
ANNALES DE L’I. H. P., SECTION C

A. CELLINA

G. COLOMBO
On a classical problem of the calculus of variations
without convexity assumptions
Annales de l’I. H. P., section C, tome 7, no 2 (1990), p. 97-106
<http://www.numdam.org/item?id=AIHPC_1990__7_2_97_0>

© Gauthier-Villars, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section C »
(http://www.elsevier.com/locate/anihpc) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPC_1990__7_2_97_0
http://www.elsevier.com/locate/anihpc
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On a classical problem of the calculus of variations
without convexity assumptions

A. CELLINA and G. COLOMBO

S.I.S.S.A., I.S.A.S., Strada Costiera 11,
34014 Trieste, Italy

Ann. Inst. Henri Poincaré,

Vol. 7, n° 2, 1990, p. 97-106. Analyse non linéaire

ABSTRACT. - We show that the functional

attains a minimum under the condition that g be concave in x.
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98 A. CELLINA AND G. COLOMBO

INTRODUCTION

We consider the problem of the existence of the minimum for the
integral functional I (x):

on the set of functions x belonging to W1,p([0, T], p >_ 1 and satis-
fying : x (0) = a, x (T) = b ; x’ (t) E ~ (t) a. e. on [0, T]. The set-valued map
~ : [0, T] -~ 2~~ is measurable with non-empty, closed (not necessarily
bounded nor convex) values, and each of the functions g and h satisfies
Caratheodory conditions. Our purpose is to show that, for the existence
of the minimum, Tonelli’s assumption of convexity of h with respect to x’
can be replaced by the condition of concavity of g with respect to x, all
other requirements (e. g. growth conditions) being the same. In particular,
we do not impose any regularity on g, hand h * * . Notice that the subset

on which the minimum is seeked is not weakly closed, due to the
lack of convexity of the values of D.
The problem of avoiding convexity has been considered by: Aubert-

Tahraoui [A-T1] and Marcellini [M1] with g - 0 and C = 1R1; with g linear
and on a control theory setting, by Olech [O] and Cesari [Ce1]; under
different conditions on g and h and with C = 1R1, by Aubert-Tahraoui [A-
Tl] and Marcellini [Ml] (see also the references in [M2] and in [Ce2]). In
addition, necessary and sufficient conditions for the existence of minima
were given by Ekeland [E] and Raymond [R], under regularity assumptions
for the integrands. Our theorem neither contains nor is contained in either
Theorem 2 of [Ml] ] or in the results of [A-T1], which concern the case
n= 1, while it generalizes Theorem 16.7.i of Cesari [Ce2]. Our main tool
is Liapunov’s theorem on the range of vector measures as presented in
the book of Cesari (§ 16).

ASSUMPTIONS AND PRELIMINARY RESULTS

We shall assume the following hypothesis.

HYPOTHESIS (H). - The set-valued [0, T] -~ is measurable

[C- V] with non-empty closed values. In addition we assume that there
exists at least one v E LP ([0, T], !R") such that v (t) (t) a. e. and

The map g : [0, T] x is such that

(g 1) t - g (t, x) is measurable for each x;
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99CALCULUS OF VARIATIONS WITHOUT CONVEXITY ASSUMPTIONS

(g2) x --~ g (t, x) is continuous for a. e. t;

(g3) x --~ g (t, x) is concave for a. e. t.

Moreover there exist a constant y 1 and a function such that

(g 4) 
The map h : [0, T] x R is such that

(hi) t - h (t, x’) is measurable for each x’;
(h2) x’ - h (t, x’) is continuous for a. e. t.

Moreover:

(h3) there exist: a convex lower semicontinuous monotonic
function ~ + --~ R and a function ~ 1 ( . ) in L 1 such that

and

If p > 1, there exist: a positive constant Ç2 and a function ~3 ( . ) in
L~ such that h (t, x’) ~ ~2 ~ x’ ~p - ~3 (t) and is strictly smaller than
the best Sobolev constant in ([0, T])..
We list some notations and preliminary results. The closed unit ball of

f~n is B = {x E x I _ 1 ~ . The characteristic function of a set E is xE ( . ).
Let (X, d) be a metric space and F : X -~ be a map from X into the

nonempty compact subsets of F is called upper semicontinuous on X

if, for every x~X and for every E > 0, there exists b = b (x, E) such that
d (x, y)  ~ ~ F (y) ~ B (F (x), E). A set-valued map F whose graph is
closed and whose values are all contained in a compact set is upper
semicontinuous. We also set II F (x)~ .

Let f ** (t, x) be the bipolar of the function x --~ .f’ (t, x). We have the
following

PROPOSITION 1 ([E-T] Prop. 1.4.1 ; Lemma IX.3.3; Prop. IX.3.1). - (a)
f * * (t, x) is the largest convex (in x) function not larger than f (t, x).

