a complete metric space X to a Banach space Y having closed graphs. Let
Vo€ Gy (x,). We assume that for some §>0 and for every L>0 there exists
an integer I, such that for all i21,, x € Bz(x,)

G;(x)=cGy(x)+AB

If for some 0<e<3, p>0 and for all iZ1, xeB,(x,), y€G;(x) N B, (¥o)
and all hel0, €]

y+phBcG;(B,(x)
then for every (x, y)€ Graph (G,) M B, 4 (x0) X B4 (), ke [0, Z] we have

y+phBcG, (B, (x)).

Proof. — Set G=G,,. It is enough to check that for every A >0 and all
(x, y), h as in the conclusion of theorem, the inclusion (9) holds true. Fix
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INVERSE MAPPING THEOREMS 195
A>0 and assume for a moment that for some

(t, z)e Graph (G) N Be/4 (x0) X B5/4 o) 0<h<

Hlm

there exists yeY as in (10). Define 0<®<1, K as in the proof of
Theorem 3.1. By Ekeland’s variational principle applied to the continuous
function (x, y) —» ” y—y || on the complete metric space K with the metric

’ ’ r )M ’

dXxY((u9 ‘D), (u,v))=d(u,u)+5||v—v “ (17)
there exists (x, y) € Graph (G) N Bgj(?) X Bgj(2) such that
- - O A

Y ek, [y—Fll<o-7]|+ ﬁ(d(u, 9+ 5||v—y||). as)

By the choice of y, y#y. Consider 8 >0 so small that
_ 28p(1+1) <min{ ly=7] (1—®)h} z

0<0®+d<1,n

2(1+2)+0Or 2 2
2
and let i be so large that for all ue B, (x,), G; () =G (v)+ B. Pick
g (%o), G; (W) =G (w) 2040
2
v'€G;(x) such that y|I= M - Then, by (18), for all

200+
(4, v)€K;:=Graph(G) N\ B;(t) x Y

2 2
HWﬂ@Wﬁwfﬂe@wiwww+".+%& n
1+ p 1+A 14X p 2(1+2)

©p dpn
< + 9P (4t +
o5+ 25 (4 oo )+ 220

Applying Ekeland’s principle to the continuous function

)

on the complete metric space K; with the metric (17), we show that for
some (u, v)eK; M B, (x) x B, (v') and all (4, v)eK;

- Op A
2 —y||l+ —(d, x)+
(u v)—>||v y|| 1+7»< (u, x) o

®
17—7]+ +" <d(u x)+

)<||v y||+—(d(u %)
8
= (d(u u)+—||v vll)<llv 7|
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P = M=,
—1-—':—‘<d(u,x)+ >

(] )
+ 22 (d( u)+—||v v”) lfk<d(u,u)+—“v v||>

Hence for every (u, v)eK;

- - — — A —
||v—y||§”v—y”+(®+8)—p—<d(u, u)+ —Hv—-v”).
1+ p
Moreover from the choice of n, '

= > “y——y“ >0
4

lo=ylzlly=>] v

Observe that d(u, x5) <~ ||<e and, by the assumptions of theo-

rem, for all €0, €]

|| y _II

Since B, (x)< 1"3,,—(z), for all small A>0

v+ph eG(Bh(u))

- A
lo-7l<lo+ph2 —y||+(®+5)—£—(h+_hp)

=
<l5-511(1-p

> ©+ 5) (1+x)
§||v—y||—ph+(®+8)ph.

1
ly=2]|

Thus p<(® +3) p<p. The obtained contradiction ends the proof. [J

Altough it is possible to prove stability of the higher order uniform
open mapping principle in uniformly smooth Banach spaces using ideas
from Section 3 and from the above proof we do not do it here: our
applications use only the above first order result.

5. VARIATIONS OF SET-VALUED MAPS

To check whether the uniform open mapping principle holds true it is
convenient to introduce variations of set-valued maps which measure
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“infinitesimal changes” of the map. We recall first the notions of Kura-
towski’s lim sup and lim inf [3]:

Let T be a metric space A,cY, teT be a family of subsets of Y. The
Kuratowski lim sup and liminf of A, at t, are closed sets given by

limsup A, ={veY |liminfdist (v, A,)=0}

T 10 T 10
liminfA,={veY| lim dist(v, A)=0}.
10 T 10

Consider a metric space X and a Banach space Y. Let G: X > Y be a
set-valued map, that is for all xeX, G(x) is a (possibly empty) subset
of Y.

DEerFINITION 5.1. — Let (x, y) € Graph (G), k>0.
(i) The contingent variation of G at (x, y) is the closed subset of Y

GW (x, y):=lim sup CB)y

h-0+ h

(ii) The k-th order variation of G at (x, y) is the closed subset of Y

G*(x,y)i= liminf OGNV
@, ¥) ~G & y) W
h-0+
where — denotes the convergence in Graph (G).

In other words ve G (x, y) if and only if there exist sequences h; » 0+,
v; > v such that y+ h;v,€ G (B, (x)). The word contingent is used because
the definition reminds that of the contingent cone of Bouligand.

Similarly veG*(x, y) if and only if for all sequences h;— 0+,
(x;, y) > c(x,y) there exists a sequence v;—v such that
yithiv,eG (By, (x)

Clearly, G (x, y) and G*(x, y) are closed sets starshaped at zero. When
X is a Banach space, G: X — Y is a Gateaux differentiable at some xeX
function and B denotes the <closed wunit ball in X, then
G (x)(B)cG™ (x,G(x)). If G is Fréchet differentiable at x then
G (x)(B)=G"™ (x, G (x)). Moreover if G is continuously differentiable at
x then G’ (x) (B)=G" (x, G (x)).

Remark. — Observe that if G verifies the uniform open mapping
principle at (x,, y,) in the sense that for some p>0, k>0 and for all
(x, y) e Graph (G) near (x,, y,) and for all small #>0

y+phBcG (B, (x)
then p B<= G*(x,, y,). Moreover if k=1 then for some £>0
pBc N GV (x, y)

(x, y) € Graph (G)
(x, y) € Bg (x0) X Bg (o)

Vol. 7, n° 3-1990.



198 H. FRANKOWSKA

In Sections 6 and 7 we show that the converse statement holds true for
the first order condition. For the high order one we have to impose some
additional assumptions. [J

Remark. — When X is a Banach space the following two set-valued
derivatives DG (x, y), CG (x, y) of G at a point (x, y)€ Graph(G) were
considered in [3], Chapter 5:

VueX, veDG(x,y)u had (un U)ETGraph(G)(x’y)
VueX, veCG(x,y)u < (4, v)€Cgqapn(c) (X, )

where Tg,apn ) (X, ¥) and Cg,,pn ) (%, ¥) denote respectively the contingent
and Clarke’s tangent cones to Graph(G) at (x, y) (see[9], [3]). It is not
difficult to show that

DG(x,y)(B) =GP (x,y),  CG(x,y)(B)=G'(x, y).

Moreover if for a subset K<Y, G(.)=K, then for every xeX, yeK we
have G (x, y)=Tyk (), G* (x, y)=Cx (). In this way some results from
[3], Chapter 5 and [4], which use the set-valued derivatives CG (x, y),
DG (x, y) are consequences of those proved in Section 6.

Let co(co) denote the convex (closed convex) hull. We proved in [18]
some properties of high order variations. In particular, if Y=R" then for
any integer k=1

(n+1)' " o G* (x, y) = G*(x, ).

The following theorem extends those results to the infinite dimensional
case.

THEOREM 5.2. — For every (x, y) € Graph (G), k>0 we have:
(i) For all K=k, 0 € G* (x, y)=G* (x, y);
(ii) For all s>0, R,G*(x, y)=G***(x, y);

(i) For all ,;=0, v;e G*(x, y), i=0, ..., m satisfying Y, \,=1,

i=0

. MveG (x, y);

i=0

(iv) For all ve coG*(x, y) there exists €>0 such that eve G*(x, y);

(v) Uprzohco G*(x, y)= Uszo AG*(x, y);

(Vi) Uss0AG*(x, »)=Y < 0eIntcoG*(x, y). Moreover if Y=R" these
conditions are equivalent to

3oy, ..., v,€G*(x,y)  suchthat O€lntco{v,, ..., v,}

Proof. — For all (x', y')e Graph (G) and h>0 we have y'€G (B, (x").
Therefore 0 G*(x, y). Fix K>k. Then for all h€]0,1], /**<h. Hence
G Byxw) (x) =y = G(B, (x)N )"
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Consequently for all veY
dist( v, G(B,(x)—y <dist( v, G (B, (K/k) x)—y
hK (hK/k)k
and (i) follows. To prove (ii) fix s>0, ve G*(x, y), A=0 and set k=k+s.
Let (x;, y) =6 (%, ¥), h; = 0+, K;=A1*h¥*_Then for all large i, h; <h;. Let
v; > be such that y,+h"‘ v; -y,+h"xv €G (B, (x))=G (B, (x)) This

1mp11es that Ave G* (x, y) and since A>0 is arbltrary (i1) follows. Fix next
A;, v; as in (iii). We proceed by induction. Observe first that

G (onh (w)— Z> -0

lim  dist <7u;, Yo, .

W, 2z) >G(x, y)
h—>0+

Assume that we already proved that for some 0<s<m
s G(B uw)—z
fim dist(Z Ao, Brao+. .. +19 W) )

k
@ 2) =G (x, y) i=0 h
h—-0+

=0. (19)

Fix (u;, z;) = (x, y), hj— 0+. By (19), for some xjeth(loJ,_ g @)
and w; — ) Afv;, we have z;+ 7 w;€ G (x;). This and Definition 5. 1 imply

i=0
that

=0 (20)

G (B, hs+1 (x))—z;— h‘; w;
A
Since By, ,, (x) =By o+ . .. 4154, @), the definition of w; and (20)
yield

lim dlst<ks+1vl+l,

j- oo

lim dist =0

Jj= o

(sil o (th(lo+- .. +xs+1)(uj))“zj)

k
i=0 hj

Because the sequences (u;, z;) = ¢ (x, y), h; = 0+ are arbitrary we proved
that (19) is verified with s replaced by s+ 1. Applying (19) with s=m and

using the identity ) A;=1 we obtain (iii). Fix next veco G*(x, y) and let
i=0

1;>0, 2,6 G*(x, y) be such that Y, p,=1, Y wv;=v0. Set L, = () **/(m+1)
i=0 i=0

for i=0, ...,m and A,,,=1—) A, v,,,=0. Since ;<1 we have
=0 m+1

A;<1 and therefore, by (iii) and (i), Y, A¥v;e G*(x,, yo). On the other

i=0

it

-~
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m+1

hand (m+1)"*v=3 ((m+1)"'p}**v,= Y Afv; and therefore (iv) holds
i=0 i=0

true with e=(m+1)"*. The statement (v) follows from (iv). Assume next
that U AG*(x, y)=Y. Since G*(x, y) is starshaped at zero, for all

A20
0=SA=p, AG*(x, y)cpG*(x, ). Thus U AG*(x, y)=Y, where Z denote
AeZ
the set of positive integers. Using Baire’s theorem, we prove that G*(x, y)
has a nonempty interior and therefore also co G*(x, y) does. Assume for
a moment that zero is not an interior point of coG*(x, y). By the
separation theorem, there exists a non zero
pe(coG*(x, »)* =(U LeoG*(x, y)* (U LG (x, y))* ={0}.
A20 A20
The obtained contradiction proves that 0eIntcoG*(x, y). The converse

follows from (v). The last statement is a consequence of the Caratheodory
theorem. [

Remark. — Observe that the proof of (iv) and Caratheodory’s theorem
yield that whenever dim Y < oo

(dim Y +1)"*co G*(x, y) = G*(x, y).

6. FIRST ORDER INVERSE MAPPING THEOREMS

As one may expect, the first order results are more simple and require
less assumptions that their high order analogous. This is why we study
them separately.

In this section, we assume that X is a complete metric space with the
metric d and Y is a Banach space with the norm || . ||. Consider a set-
valued map G:X — Y having a closed graph.

THEOREM 6.1. — Let y,€ G (x,) and assume that for some €>0, p>0
pBc N G (x, y). ey

(x, y) € Graph (G)
d(x, x0)S¢e, || y—vyollse

Then for every (x;, y,)€ Graph(G) N B, (xo) X B,y (v), y2 €Y satisfying
12—y [|<min{ 2, =2
8 4

dist (x,, G (yz»g%)nyl 1l @2)
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L 1 .
Remark. — Inequality (22) implies that for every L>—, G ! is pseudo-
p
Lipschitz at (y,, Xx,) with the Lipschitz constant L (see[1]). [

COROLLARY 6.2. — Consider y,€G (x,), p>0. Then (22) holds true for
all (x,, y1, y,) € Graph (G) x Y near (xo, ¥o, ¥o) if and only if for some >0
inclusion (21) is verified.

Proof. — Indeed if for all (x, y;, y,)€Graph(G) x Y near (xo, Yo, Yo)
we have (22), then for every such (x;, y;, y,) and every 0<p’<p

dist (x;, G™! (yz))<l,
p

J’l_)’z”

1 C e
and therefore for some x'€ G~ (y,), d(x;, X) S|y, — .|| This implies
Y

that for all small A>0, y, +p’hBcG (B, (x,)). Hence p'Bc G (x4, y,).
Thus (21) is satisfied for some £€>0 and every p’<p. Since the right-hand
side of (21) is closed we deduce that the inclusion (21) is verified as well
with p=p’. The opposite follows from Theorem 6.1. U

The above contains a classical result of functional analysis:

COROLLARY 6.3. — Let g:X Y be a function between two Banach
spaces. Assume that g is continuously differentiable at some x,€X and for
some p>0

pBcg (x)) B (23)

Then for all (x, y) near (x,, y,), dist (x, g~ (¥)) §E llg ()= || In particular
p

for yo=g(x,) and for all xe x,+Kerg' (x,)
dist(x, g~ ' o)) =0 ([ x— X))

and thus the tangent space to g~ ' (y,) at x, coincides with Ker g’ (x,).
To derive such result, it is enough to observe that since ge C' locally

at x, by our assumption, for all x near x,, ch g (x)BcgM(x, g(x)).

Remark. — By the Banach open mapping theorem, assumption (23) is
verified whenever g’ (x,) is surjective, i.e. g'(xo) X=Y, O

Proof of Theorem 6.1. — By Theorem 2.2, it is enough to check that
for every A>0 and for all

(x, )€ Graph (G) (\ By (¥g) X Byz (o), he [o, g}
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inclusion (9) holds true. Fix A>0, (¢, z) e Graph (G) N B, ; (x,) X B, (¥o),

~ € A Ca
0<h§5 and assume for a moment that there exists yeY satisfying (10).

Define 0<®<1 and K as in the proof of Theorem 3.1. Applying the
Ekeland variational principle [13] to the continuous function
(x, ) = ||y— || on the complete metric space K with the metric given by
(17), we prove the existence of (x y)€Bgir () X Bgi (2) verifying (18).
Observe  that  xelntBg(), yelntB,,(z) and p#y. Set
w=—p(y=p)/||y—y||- By our assumption there exist h; >0+, w,—»w
such that y+h;w;e G (B,,(x)). Hence, from (18) we deduce that for all
large i

=y w5 =l 55 14 o]
=|1- P w;—w ©p w;
R [ BT R (R

vl

and therefore h; p<h;||w;,—w||+ (j)#p)» (l +;:” w,.||). Dividing by p 4; and
p

taking the limit yields 1<®. The obtained contradiction ends the
proof. [

THEOREM 6.4 (A characterization of the image). — Let y,e G (x,).
Assume that there exist closed convex subsets K (x, y)= G (x, y), £>0
and a compact set Q<Y such that

Int N K@ »n+Q#J. (24
(x, y) € Graph (G)
(x, y) € Bg (x0) X B (y0)

Then at least one of the following two statements holds true:
(1) There exist L>0, 8>0 such that for all

(x4, ¥1, ¥2) €(Graph (G) M B; (x,) X B; (¥)) X Bs (30)
dist (x;, G™' () =L ||y, —y, |-

(ii) There exists a non zero pe Y* such that

Vwe liminf K(x,y), {(p,w)20. (25)

(%, )G (x0, Y0)

Consequently if for some 8>0, y, is a boundary point of G (B;(x,)), then
there exists a non zero pe Y* such that (25) is satisfied.

Observe that if Y is a finite dimensional space and 0e€ K (x, y) for all
(x, y)e Graph (G), then condition (24) is always verified with Q equal to
the closed unit ball.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



INVERSE MAPPING THEOREMS 203

Proof. — If for some €' >0
0elnt N K(x, »)

(x, y) € Graph (G)
(x, y) € Bgr (x0) X Be’ (o)
then Theorem 6.1 implies statement (i). Otherwise if for every &'>0
the above is not satisfied, by the separation theorem for a sequence
(%5 ¥) = (X0, o) and some p;e Y* of || p;|ly-=1, p; > 0+
inf {(ppk)zZ—m (26)

k eK (xi, yi)

Let zeY, p>0 be such that the ball z+ p B is contained in the left hand
side of (24). Pick w;eB such that {p, w;) 21— 1 and let k;eK(x; ),
i
g;€Q be such that z—pw;=k;+gq,
Then
1
(P 2= qiy={ps PW; ) +{Ps ki) §P<1 _;>_Hi
Consider a subsequence g;; converging to some g€ Q. Then for all large j
_ p
<pijs z—q) —>_—5

Let pe Y* be a weak-* cluster point of {p; }. Passing to the limit in
the last inequality we get {p, z—q ) = p/2. Therefore p is different from
zero. On the other hand the inequality (26) yields (25). O

When the norm of Y is differentiable, then a stronger result may be
proved:

THEOREM 6.5. — Assume that the norm of Y is Gateaux differentiable
away from zero and let y € G (x,). If for some €>0, p>0, M>0
pBc N c0(G™ (x, y) " MB) (27)

(x, y) € Graph (G)
(x, y) € B¢ (x0) X Bg (y0)
then for every (xy, y,)€ Graph(G) N B, (xo) X B;j4 (o), y2€Y satisfying
gp

. (e
— < - =
|2 y1||_m1n{8 4}

. _ 1
dist (x;, G™* (Vz))§5”}"1 —Y2 ”
Remark. — 1t was shown in [17] that in the case when G is single-
valued, the constant M in the assumption (27) may be taken equal to

+o0. O
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COROLLARY 6.6. — Assume that Y =R" and that for some M >0
OcInt liminf co(G™(x, y)(\ MB).

(x, ¥) G (x0, y0)
Then there exist €>0, p>0 such that conclusions of Theorem 6.5 are valid.

Proof. — By Theorem 2.2 it is enough to show that (9) holds true for
all A>0, (x, y)eGraph (G) N B, (x) X B,2(¥o)s 0<h'§§-. Fix such A,

h, (t, z)=(x, y) and assume for a while that there exists yeY satisfying
(10). Define O, K as in the proof of Theorem 3. 1. Applying the Ekeland
variational principle [13] to the continuous function (x, y) = ||y —y]|| on
the complete metric space K with the metric (11), we prove that for some
(x, y) € Bgi(t) X Bgi(2), inequality (12) is verified. Since y+#y, from differ-

entiability of the norm, we infer the existence of pe Y* of || p||y~=1 such
that for all h; >0+, v; > v
ly+hyo=ylI=lly=yll+{p, hjv)+o, ) (28)
where lim inf o, (h;)/h;=0. Fix ve G'") (x, y) and let h; > 0+, v; - v be such
Jj—
that y+h;v;€ G (B, (x)). Then from (12) and (28)
Op A
0=<{p, hjv>+m(hj+ﬁhj“vj||>+o,,(hj)
Dividing by 4; and taking the limit yields
Op A
oY >——P (1+2
rroyz =20 (10 o]
and therefore
Voeco(GY (x, ) "MB), (p,v)=—Op. (29)

Since (x, y)eB,(x,) X B,(y,), by the assumption of theorem,
pBcco(GM(x, ) "MB). Using that 0<®<1 we derive a
contradiction. O

The following theorem provides a stronger sufficient condition for local
invertibility but does not allow to estimate the Lipschitz constant.

THEOREM 6.7. — Assume that the norm of Y is Gdteaux differentiable
away from zero. Let y,€ G (x,). Further assume that there exist €>0, M>0
and a compact Q<Y such that

Int N (co(GP(x, ») "MB)+Q)# . (30)
(x, y) € Graph (G)
(x, ) € Bg (x0) X Bg (vo)

Then the following statements are equivalent

Annales de I'Institut Henri Poincaré - Analyse non linéaire



INVERSE MAPPING THEOREMS 205

0) ( lim inf  ¢0(G™ (x, y) "\ MB)+G" (x,, yo))+={0}

(x, ) >G (X0, Yo)

(ii) for some 6>0, L>0 and for all

(x1, ¥1, ¥2) €(Graph (G) N By (x) X B; (¥5)) X B; (¥o)
dist (x,, G™! ) =sL ”}’1 - )2 “

In particular if for some 8>0, y, is a boundary point of G (B;(x,)), then
there exists a non zero pe Y* such that

Vwe liminf co(G"(x, )) NMB)+G' (xo, yo), {p,w)20 (31

x, )~ G (x0, y0)

Moreover if G is single valued, then M in (30), (31) and (i) may be taken
equal to + 0.

As a consequence we deduce a very useful criterion using interiority
properties in subspaces with finite codimension.

COROLLARY 6.8. — Let y,eG(x,). Assume that Y is a Hilbert space
and that there exist a closed subspace HcY of finite codimension, p>0,
M>0, zeY such that for all (x, y)e Graph (G) near (x,, y,)

z+pBycco(GY (x, y) \YMB)

where By denote the closed unit ball in H. Then the conclusions of Theorem
6.7 hold true.

Proof. — Let P denote the orthogonal projection onto H and Q’ denote
the closed unit ball in the ortogonal space H*. Then the set Q:=pQ’ is
compact and for all xepB, x=x—Px+PxeH'+H, where ||Px|<p
and ||x—Px|/<p. Hence pBcpB,+pQ’ and

z+pBez+pBy+pQ cco(GP(x, y) \MB)+pQ’

for all (x, y)e Graph(G) near (x,, y,). Therefore (30) is verified and the
result follows from Theorem 6.7. [

Proof. — By Theorem 2.1, (i) implies that for all (x, y)e Graph(G)
near (x,, yo) and all small #>0

y+%hl§cG(Bh(x))

.\ 1 P
and from Definition 5.1 we deduce that IBCGI (x> o) Which implies

(). To show that (i) = (i), by Theorem 2.1, it is enough to prove that
for some p>0 and all (x, y) e Graph (G) near (x,, y,) and all small #>0

y+phBcG (B, (%)
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Assume for a moment that for some (¢;, z;) = (xo, ¥o), h; > 0+ there
exist

_ _ .
yi¢G(Bh_,-(ti))9 ”yi_zi“<i_2'9 i=1,2, ... (32)

We shall derive a contradiction. Set K;=Graph(G) N B; (1) xXY. We
apply the Ekeland variational prmc1ple ([12], [13]) to the continuous
functions K;3(x, y) = |y—»:|, i=1,2, ... to prove the existence of
(x;, ¥;) € Graph (G) x Bj, ;i (6) X By, (z,.) such that for all (x, y)eK;

ifi

_ — 1
Ilyi—yiIlélly—yi||+;(d(x, x)+ |y =y D 33)

By dlfferentlablhty of the norm and by (32), there exist p,e Y*,
|| p:]ly+=1 such that for all ;> 0+, v;— v, we have
“yi+h'v'_.)7i”=||yi_)7i“+<pia hjv)+o; ,(h)

where lim o, , (h)/h=0. Fix ve G (x;, y;) and let h; > 0+, v; > v be such
h—0+

that y;+h;v;e G(B,,j (x;)). Setting y=y,+ h;v; in (33) we obtain

0= (po hyod+oy, o(h)+~(hy+hy | vy]). (34)
l

Dividing by 4; and taking the limit when j— oo yields that for all
veGY (x;, y), {piv) = —-1.(1 +||v||) and therefore
i

Voewo (GO (x, 3) AMB), (p,0)Z—L(14M)  (35)
1

By (30) there exist zeY, p>0 and g;eco(G™ (x;, y;) "MB), ¢,€Q,
w;eB such that (p, w,-)%]—l‘, z—pw;=a;+q;. From (35),
i
1+M

i
some g€ Q. Then for all large j

(pipz—4q)

(Piz—PpWi—q; )= — - Consider a subsequence g¢;; converging to

[\Y
N o

Let peY* be a weak-* cluster point of { p;;}- Then from the last
inequality we deduce that p#0. On the other hand (35) implies that

Vwe lim inf co(G®(x, ) "MB), (p, w) =0 (36)

(x, )= G (x0, Y0)
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Fix next ve G' (x,, y,) and choose h; - 0+ in such way that
llm oi, v (hl) = 0

Let v; — v be such that y;+h;v,€ G (B, (x;)). Then from (34) there exist
g;— 0+ such that

and B, (x;) =B ().

(o vy 2 =e 1+ ul)

Since p is a weak-* cluster point of {p;}, we infer from the last
inequality that for all ve G* (x,, yo), {p, v) =0. This, (36) and (i) together
yield that p=0. The obtained contradiction proves (ii). When G is single-
valued, the Ekeland principle has to be applied in the same way as before
to the continuous functions x — || G (x) — ;|| on the complete metric spaces

Bh_i (t,-).

7. HIGH ORDER INVERSE MAPPING THEOREMS

We impose here on G, X the same assumptions than in Section 6. To
prove a high order inverse function theorem we need more smoothness
on the space Y. Namely we assume in this section that Y is uniformly
smooth (see Section 3). Observe that Theorems 3.2 and 2.1 immediatly
yield.

THEOREM 7.1. — Let y,€ G(x,) and assume that for some k=1, p>0,
M >0 and all (x, y)e Graph (G) near (x4, yo) and all small h>0

pBcco (ﬂB—h(f—)—)—yﬂMB>

or equivalently

inf {(p, NE ewﬂMB}>p

pllys=1

Then there exists L>0 such that for all (x,, y,)€ Graph(G) near (x,, y,)
and all y,€Y near y,

dist (x;, G™* (7)) SL ||y, — . ||~

TueoreM 7.2 (High Order Inverse Function Theorem). — Let
Yo€G (x) and assume that (30) holds true for some €¢>0, M20 and a
compact set QY. If for some k=1, 0eIntco G*(x,, y,), then there exists
L >0 such that for all (x,, y,)€Graph(G) near (x4, y,) and for all y,eY
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near y,

dist (x;, G~ (n)) <L ||y, — y, || .

Observe that if Y is finite dimensional then (30) is always verified with
M=0, Q=B. From Theorem 5.2 (vi) follows

CoRrOLLARY 7.3. — Assume that Y=R" and that for some k=1 the

convex cone spanned by G*(x,, y,) is equal to Y. Then the conclusions of
Theorem 7.2 are valid.

Proof. — By Theorem 2.1 it is enough to show that for some p>0
and all (x, y) e Graph (G) near (x0> ¥o) and all small A>0

y+phBcG (B, (x)).

If we assume the contrary, then, by the proof of Theorem 3.2, there
exist (4, z;) = (X, Yo), (X5 ¥) = 6 (X0, ¥o)s ¥i— Yo» hi= 0+, hi>0+,
pieY* of |py»=1 and a function o:R, >R, such that
Bi, (x) =B, (), y;#y;, lim o(h)/h=0 and

h—-0+

1
V(xay)EGraph(G)mBhi(ti)xYa O§E<pny_yl>
_ -y, 1 R
+||y—yi||o(”yqy_'”)+~.||yi—yin<k D@ x)+Hy-nl) (37)
lyi=wll/) i

and
EG(Bh_,-(xi))_yi

E}‘ 9’
og%@i, w>+\/ia<_||\”}l“)+i-<k+w2k(1+17;—1”w”).

Vw

Fix ve G*(x,, y,) and let v, - v be such that yi+Hfv;€ G (B (x;)). Thus
we deduce from the last inequality

051 vi>+ﬁa(”;%"}‘)+r<“w2k<1 FR )

Let p be a weak cluster point of { p;} (it exists because Y is reflexive).
Then taking the limit in the above inequality we obtain {p,v)=0 and
since v is arbitrary

PE(G*(xo, o))" =(co G* (xo, yo))* ={0}.
We show next that p can not be equal to zero. Fix ve G®(x,, y,) and

let 7;— 0+, v; > v be such that yi+hjvj€G(th(xi)). Setting y=y;+h;v;
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in (37), dividing by 4; and taking the limit yields
1 1 — e
05 Cpi 0= 3= Fil* 1+ o]

Hence for a sequence g; — 0+ we have
Vveco (G (x;. y) N MB), (prv)2—¢&

The end of the proof is similiar to that of Theorem 6.1. Let z, p, w;,
a;, q; be as in the proof of Theorem 6.1. Then

1
(P z—qi) Zpi PWi )+ P> a;) gp(l_;>_8i'

Consider subsequences {p;; }, {q"i} such that {p; } converges weakly to
p and gq;. > qeQ. Then the last inequality implies that (p,z—¢q) =p
which yefds that p can not be equal to zero and completes the proof. [

COROLLARY 7.4. — Let y,eG(x,). Assume that Y is a Hilbert space
and that there exists a (closed) subspace HcY of finite co-dimension, ze H,
p>0, M >0 such that for all (x, y)e Graph(G) near (x,, y,) and all small
h>0

z+ pBycco (GM (x, y) N MB).

If for some k=1, 0eIntcoG* (x,, y,) then we have the same conclusions as
in Theorem 7.2.
The proof is similar to the proof of Corollary 6.8 and is thus omitted.

8. TAYLOR EXPANSION
AND THE INVERSE FUNCTION THEOREM

Consider a function f from a Banach space X to a uniformly smooth
space Y. Let x,eX and assume that for some integer k=1, f e C* at x,,.
Then f can be approximated on a neighborhood of x, by its Taylor
expansion:

al
Let — (x) denote the i—th derivative of f at x. Then there exists a
. . o(h
function o:R, — R, such that lim =0 and for all x near x, and
h—-0+
allveB
k Lo
"o
“f(x+hv)—f(x)— Y 13 {(x)v. o[ S0 (HY).
i=1 1 0X
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THEOREM 8.1. — Assume that Y =R" and

hl kat

OcIntco lim inf {

x—-xg, h—»0+

ol lels

Then there exists L>0 such that for all x near x, and y near y,

dist (e, S ) SL| £ -y

The above is a consequence of Corollary 7.3 and the following.

LeMMA 8.2. — The k— th variation f*(x,, f (x,)) is equal to

fim inf {z ’kﬁ'l(x)v o ||v]|§l}.

x—x0, b0+ (i=1 i!

Proof. — For all x near x,, and all veB and A>0 we have

f(x+ho)—f(x)= Z fIIZ—J;()c)v v+o(H, x)
k
where lim M” =(0. Hence the Hausdorff distance of

k
x—xg, h—»0+ h

{Z }L_ky(x)v 0] ]|v||§1} Mls smaller that € (h),
i

where hm s(h) 0. The result follows from the definition of the k—th
h—0+

variation. [
Observe that Theorem 7.1 yields.

THEOREM §.3. — Assume that for some p>0, M >0 and for all x near
Xxq and all small h>0

htkaf

inf {(p,w){we{lz

Ilplly*=1 i=1

ol lelist ] wlsm 2

Then there exists L>0 such that for all x near x, and y near y,
dist(x, /T ONSL|| f )=y ™

Remark. — In [17] we derived from the above theorem a second order
sufficient condition for the existence of local Holder inverse of f with the

1
Holder exponent equal to > (k=2).
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9. AN IMPLICIT FUNCTION THEOREM

Consider Banach spaces X, P, Y and a continuous function
g : XxP —>Y. Assume that for some (x, p)e X x P

g(x, p)=0
and %g (.,.) is continuous on a neighborhood of (x, p). We investigate
x

here the sets

Z(p)={xeX:g(x, p=0}.
Since g is continuous, the (set-valued) map Z has a closed graph.
Moreover

xeZ(p).

The results of Section 6 yield the following implicit function theorem.

THEOREM 9.1. — Assume that for some p>0
oBc 7B (38)
Ox

and let 0<g<1 be given. Then for some 8>0 and all (x, p) e B;(x) x B;(p)
there exists z(p)e Z(p) (i. e, g(z(p), p)=0) such that

1 1
“x"Z(P)“éi—:; B”g(xap)”-

The above result extends [37], Theorem 2.2. The Banach open mapping
theorem imply that (38) is verified (for some p>0) when the derivative

08 — ~. . .
% (%, p) is surjective.
0x

Proof. — Fix g'<e<l and let &>0 be such that for all
(x, P)€ By (x) X By (p)

(1-¢)pB < & (x,p)B.
0x

’

Let 0<6< % be so small that for all

(x, p) € B5 (X) X By (p), ||g(x,p)||<min{%,p_f3'_ﬂi;8')}.

For every p e By (p) define the (single-valued map) G,: X - Y by
VxeX, G,(x)=g(x, p).
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Then G, satisfies assumptions of Theorem 6.1 with p replaced by
(1—¢€)p and €=0'. Therefore for every (x, y)€Bg 4 (x)x Y satisfying

||G(x)||<§ ly—G (x)||<m1n{8, p(i 8)}

dist(5,Gy )% |Gy 9=yl < L6,y

(1 p(l—¢)
Applying the above with y=0 we obtain

VxeBy (D, dist(nZ()< ing(x, Pl

Since p € B, (p) is arbitrary the proof is complete. O

Remark. — Theorem 9.1 can be proved for more general spaces P, Y
and for a less regular function g. We do not do it here in order to simplify
the presentation of the result. [J

As an example of application consider a continuous function
f:R"XR"—> R™ and an implicit dynamical system.

S (x, x)=0 (39

An absolutely continuous function xe W (0, T), T>0 is called a trajec-
tory of (39) if for almost all ¢t€[0, T, f (x(¢), x"(£))=0. A direct way to
make the above system implicit is to replace (39) by the differential
inclusion

x'eF(x) (40)
where the set-valued map F:R" — R" is given by
F(x)={veR"| f(x,v)=0}.

An absolutely continuous function xe W1 (0, T), T>0 is called a
trajectory of (40) if for almost all z€[0, T], x' (f) € F (x(2)). It is clear that
solutions of the implicit system and of the corresponding differential
inclusion do coincide. Since f is continuous, F has a closed graph. If
moreover for all xeR" there exists € >0 such that

lim inf inf || f(x, v)|[>0 41)

Ilv]l = o xeBg(x)

then F has compact images and is upper semicontinuous. When F is
locally Lipschitz in the Hausdorff metric, then it inherits many properties
of ODE. For instance, solution sets of the differential inclusion depend in
a Lipschitz way on initial conditions [2] and the variational equation of
ODE may be extended to differential inclusion ([20], [21]). The result
below provides a sufficient condition for the local Lipschitz continuity of
F (in the Hausdorff metric).
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THEOREM 9.2. — Assume that f €C' and that (41) holds true for all
xeR". If xeR" is such that F(x)# & and for all veF (x) the derivative

2—f (x, v) is surjective, then F is locally Lipschitz at x.
v

Proof. — Fix x as above. By (41), F(x) is a compact set. Hence the
surjectivity of derivative yields that for some p>0 and all ve F (x)

oBc Y G 0B
v

Since feC!, by (41), there exist L>0, >0 such that for all
veF (B;(x)), f (.,v) is L-Lipschitz on B;(x). Applying Theorem 9.1 to
the function g(x, p):=f (p, x) and using compactness of F(x) we prove
that for some K>0, 0<8<3 and all x, yeB;(x), v,€B;(F(x)) N\ F(x)
there exists v, € F (y) satisfying

oy = ve | K[| f0, v [|SKL |y = x]|. “2)

On the other hand the upper semicontinuity of F yields that for some

0<d' <3 and all xeB; (x) we have F(x) c B;(F (x)). Therefore for all x,

y€B; (x) and all v, eF(x) there exists v,€F(p) satisfying (42). This is
equivalent to the local Lipschitz continuity of F at Xx.

10. LIPSCHITZ BEHAVIOR OF CONTROLS

Let U be a separable metric space, E be a Banach space and
f:ExU —E be a continuous, differentiable in the first variable function.
We assume that

(a) f is locally Lipschitz in the first variable uniformly on U, i. e. for
every x€E there exist L>0 and €>0 such that for all ueU, f(., ) is
L-Lipschitz on B, (x) : i. e.

Vx', x"eB,(x), | f s w)—f (x",w)||SL]|
f

... 0 . .
(b) For every ue U the derivative —5—( ., u) is continuous.
x

x'=x"].

(c) For every xeE the set f (x, U) is bounded.

For all T>0 a (Lebesgue) measurable function « :[0, T] - U is called
an admissible control. Let % denote the set of all admissible controls
defined on the time interval [0, T]. Define a metric on % by setting

dr(u,0)=p({1e[0, THu@®)#v(1)})

where p states for the Lebesgue measure. The space (%, dy) is
complete [13].
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10. 1. Finite dimensional control system

Let E=R", x,€E and f, U be as above. Consider the control system
x'=f(x, u(t)), ME%T,T>0}
x(0)=x,.

An absolutely continuous function xe W1 (0, T) (the Sobolev space)
is called trajectory of the control system (43) if x(0)=x, and there exists
u€ ¥y such that x'(1)=1 (x(#), u(¥) a. e. in [0, T].

For all T>0 the reachable set of the system (43) at time T is given by

R(T)={x(T)|xe W (0, T) is a trajectory of (43) }.

Let ze W' (0, T) be a given trajectory and ue%; be a corresponding
control. We provide here a sufficient condition for

z(T)eInt R (T)

and for regularity of the “inverse”.
Consider the linear control system

(43)

’ a - - -
w' ()= é @, u@w@O+y @), y®ecof(z(D),U)~f (z(),u(r)
w(0)=0
and define the corresponding reachable set
RY(T)={w(T)|we W' (0,T) is a trajectory of (44) }.
For all se[0, T}, let S;(. ; s) denote the solution matrix of the system

Z ()= g CUaW)Z@,  telsT]

Z(s)=1
where 1 states for the identity. Then

(44)

T R — p—
RY(T)= {j Sa(T; 5)y(s)ds|y(s)eco [ (z(s), U)—f(Z(S),u(S))}-
[}
For every ue % we denote by x, the solution of (43) (when it is defined
on the whole time interval [0, T]) corresponding to the control u.
THEOREM 10.1. — Assume that
0eIntREY(T) 45)

Then z(T)eInt R (T) and there exist >0, L>0 such that for every control

ueUy satisfying dy(u, uy<e and every beB,(z(T)) we can find a control
ueUy with

x(M=b;  p({te[0,T)|a@®)#u®})<L|b-x,(T)|
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In particular for all be B, (z(T)) there exists a control ue U such that
xO=b,  p({rel0.Tu(®)#u@)}=L|b-z(D).

Remark. — The fact that from (45) follows z(T)eIntR(T) is well
known. The second part of Theorem 10.1 providing an estimation of
controls is a new results. We also observe that € and L in the above claim
can be estimated from the data of the problem. [J

. t
Proof. — Replacing ¢ by T we may assume that T=1. Set #=%,. From

the Gronwall inequality follows that for some §>0, the map ¢ (u)=x,
from B,(u) to C(0,1; E) is single-valued and Lipschitz continuous. For
all ueB;(u) and se[0,1] let S,(.; s) denote the solution matrix of the
linear system

20=Le0u0z0, el
x
Z(s)=1
Fix ueBy;, (), veU and let 0<z,<1 be such that x| (t5)=1 (x,(t,),
u(t,)). (The set of such points ¢, is of full measure in [0, 1].) For all small
h>0 consider controls

v, to—h<t<t
w, ()= { ° ¢ (46)
u(?), otherwise

and let x, denote the solution of (43) corresponding to u,. Controls (46)
are needle perturbations of u and it is well known that

.o x,(1)—x,(1
tim OZ5C) 2, (1510) (f (5,009 -7 (G0 ). @D
-0+

Set V,(9)=f (x,(®), U)—f (x,(2), u(¢)) and define the Lipschitz continu-

ous map G:B;(u) » E
Gw=e@1)=x,(1).

Then, by (47), for every arbitrary but fixed ue By, (u), for almost all
to€f0, 1] and all veV,(t,), S,(1; t5) ve GY (u, x,(1)). Let M be the Lip-
schitz constant of G. Hence GV (i, x,(1)) = MB and we proved that for
almost every ¢,€[0, 1], and every

yecoV,(to),  S,(1; to)yeco(G? (u,x,(1)) N MB).

From the mean value theorem follows that for all measurable selection
y(@®ecoV,()

Il S.(1; )y (dteco(G™ (u,x,(1)) N MB). (43)

0
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By (45) there exists p>0 such that

pBc {f Sa(1; t)y(t)dtly(t)GEV.z(t)}- (49)
0

On the other hand Gronwall’s inequality and the assumptions (a), (b)
imply that { S,(1;.) } converges uniformly to S;(1;.) when u— u and
from (a), (¢) and continuity of f we deduce that

1 — —_—
lim J H (coV;(1), coV, (1) dt=0
u—->u4Jo

where # states for the Hausdorff distance. Since the right-hand side of
(48) is convex, this yields that for some 0< < %8 and all ueB;(u)

B «Ulsu(l; z)y(t)dtly(z)emuo)}

0 —
< co (G (u, x,(1)) NMB)  (50)
Theorem 6.5 then and (50), (48) end the proof.

10. 2. Infinite dimensional control system

We assume here that E is a Banach space the norm of which is Gateaux
differentiable away from zero. Let { S(7)},5, be a strongly continuous
semigroup of linear operators from E to E and A be its infinitesimal
generator, x, € E. Consider the control system

X' (O)=Ax()+f (x(t),u?)), UEUy, T>O}
x(0)=x,

Recall that a continuous function x: [0, T] — E is called a mild trajectory
of (51) corresponding to the control ue % if for all 0<¢=<T

(1)

x()=S@®)x,+ jtS(t—s)f(x(s),u(s))ds.
0

As before we define the reachable set of (51) at time T>0 by
R(T)={x(T)|xeC(0,T;E) is a mild trajectory of (51)}.

Let (z, u) be a trajectory-control pair of (51) on [0, T]. We study the
same question as in the previous section, i. e. sufficient condition for

z(T)eIntR(T)
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and for regularity of the “inverse”. Consider the linear control system

W ()= Aw(D)+ gff (2 (o), w(1) o),
X

_ _ (52)
y(t)eco f(z(1), U)—f (z(1), u(?)
w(0)=0
Let S;(¢; s) denote the solution operator of the equation
Z(H=AZ(n+ j—f @, u®)Z(2) (53)
X

That is the only strongly continuous solution of the operator equation
VpeE,

Sa(t; )p=S(t—s)p+ Jr S(— cF)gf (z(0),u(0))Sz(c; s)pdo
X

where 0<s<t<1. Then the reachable set R*(T) of (52) by the mild
trajectories at time T is given by

T
RY(T)= {J S,.-(T;S)y(S)dS|y(S)GC_Of(Z(S),U)—f(Z(S),E(S))}-
0

For every ue%; denote by x, the mild solution of (51) (when it is
defined on the whole time interval [0, T]) corresponding to the control u.

THEOREM 10.2. — Assume that 0€Int RY(T). Then z(T)eIntR(T) and
there exist €>0,L>0 such that for every control ue@ satisfying
d; (u, u)y<e and all be B, (z(T)) there exists i€ Uy with

x;(T)=b;  p({tel0, THu@#a()})SL||b—x, (D).

Proof. — The proof is analogous to the proof of Theorem 10.1 so we
only sketch it. We may assume again that T=1 and applying the Gronwall
inequality, we can find §>0 such that the map ¢:B;(u) - C(0,1; E)
associating with every ueB; () the mild solution x, of (51) is Lipschitz
continuous. For all ue B, (u), let S, (¢; s) denote the solution operator of
the equation

Z'()=AZ(H)+ s_f

X

(x, (0, u (D) Z(2). (54)

Define the continuous map G:B;(«) - E by G (u)=x, (1) and consider
again the needle perturbations of controls (46) and the corresponding
trajectories x, of (51). Then we obtain (47) for all fixed u near u and all
t, from the set of Lebesgue points of f (x,(.), u(.)) of full measure (see
for example [14]). Let V,(¢) be defined as in the proof of Theorem 10.1.
By the same arguments for all # near u and every measurable selection
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y()ecoV,(f) the inclusion (48) holds true. The assumptions of theorem
yield (49) for some p>0. The Gronwall inequality imply that (50) holds
true for all u near u by the same reasons as in the proof of theorem 10.1.
Theorem 6.5 ends the proof.

11. A MULTIPLIER RULE
FOR INFINITE DIMENSIONAL PROBLEMS

We study here necessary conditions satisfied by optimal solutions to the
abstract optimization problem

minimize {J (u) |ue %, G (u)eK } (55)
where
, is a complete metric space

J, is a locally Lipschitz function from # to R

G, is a locally Lipschitz function from % to a Banach space
X

K, is a closed subset of X.
We denote by || . || the norm of X.
Recall that the contingent cone to K at xeK is defined by

Tx (x)= lim sup K

h—0+

and Clarke’s tangent cone to K at xe K by

Ck (x)= lim inf
x' > Kgkx,h =0+

where — denotes the convergence in K.
The normal cone to K at x is the negative polar of Cy (x) :

Ng (0)=Cg ()" ={peY* |VWECK(X), (p,w) éo} .
The cone Ci (x) is convex and is contained in Ty (x) ([9], [3]).

DEeFINITION 11.1. — We say that the set K is sleek near x,eXK if there
exists a neighborhood A" of x, in K such that for every xe &/

Tk (x)=lim inf Ty (x")

x' = Kx

In this case for every xe &', Ty (x)=Cg (x) [3]
In particular K is sleek when it is convex or when it is a C*-manifold.

THEOREM 11.2. — Assume that uy solves the problem (55) and that K is
sleek near G (uy). Further assume that for some compact Q < X, p>0, £>0
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and closed convex sets C(u) = (J, G)V (u, J (u), G (u)) containing zero we
have

V(u, k)€ B, (4o) X (K N B, (G (%)), pBcn(Cw)—Tx(x)+Q (56)
where T denotes the canonical projection of R X X onto X. Then there exist

A20, peNg(G(u)), (A,p)#0 57
such that
V(j,g)elim infC(w), rj+{p,g)>=0. (58)
u = ug
Remark.

(a) Observe that when X is a finite dimensional space, then the condition
(56) is always satisfied with Q equal to the unit ball and p=1.

(b) Tt is possible to prove a similar theorem without assuming that K is
sleek, by using closed convex subcones of Ty (x) and their lower limits.
This will lead however to somewhat “heavy” formulas. The sleekness
hypothezis allows to avoid such misbehavior of nonsmooth sets of
constraints. [

Proof. — Consider the set-valued map P: % — R x X defined by
PwW=J@w+R,,G@w)—K).

We first verify that Graph (P) is closed. Indeed let (u,, g,) € Graph (P)
be a sequence converging to some (u, q). Then for some r,20, k,eK,
q,=J (w,)+r,, G@u,)—k,). Since J, G are continuous (r,, —k,) = g—(J (),
G (w) and thus {r, } and { k, } are converging to some (r, k)eR, xK.
From now on we write (J, G)* () for (J, G)M (u,J (u), G (u)). It is not
difficult to show that for all ue%, r=0, keK

J, GV w)—R_ xTg (k) =« PV (u,J (w)+r,G(w)—k) (59)

Hence for all ue#, r=0, keK

A, k):=C@u)—R_xTy (k) = PV (u,J (w)+r,G () —k).
Since J is locally Lipschitz there exists M >0 such that for all ue % near

u, and for every (v, w)eC(u) = RxX we have ||v||<M. This and the
assumption (56) yields that for all ue % near u, and all keK near G (1)

[-L1]xpBc A k)+[-M—-1,M+1]xQ
The sets A (u, k) being convex closed, we may use Theorem 6.4 with G
equal to P. Since u, is an optimal solution (J (4,), 0) is a boundary point
of Im P (image of P). Therefore the second statement of Theorem 6.4
holds true. Thus for some AeR, pe X* not both equal to zero
V(j,g)elim infC(u), r=0, ve lim inf Ty (k),

u = ug k =KkG (ug)
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rAG+r)+<{p,g—2v)=0.
Using that K is sleek we deduce that
lim inf Ty (k) =Ty (G (45)) = Ck (G (4y))-
k =KG (uo)
Setting (j, g)=0 we obtain (57) and setting r=0, v=0 we get (58). O

When the norm of X is differentiable, then the sleekness hypothezis on
K may be omitted and a stronger result can be proved:

THEOREM 11.3. — Assume that the norm of X is Gateaux differentiable
away from zero and let uy€ U be an optimal solution of (55). Further assume
that for some compact set Q = X, p>0, y>0, e>0

V (1, x) € B, (o) X (K M B, (G (1)),
pB < co (G (4, G )~ Tx (x) NYB)+Q.
Then there exist (A, p) as in (57) such that
V (j,g)elim infco (J, G)V (u,J (), G (w)), Aj+<{p,g)=0.  (60)

u = uo
Observe that if Q < X is compact, so is co Q. Therefore we may always

assume in Theorem 11.3 that Q is convex. This and the separation
theorem immediatly yield

THEOREM 11.4. — Let X, u, be as in Theorem 11.3. Further assume
that there exist subsets A (1) = co GV (u, G (), such that the map u — A (1)
is continuous at uy. If for some compact set Q = X, p>0, y>0 and all
xeK near G (uy)

pB < co(A(ug)—Tx (x) NYB)+Q
then the same assertions as in Theorem 11.3 are valid.
CoRrOLLARY 11.5. — In Theorem 11.4 assume that J=¢°G, where
¢@:X >R is C! at G(uy). Then there exist A, p as in (57) such that
VweA (u), (A" (G(uo))+p,w)20.

Proof. — Let (J, G)* (u) and the set-valued map P be defined as in the
proof of Theorem 11.2. We already know that Graph (P) is closed and
that (59) holds true for all ue%, r=0, keK. It is also not difficult to
check that

R, X (= Cx (G (up))) € P (g, J (140), 0). (61)

Since J and G are locally Lipschitz, there exists M >0 such that for all
u near u,, (J, G)® (1) = MB. On the other hand for every we G (4, G ()
there exists veR such that (v, w)e(J, G)*) (). Indeed let h; > 0+, w, > w,
u;€ By, (u) be such that G (w)+h;w;=G (;). Since J is Lipschitz at u, the
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sequence {Lu,):_](_u)} is bounded. Hence taking a subsequence and

keeping the same notations we may assume that for some veR

T(u)—1 (u)
Y= ———— .
h
Thus @) +h;v, G@)+hw)ed, G) (B, (w) and therefore
(v, wye(J, G)V) (u). This and the assumption of theorem yield that for all
u €U near uy, for all r>0 and all keK near G (u,)

[-1,11xpB cco(J,G)V (w)—[—1, 0] Tx (x) N v B)
+[-M=-2,M+2]xQ
ccoPVwIJW+r,Gw—k)N /M*+y*+1B)+[-M—-2,M+2]xQ

Since u,, is an optimal solution (J (i), 0) is a boundary point of Im P.
Hence by Theorem 6.7 there exist AeR, pe X* not both equal to zero
such that
Y(v,w)e lim inf co(PV (u,t,2) N \/M2+'yz+ IB)

(u, t, z) =p (u0, J (u0), 0)

+P1(uO’J(u0),0)’ Xv+<p,w>;0
Then from (61) we deduce (57). On the other hand from (59)
lim infco (J, G)® (v) = liminf coPV(u, t,z2) N\ /MZ+y*+1B)

u = ug (u, t, z) = p (uo, J (ug), 0)
and we get (60). O

We apply the above results to derive necessary conditions for optimality
for two infinite dimensional control problems:

11.1. A Semilinear control problem
with end point constraints

Let E be a Banach space whose norm is Géteaux differentiable away
from zero. Consider a C!-function ¢:EXE — R, T>0 and closed subsets
Ko, Kt = E. We study the optimal control problem

minimize ¢ (x (0), x (T)) (62)
over solutions of the system
x ()=Ax@)+f (x(£), u(®), ue”IlT} ©3)
x(0)eK,, x(TeK;

where A, f, %, have the same meaning as in the Section 10 and satisfy
the same assumptions. Let S;(. ; .) be the solution operator of (53).
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THEOREM 11.6. — Let (z, u) be an optimal trajectory-control pair of the
problem (62)-(63) and let R (T) denotes the reachable set of the linearized
system (52) at time T. Assume that for some p>0, y>0, €>0 and a
compact set Q < X

VxeKrNB,(z(T)), pBcRY(T)—co(Tg, () NYB)+Q  (64)

Then there exist 20, &€ Ny (z(0)), &y € Ny (z(T)) not vanishing simulta-
neously such that the function

P(t)=S.:(T;t)*( _}Lj_(p(z (O)’Z(T))_E.»T> (65)
X2

satisfies the maximum principle

(p@), fz(),u (t))>=ma3<1’(1),f z(@®,w)) ae in[0,T] (66)

and the transversality condition

@ (©0), —p(T) =210’ (z(0), 2(T)) + (&, &1)- (67
Proof. — It is not restrictive to assume that T=1. Set #=%,. We

apply results of Section 10. Define the locally Lipschitz
map G:Ex% - EXE by

Vxo€E, Vue#,  G(xq,u)=(xq,x,(1)

where x, denotes the solution of (51) corresponding to the control w.
By the Gronwall inequality G is locally Lipschitz. Set
Vo ()= (x,(2), U)=f (x,(2), u(2)) and

1
Ry, (D)= {J Syo.u(l; t)y(t)dtly(t)econo,u(t)}
0
where S, , (. ; .) denotes the solution operator of (54). From Section 10.2
we known that for all ue % near u,
{0} xR, (1) = co (G (xo, 4, G (x0, w))).

Differentiating with respect to the initial condition, we obtain easily
that for all x,€E, weE, ue#%

lim G (xo+hw,u)— G (xq, u)

B0+ h

=S, u(1;0)w.
Therefore for all ue % near u,
1
A (xq, u): = 3 {W, S5, u(O)W) ||| w]|=1}

{0} % R, L (NS00 G (X 6, G (g, )
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On the other hand, by Gronwall’s lemma and assumptions (a)-(c) from
Section 10, the map (x,, ) > A (x,, #) is continuous in the Hausdorff

metric. Let §>0 be so small that for all ||w|| <3, ||Sz(1, 0)w||§g. Thus,

from the assumption (64), for all (y,, y;) € Ko % K, near (z(0), z(1))
)

5 X 2 Bc A (xo, #0)— co(Tx, () N B)XE<TK1(J’1)H% B)

+{0}x Qe (G0, & 2(1)

~ (T, 00) VB (T, () NYBY +{0} X2 Q.

Hence, applying Corollary 11.5 we deduce that for some A=0,

(Eos &1) € Nk, xk, (2(0), z(1)) =N, (z(0)) X Ny, (z(1)) not all equal to zero
VweB, reRN(1),

(A (2(0), z(1)+ (o5 &1)s (W, Sa(1; 0)W+r)>;0}

Define p by (65) with T=1. Setting r=0 in the above we get

(68)

VweB, <7\. j_(P (z(0), z(1))+ &y —p(0), w> =0
X1

and therefore p (0)=2A :_(p (z(0), z(1)) + &,. Setting w=0 in (68) yields that
b o
for every measurable selection v (f)eco f (z(¢), U)—f (z (), i (?)),

<7» % (z(0), z(1))+&;, f S:(1; 9 v(z)dt> =I1< —p@®), v(t) >dt=0
8x2 0 0

and the maximum principle (66) follows. From the definition of p we get
the transversality condition (67). O

11.2 Optimal control
of a problem with state constraints

Let Q be an open bounded subset of R", (n<3) with C? boundary I', X
be a Banach space and L:C,(Q)—»X be a C'-mapping. Set
Y=H?(Q) N Hg (Q) and consider sleek closed sets K<L?(Q), D=X and
a continuously differentiable function J: C, (Q) x L (Q) - R. We study the
problem

minimize J (y, u)
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over the pair (y, u)e Y XK satisfying
\ Ay+o()=u in Q

y=0 on T
L(»)eD
where
Ay=-— Z ax_,'(a’i, i) axiJ’)"'ao(x)y
i, j=1
and

a,eL®(Q), ao (x)20 fora.e. x€Q, a; ;is Lipschitz on Q

VEER", xeQ, Y a ;(x) E,E;20,||&|? for some o5 >0
i, j=1
@eC! is a nondecreasing function,

A similar problem was considered in [7] with convex sets K, D and an
arbitrary C!-function ¢@.

Tuporem 11.7. — Let (§, i) be an optimal solution of the above problem
and By, denote the closed unit ball in X. Further assume that for some p>0
and a compact Qc X, we have

VdeD near L(j), pBxcTp(@d+Q. (69)

Then there exist =0, pe Ny (), peW" *(Q), se]O,——n—l[ not all equal
n—

to zero, such that

0
A*p+¢’(f)*p=>»5%(y‘, +L ()*p (70)
226 0-peN@ )
ou

Proof. — Replacing Q by coQ we may assume that Q is convex. Define
A:Y-L*(Q),J,: YR, G:Y -»XxL*(Q) by

A )=Ay+o(), J,0)=10 A 0), GM=L0) A )
and set # =D x K. Then, K and D being sleek,
V(d, k)eDxK, Ty (d, k)=Tp(d)*Tx k) (72)
and our problem reduces to
minimize {J, () |yeY, GO eX }
A direct computation yields that for all yeY and all weBy
L) w, Aw+¢ ()W), L'()w, Aw+o' ()w)=d, Gy, J»), GO
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Moreover, since ¢ is nondecreasing, YxeQ, o'(y(x))=0. Hence
from [35] follows that for some £€>0

€By2 g c(A+ ¢’ () By.
This and the assumption (69) imply that for some p>0 and all (d, k)e A
near (L (%), A, ()
pBecl{(L'(G) w, Aw+ o' (Dw)|||w]| 1} —Tp(d)x Tx (k)—Qx {0}
where ¢/ denotes the closure. Since the map
yoZy):=cd{L' @) w, Aw+o Mw)|||w|£1}=GP ¥, G(»)

is continuous in the Hausdorff metric, using the separation theorem, (72)
and convexity of tangent cones Ty (d), T (k), we prove that for all ke A"
near (L (»), A, (»)) and all yeY near y

chzgy)—T,,(k)—Qx{o}.

Applying Theorem 11.2 we deduce that for some A=0, pe Ny (L (7)),
PeNk (A () not all equal to zero and all we By

A D) (w, Aw+@" ()W) +L G)*p, w)H+{A*p+¢" (7)*p, w) 20.
Hence
w15 Goes)ra o (15 6ot
du ou
oy _ _ _
+A — @, &)+ L' @)*u=0.
ay
. a _ . .
Setting p= — A Ew (y, u)— p we obtain (70), (71). From (70) follows that
u

A*peC,(Q)* and, consequently, that for all 0<s< —’?—1 ,PEWS (Q).
n—

12. SMALL TIME LOCAL CONTROLLABILITY

Let U be a complete metric space and f:R"x U — R”" be a continuous
function, x,eR".

We assume here that:

(a) f is locally Lipschitz in the first variable, uniformly on U (see
Section 10);

(b) For some ueU, f(x,, #0)=0, i.e. x, is an equilibrium;

(¢) For all x near x,, f (x, U) is a convex, compact subset of R".
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Consider the control system (43). It is called small time locally control-
lable (s.t.1.c.) if

VT>0, x,elnt R(T) (73)
where R (T) is the reachable set of (43) at time T=>0.
DEerFINITION 12.1. — A vector veR" is called a variation of R(.) (of
order k=1) if for all t=0
xo+FveR () +o(f).

In other words v is a variation of order k if and only if
lim dist (v, &,‘_’C‘))ﬂ)
t—>0+ t

or equivalently if there exists a selection r (f) € R (¢) (in general discontinuous)
such that

r(t)’xo_)v

T
THEOREM 12.2. — Assume that for some variations vy, . . ., v, of order
<k
Oelnt co{vy,...,,}. (74)

Then (43) is s.t. 1. c. and there exist L>0, €>0 such that for all small t>0,
all y, near x, and all y e R (?) there exists t, such that
y1€R(1y), |ty —t|SL ||y =y ||
Proof. — Define the set-valued map G:R — R" by
>
, otherwise.

There exists T>0 such that the map G restricted to [0, T] has a closed
graph (see for example [2]). It was shown in [19] that v,, . . ., v,€ G* (0, x,).
Theorem 7.2 ends the proof. O

In [19] and [23] we illustrated how the above theorem can be applied to
study small time local controllability of the implicit dynamical system (39)
and the differential inclusion (40).

13. APPLICATIONS TO NONSMOOTH ANALYSIS

The main aim of this section is to show how stability of the uniform
open mapping principle can be exploited when one deals with nonsmooth
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problems. Consider a locally Lipschitz map f:R" - R™. Its generalized
Jacobian at a point x,€R" is defined by

of (xo)=co { lim f"(x)}

x = x0

where limits are taken over all sequences { x; } converging to x, such that
the derivative f' (x;) does exist and { f'(x;)} is a converging sequence [9].
In [42] the following approximation of f was considered: Let {: R" — [0, 1]
be a C®-function having its support in the unit ball. For all integer i=1
define f;:R* - R™ by

ﬁm=J/G—§wamy

Then f;e C*®, f; — f uniformly on compact sets and
Ve>0, 36>0, 121
such that
VizI, VxeBs(x,), [fi(x)edf(xy)+eB
(see [42]).

The result below extends the inverse function theorem from [9], p. 253.

THEOREM 13.1. — Assume that every A €df (x,) is surjective, then for
some L>0 and for all (x, y) near (x4, f (X))

dist (x, S ONEL | f ) -y |-
Remark. — If p>0 is such that for every Aedf (x,), pB<A (B) then

. 2 ..
the constant L in the above theorem can be taken equal to — . This is an
p
easy consequence of the proof given below. [

Proof. — Pick Aedf (x,). It is surjective and therefore for some p’>0,
p’ Bc A (B). Then there exists a neighborhood A" of A such that for every

A'eN ,% Bc A’ (B). Since df (x,) is compact for some p>0, e>0 and

all Aedf (x,)+eB, we have pBc A (B). Consider f; defined as above and
let >0 be such that for all large i

VxeB;(x,), fi(x)=df (x,)+eB.

Since f;(x) BcfV(x, f;(x)), for all large i and all xeB;(x,) we have
pBcf W (x, f;(x)). On the other hand, using that f; are equilipschitzian
on B;(x,), we prove that for some 0<8<8 and for all xeBjz(x,),

)
| fi ) —fi(x0) || = y From Theorem 6.1 we deduce that for some £>0
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and for all large i
VxeB,(x,), hel0,el,  fi(x)+phBcfi(B,(x).

This and Theorem 4.1 imply that the above holds true as well with f;

replaced by f for all x near x, and for all small #>0. Theorem 2.2 ends
the proof. O

Remark. — In this paper we did not address the question of univocity
of the inverse. When m=n then, using the mean value theorem, it is

possible to check that ! is actually single valued on a neighborhood of
Xxo. (see [9]). O

THEOREM 13.2 (Implicit function theorem). — Consider a function
g2:R"xR? - R¥ and let (%, p) e R" X R? be such that g (%, p)=0. Let n denote
the projection of R*x R? x R¥ on R" x R¥, Assume that every Aendg (%, p)
is surjective. Then there exists L>0 such that for every (x, p) near (X, p)
satisfying g (x, p)=0 and every p’ near p there exists x' with

g, p)=0,  ||¥'=x|<L|p' ~p]

To prove the above it is enough to apply Theorem 13.1 to the function

f(x, =, g(x, p).

Remark. — The last theorem allows to obtain results analogous to those
of Section 9, concerning Lipschitz realisation of the implicit dynamical
system (39) with the function f merely locally Lipschitz. [

We study next a nonsmooth control problem:

Consider a separable metric space U and a continuous function
f:R"x U - R". We associate with it the control system

x'()=f(x@), u(), ue¥ }
x(0)=x,

where % denotes the set of all measurable selections :[0, 1]— U. We

consider % with the metric from Section 10.

Let g:R"—R* be a locally Lipschitz function and K,, K;<=R" be
given closed sets. We study properties of the above control system under
additional constraints

(75)

x(0)eK,, x()ekK, (76)
and the following assumptions on datas:
(a) VxeR", f(x, U) is bounded;
(b) V xeR" there exists a neighborhood 4" and L >0 such that for every
ueU, f (., u) is L-Lipschitz on A".

THEOREM 13.3. — Let (z, ) be a trajectory-control pair of (75) defined
on the time interval [0, 1] and satisfying the end point constraints z(0)e K,
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z(1)eK,. Then at least one of the following two statements holds true:
(i) There exist AeR* and an absolutely continuous function p: [0, 1] > R"
not both equal to zero, satisfying the adjoint inclusion

=p' (Hed, f(z(®), u())*p(r) a.e. in [0, 1] an

where 0 f (x, u) denotes the generalized Jacobian of f (., u) at x, the
maximum principle

max {p(®), f (0, W) y={p®), f (), a(®)) a.e in[0,1] (78)

ueU
and the transversality condition
p(0)e Ny (z(0)), —p(1)edg (z(1))* A+ N, (z(1)). (79)

(ii) There exist L>0, £>0 such that for all (a, b, ¢, x5 )
eR* x R" x R" x R" X % satisfying

la—g)|<e,  blse lellse,  [20)—x]|<e,
n({tlu@#a)=<e
there exists a trajectory-control pair (x; )e W (0, 1) X % of (75) with
gx;())=a, x;(0)eb+K,, x;()ect+K,
and if x, denotes the trajectory of (715) then

| %0) = xo ||+ ({ t|u@#a(@O DL (Jla—g (x, )|
+dist (xo— b, Ko) +dist (x,(1)—c, K,))

In particular this yields that for every aeR* with ||a—g (z (1)) || <& and every
trajectory-control pair (x,, u) of (75) satisfying the end point constraints (76)
with ||x,(0)—z(0) ||+ p({1€[0, 1]|u(t)#i (1) }) ¢ there exists a control i
and an initial condition %, K, such that

| £o—x, O)[|+nr({el0, N]a@#u@®HD=L|la—g(x, 1)l

and the corresponding trajectory x,(1)eK,, g(x;(1))=a. Consequently if
g(z(1)) is a boundary point of the set

{g(x(1)|x is a trajectory of (75), (76) }

then the statement (i) holds true.

A statement concerning boundary points was proved in [9], p. 200 under
somewhat different constraints. The above result shows that the maximum
principle (77)-(79) is verified for every trajectory-control pair (z, #) where
the system is not controllable in the sense of (ii).

Proof. — Denote by x(.; u, x,) the solution of (75) corresponding
to the control # and the initial condition x,. We define the single-
valued map ®:R"X% - RxR"xR" and the set-valued map G:
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R"x % —» RxR"xR" by

on € Rns ue”ll, (I) (xO’ u) = (g (X(l; u, xo)), x()a X (1; u, XO)),
G (xg, u)=D(xo, )= {0} xKox K.
By Gronwall’s inequality, @ is locally Lipschitz and therefore Graph (G)
is closed. We shall use the result from Section 4. Let {: R"— [0, 1] be

a C®-function having its support in the wunit ball. Define
fi:R"*XU->R" g;:R"> R by

i, u)=Jf(x—%y, u) Vo) dy, gi(x)=fg (x—%y) Vo) dy

and denote by x;(.; u, x,) the solution of (75) with f replaced by f;
corresponding to the control u(.). Define the single-valued maps
®;:R"x % — R X R"*xR" and the set-valued maps G;:R"x% - RxR"xR"
by

®©; (xo, u)=(g; (x; (1; u, xo)), X0, X; (1; u, X)),
G; (xg, ) =D;(xq, u)— {O} XKoxK;.

For the same reasons as before Graph (G;) are closed sets. Since for
every ue U, { f;(., u) }, { g} converge uniformly on compact sets to f (., u)
and g respectively, we deduce from Gronwall’s inequality that for every
8>0 and all A>0, there exists I=>1 such that

Vizl, VxoeBy(z(0), YueBs@), G;(xo, u)=G(xy u)+AB. (80)

If there exist €>0, I>1 such that for some p>0, M>0 and all i>1 we
have

pBc N co (G (c, d "MB).  (81)
(¢, d) e Graph (G;)
(¢, d) € Bg (z (0), u) XBg (9 (z (1)), 0, 0)

Then, by Theorem 6.5 and (81) for some 6>0 and for all large i

vV (c, d) e Graph (G;) N\ B;(z(0), i) X B; (g (z (1)), 0, 0),
hel0, 8], d+phBcG,(B,(0)

and by Theorem 4.1 the above holds true with G; replaced by G and 3

replaced by g Hence from Theorem 2.1 and definition of G we deduce

that statement (ii) is verified.

Let us assume next that there exists no €, p, M >0 satisfying (81). Then,
by the separation theorem, we can find y; > z(0), u; >4, a;—g,z(0),
b; >, z(1), j;— o, N; > oo such that for some (A;, n;, ¢;)eR*XR"xR"
of ||(A, My, g)]|=1 and p; > 0+ we have

v ((l, B, Y) EEO_(G§,U (yi9 Ui, (I)j,- (yb ui) - (0’ a;, bz)) m Ni B)’} (82)

(A oy +{n BY+{qu 72 — 1
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From now on the proof reminds in many aspects those from [41] and
[22]. So we shall omit many details. Let S;(.; s) denote the fundamental
solution of the linear system

af;,
7= a—xl (xii (t; U, yi)9 U; (t)) Z; Z(S)= Id.

Define absolutely continuous functions p;: [0, 1] = R" by
pi(O=S8;(1; *(—gj, (x;,(1; u, y))*Ni—qy) (83)
Then p; is the solution of the adjoint system
Ji
Ox
_Pi(1)=g}i (xji(l; U, y)* A +gq.

Taking subsequences and keeping the same notations, we may assume
that

-pi= (x;, (65 wy, i), w; (0)* pis

(84)

lim A=), lim n;=n, lim ¢;=gq,
lim g} (x;, (1w, y))*=w

i— o

and that {p,} converges weakly in W' ® to some p. Observe that from
the Gronwall inequality and the assumptions (a), (b) follows that

x;,(., 43 y) = z(.) uniformly on [0, 1]. 85

Thus from the definition of g; we get medg (z(1))*. It is clear that for
all i

- { 0 } X TKo (a) x { 0 } < Gf-i” 0 u;, (Dji O u)— (0, a;, b))
- { 0 } X {0 } x TK1 (b,-)CGE-i” 0 u;, (Dji O u)— (O, a;, by).
Hence from (82) we deduce that
V(k, m)eTg,(a)*x Tk, (b) of ” (k, m) “ <N,
<ni’ —k>+<qi’ _m>g _zui- (86)
On the other hand from [3], Chapter 4
lim inf Ty, (x")=Cg,(z(0)), lim inf Ty, (x)=Cg, (z(1)).

x’ —Ko 2 (0) x' 2k, z(1)

Thus, by (86), neNg,(z(0)) and ge N, (z(1)). From (83) follows that
—p()=0r+qgedg(z(1))* A+ Ny, (z(1)).
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Differentiating with respect to the initial condition we also prove that
for every woeR” of || w, || <1, the solution w of the system

of;,
- (x, (6w, 3, w; (D), tel0, 1]
0x

w(0)=w,

w'=

verifies
(g;'i (xj,-(l; U, ¥;)) w(l), wo, W(l))eGS'il)()’i, U, (I)j,- i u)— (0, a;, b)).

Since it is given by w(£)=S; (t; 0) wy, we deduce from (82) that for every
wo€R” of ||wy||<1 and all large i
<g},~ (xj,-(l; U, Y)* Ny S;(1; 0)wo p+ My, wo )
+< i, Si(15;,0) wo )= = pi(0)+ 1, wo )= — ;.
Taking the limit we obtain that for every w,eR", such that ||w,|| <1,
< _P(O)'H'l, wO >go-
Therefore p(0)=mneNg, (z(0)) and we proved (79). Let M be the Lip-

schitz constant of ® and ®; on a neighborhood of (z(0), &) (it exists
because of the Gronwall inequality and the definition of f;, g,). Set

V; (t)=5f;'i (i (85w, y), U)=f;, (x;,(8 wy, y2), u; (1)).

From Section 10.1 we deduce that every solution w of the linear control
system

of;.
;:1; (O (85w, y), w; (D) wy (0, y()e V(1)

w=

w(0)=0
verifies
(85 O (15w, p)) w(1), 0, w(1))
€co (Gg,l) (yb Ui, (I)(yia ui)__ (09 a;, bl)) m MB)
and from (82) we deduce that for all large i and for every measurable
selection v (¢) e V,(r)

1

<g;, (xji (1; U; yi))* )"i + qia J

0

S;(1; 9 'U(t)dt> =jl< —pi(0), v() Y dt= —,
0

Since f; (., u) > f (., u) uniformly on compact sets, using (85), we obtain
from the last inequality that for every measurable selection

v()eco f(z(t), U)—f (z(1), u(?)), f1< —p(®), v(?) )dt=0. Hence p sati-

sfies the maximum principle (78). Finally from (85), (84) and Mazur’s
lemma we deduce that p is a solution of the adjoint equation (77). O
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