(b) Under the growth assumption (h3) on f

(c) Let x’ ( . ) be measurable. Then there exist measurable pi : I -~ [0, 1]
and measurable I -~ i = l , ..., n + l , such that:

The following properties of the subdifferential of a convex function
([E-T], § 1.5.1) will be used later.
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100 A. CELLINA AND G. COLOMBO

LEMMA 1. - Let f : [0, T] X f~ satisfy
(i) f ( t, x) _ k (k > 0, 
(ii) t ~ f (t, x) is measurable for every x;
(iii) x -~ f (t, x) is convex and continuous for almost every t.

Then, for any continuous x : [0, T]~Rn, the set valued map

admits a selection b ( . ) 

Proof. - (a) We claim that the map taxf(t, x (t)) is measurable. In
fact, fix A > 0; then ~/ (t, x) _ k AP + b (t) in [0, T] x AB. By the Corollary
to Proposition 2.2.6 in [C] we have that

Fix E > 0 and let, by Scorza Dragoni’s theorem, [0, T] be closed and
such that: m ([o, E; the restriction of f to EE x AB is continuous
as well as the restriction of b to EE. We prove first that the map

(t, x) is upper semicontinuous on EE x AR. Let us show that
it has closed graph. Let (tn, xn) be in EE x AB, (tn, xj --~ (t, x) and let vn be
in (~x f (tn, xn), ’Un -~ v. From

and the continuity off, we have

so that x). By (1) and the boundedness of b on E£, the upper
semicontinuity follows.

Let A be such that x (t) ~ _ 0, then the map t -~ ax (t, x (t)) is

upper semicontinuous on EE’ An application of Lusin’s theorem for multi-
valued maps yields our claim.

(b) By the theorem of Kuratowski-Ryll Nardzewski (see Theorem 111.6
in [C-V]) there exists a measurable selection x (t)). We have

so that b 

MAIN RESULT

THEOREM 1. - Let ~; f g satisfy hypothesis (H). Then the problem
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101CALCULUS OF VARIATIONS WITHOUT CONVEXITY ASSUMPTIONS

on the subset of P of those x ( . ) satisfying : x (0) = a, x (T) = b; x’ (t) (t)
a. e. in [0, T], admits at least one solution.

Proof. - The argument of the proof goes by showing first that the
relaxed problem has a solution x; then by constructing from x a different
function, a solution to the original problem.

(a) Let us consider the function defined as

Then Problem (M) is equivalent to minimizing the functional I, with h,
replacing h, on the functions satisfying the boundary conditions.

Set hc to be h:* and consider the problem ,

for x in x (o) = a, x (T ) = b. By Proposition 1 and the convexity
(with respect to x’) of the functions appearing in (h3), h~ satisfies the same
growth condition (h3). Then it is known that problem (MR) has a solution
k. On it, hC (t, x’ (t))  + oo a. e.; by (b) of Proposition l, x’ (t) belongs to
co C (t) a. e. and, by (c), there exist measurable functions pi and v; such
that

Let us remark that any vi (t) can be in the complement of C (t) on a set E
of positive measure only if pi - 0 on it. In this case, we can modify v;
on E by an arbitrary integrable selection from C without affecting (2).
Hence we can as well assume that a. e., so that

(t, vi (t)) = h (t, vi (t)) a. e.
(b) We consider the integrability of a function that will be used in the

remainder of the proof. By Lusin’s theorem there exists a sequence (Kj)j
of disjoint compact subsets of I, and a null set N, such that

1= N U (U Kj) and the restriction of each of the maps t ~ h (t, v;(t))
j

to each K j is continuous. Set U We claim: Let (E~)i,
j s m

/=== 1, ..., n + 1, be a measurable partition of Kj with the property that,
for every j,

Vol. 7, n° 2-1990.



102 A. CELLINA AND G. COLOMBO

Then the map

belongs to L 1. As a consequence, since, for p > 1, .

the function belongs to LP. Analogously for the case p =1. To
prove the claim, remark that on one hand the map t --~ ~ p~ (t) h (t, v; (t))

i

is integrable since it equals t (t, x’ (t)). On the other hand the sequence
of maps

is monotone non decreasing and

By (3) the right hand side equals

Hence

(c) Set to and consider the map
x (t)).

Lemma 1 shows that there exists an integrable function b ( . ), a selection
from x (t)). Set B (t) to be

Annales de l’Institut Henri Poincaré - Analyse non linéaire



103CALCULUS OF VARIATIONS WITHOUT CONVEXITY ASSUMPTIONS

Consider the vector measures vi and the scalar measures lli, ~ii defined,
for i=1, ..., n+ l, by

Each of them is a vector valued non-atomic measure on [0, T], hence on
every K~. By an extension of Liapunov’s theorem on the range of vector
measures ([Ce] 16.1.v) there exists a measurable partition of each K~,
(E J) J, i =1, ..., n + 1, such that

(d) We claim that the function x : I ~ I~n defined as

is a solution to problem (M).
First, let us remark that almost every t in [0, T] belongs to exactly one

of the Eij, so that, for almost every t, x’ (t) equals one of the vi (t) and
hence belongs to 0 (t). Moreover

Hence, by point (b), h (t, x’ (t)) is integrable whenever (3) holds, and this
follows from the definition of the measures r~~ and equality (7). Again by
point (b), we have that x’ (.) E LP, hence x is in Moreover,

and, from (6), the last integral equals

Vol. 7. n° 2-1990.



104 A. CELLINA AND G. COLOMBO

so that x (T) = x (T).
We claim now that

and

Ad (9). Again from the definition of the (5) and (7),

Ad (10). By the definition of 8(.) in (c), for every t and y, we have (see
[E-T] § I . 5 .1 )

We claim that

Recalling the definition of B and denoting by ul the l-th component of a
vector u, the above integral can be written as

Annales de I’Institut Henri Poincaré - Analyse non linéaire



105CALCULUS OF VARIATIONS WITHOUT CONVEXITY ASSUMPTIONS

By (11) this proves that

Since x is a solution of the problem (MR), by (a) in Proposition 1,

On the other hand, by (9) and (12), (10) follows. This proves that x is a
solution to the problem (M)..
Remark. - In case g (t, . ) is strictly concave for almost every t, i. e. if

there exists a selections from ax g (t, x (t)) such that the inequality sign in
(11) is strict for y~ x (t), the functions x (t) and have to coincide,
otherwise the integral functional would assume on x a value strictly less
than its infimum. Therefore, in this case, every x which is a minimizer for
the relaxed problem (MR) is also a minimizer for the original problem (M).

REFERENCES

[A-T1] G. AUBERT and R. TAHRAOUI, Théorèmes d’existence pour des problèmes du calcul

des variations du type : Inf ~L0 f (x, u’ (x)) dx et Inf ~L0 f (x, u (x), u’ (x)) dx, J. Diff.
Eq., Vol. 33, 1979, pp. 1-15.

[A-T2] G. AUBERT and R. TAHRAOUI, Théorèmes d’existence en optimisation non convexe,
Appl. Anal., Vol. 18, 1984, pp. 75-100.

[C-V] C. CASTAING and M. VALADIER, Convex analysis and measurable multifunctions,
Lecture Notes in Math., Springer-Verlag, Berlin, 1977.

[Ce1] L. CESARI, An existence theorem without convexity conditions, S.I.A.M. J. Control,
Vol. 12, 1974, pp. 319-331.

[Ce2] L. CESARI, Optimization-Theory and Applications, Springer-Verlag, New York, 1983.
[C] F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[E] I. EKELAND, Discontinuités de champs hamiltoniens et existence de solutions

optimales en calcul des variations, Publications Mathématiques de l’I.H.E.S.,
Vol. 47, 1977, pp. 5-32.

[E-T] I. EKELAND and R. TEMAM, Convex Analysis and Variational Problems, North-
Holland, Amsterdam, 1976.

[M1] P. MARCELLINI, Alcune osservazioni sull’esistenza del minimo di integrali del calcolo
delle variazioni senza ipotesi di convessità, Rend. di Matem., (2), Vol. 13, 1980,
pp. 271-281.

[M2] P. MARCELLINI, A Relation Between Existence of Minima for Non Convex Integrals
and Uniqueness for Non Strictly Convex Integrals of the Calculus of Variations,
Proc. of Congress on Mathematical Theories of Optimization, S. Margherita Ligure,
J. P. CECCONI and T. ZOLEZZI Ed., Lecture Notes in Math., Vol. 979, Springer-
Verlag, Berlin, 1983.

Vol. 7, n° 2-1990.



106 A. CELLINA AND G. COLOMBO

[M3] P. MARCELLINI, Some Remarks on Uniqueness in the Calculus of Variations,
Nonlinear Partial Differential Equations and their Applications, Collège de France
Seminar, Vol. IV, Pitman, Boston, 1984.

[O] C. OLECH, Integrals of Set-Valued Functions and Linear Optimal Control Problems,
Colloque sur la Théorie Mathématique du Contrôle Optimal, C.B.R.M., Vander,
Louvain, 1970, pp. 109-125.

[R] J. P. RAYMOND, Conditions nécessaires et suffisantes d’existence de solutions en
calcul des variations, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 4, 1987,
pp. 169-202.

(Manuscript received July 15th, 1988)
(accepted February lsth, 1989.)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire


