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ABSTRACT. — Let g=g (2) (z=(zo, . . .,z;)€R*) be a Lorentz metric
(with signature +, —, —, —) on the space-time manifold R*. Suppose
that g is stationary, i.e. g does not depend on z,. Then we prove, under
some other mild assumptions on g, that for any two points a, be R* there
exists a geodesic, with respect to g, joining a and b.

Key words : Lorentz metric, geodesic, critical point.

REsUME. — Soit g=g(2) (z=(z, . . .,z;) € R*) une métrique de Lorentz
(avec signature +, —, —, —) sur 'espace-temps R*. On suppose que g
soit stationnaire, c’est-a-dire indépendante de z,. Nous démontrons, sous
des autres convenable hypothéses sur g, I'existence d’arcs de géodésique
joignant deux points a, b arbitrairement donné dans R*.

Classification A.M.S. : 58 E 10, 49B 40, 53 B 30, 83C99.
(*) Sponsored by M.P.I. (fondi 60% «Problemi differenziali nonlineari e teoria dei punti
critici; fondi 40% « Equazioni differenziali e calcolo delle variazioni»).
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28 V. BENCI AND D. FORTUNATO

0. INTRODUCTION AND STATEMENT OF THE RESULTS

In General Relativity a gravitational field is described by a symmetric,
second order tensor

g=g@I[.,.]. z=(zp,...,25)eR*

on the space-time manifold R*. The tensor g is assumed to have the
signature +, —, —, —; namely for all ze R* the bilinear form g(z)[.,.]
possesses one positive and three negative eigenvalues. The “pseudometric”
induced by g is called Lorentz-metric.

In this paper we study the existence of geodesics, with respect to g,
connecting two points a, be R*.

To this end we consider the “action” functional related to g, i.e.

1 1 3
f(z)=% f gGE)EE).: ()4 =% j T g, ds (©.1)
0

0 i,j=0

where g;;(i,j=0, .. .,3) denote the components of g and z=z(s) belongs
to the Sobolev space

H'=H'((0,1),R*
of the curves z:(0,1) » R* which are square integrable with their first
derivative z= ‘; If g is smooth, f defined.in (0. 1) is Fréchet differentiable

A

in H!. Let a, beR*, then a geodesic joining a and b is a critical point of f
on the manifold

M={zeH'|z(0)=a,z(1)=b}. 0.2)
Due to the indefinitess of the metric g it is easy to see that the functional
(0.1) is unbounded both from below and from above even modulo sub-
manifolds of finite dimension or codimension. Then the Morse index of a
geodesic is + oo, in contrast with the situation for positive definite Rieman-
nian spaces. This fact causes difficulties in the research of a geodesic
connecting a and b and actually such a geodesic, in general, does not exist
(cf- [3], §5.2 or [5], remark 1.14).
However the above difficulties can be overcome if the events a, b are

causally related, namely if a, b can be joined by a smooth curve z=2z(s)
such that

gz ($)[z(s),z(s)]=0 for all se(0,1). 0.3)
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GEODESICS FOR THE LORENTZ METRIC 29

Such a curve is called causal.
In this case, under mild assumptions on g, the existence of a causal
geodesic joining a, b can be achieved just maximizing the functional

1
/*(@) =J JE@ ) [2(s),2(s)]ds
0

over all the causal curves in M (cf. [1], [8] or [3], chapt. 6).

Here we are interested to find sufficient conditions on the metric tensor
g which guarantee the existence of geodesics connecting any two given
points a, be R*.

We shall prove the following result.

THEOREM 0.1. — Let g;;(i,j=0,...,3) denote the components of the
metric tensor g. We assume that:
(81)8;€C'(R%, R) (i,j=0, .. .,3).
(22) 800 2)=Vv>0 for all ze R*.
(g3) There exists p>0 s.t.
3

- Z gij(z)gigjéulglz forallze[R“

i,j=1
and all
E=(1,82.&3)eR>.
(84) The functions g, ;(i=0, . . .,3) are bounded.
(g5) %(z)=0 for all ze R*.
0z,

Then for any two points a, be R* there exists a geodesic, with respect to

the metric g, joining a and b.

The assumptions (g,), . . ., (g,) are reasonably mild.

The most restrictive assumption is (g5) which means that the gravita-
tional field is stationary (cf. [4], § 88). The proof of theorem 0.1 is attained
by using some minimax arguments which have been recently developed in
the study of nonlinear differential equations having a variational structure
(cf. e.g.[7] for a review on these topics).

1. PROOF OF THEOREM 0.1

The manifold M in H! defined in (0.2) can be written as follows
M=z+H;
where

z=a+(b—a)s, se€(0,1)
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30 V. BENCI AND D. FORTUNATO

and
Hi={zeH! |z_(0)=z(1)=0}.

In order to prove theorem 0.1 we shall first carry out a finite dimensional
approximation.
Let neN and set

M,=z+H, (1.1)
where
H,=span {¢;sinnls:j=0,...,3;/=1,...,n}
¢;(j=0,...,3) being the canonical base in R*.
Moreover we set
V,=span { ¢ysinnis;/=1,...,n}
W,=span{¢;sinnls:j=1,2,3;I=1,...,n} 1.2)
S,=z+V, ’
Q,(R)=z+W, N By

where

Be={zeHj|||z||<R}, R>0
and ||.|| denotes the standard norm in the Sobolev space H!. Finally we
set

Si=hwm, (1.3)

where f denotes the functional defined in (0. 1). First we prove the existence
of a critical point of f,, that is to say of a point z,e M, such that

{f'(z),£>=0 forall{eH,

where f* is the Fréchet-differential of f and {.,.) denotes the pairing
between H' and its dual. More precisely the following theorem holds.

THEOREM 1.1. — Suppose that g satisfies the assumptions of theorem
0.1. Then there exists a critical point z,e M,, of f, such that
C=f(z)=c" (1.4

where ¢’ and ¢ are two constants independent on n.
The proof of theorem 1.1 is based on a variant of the “saddle point

theorem” of P. H. Rabinowitz [¢f. [6] or propositions 2.1 and 2.2 in [2]).
We need some lemmas.

LemMa 1.2. — Fix neN and R>0. Then S, and the boundary 0Q,(R)
of Q, (R) link, namely for any continuous map
h:M, > M, s.t.h (z2)=z for all ze0Q,(R), we have

hQ,(R)YNS,#J
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GEODESICS FOR THE LORENTZ METRIC 31

Proof. — Let h:M, » M, s.t. h(z)=2z for all ze dQ, (R) and define
h: H,»H, s.t. VyeH,: hA(y)=h(y+2)—z
It is easy to see that
K=y, VredBeNW,)

Then by using the Brower degree ch. [2], prop. 2.1 or [6]) it can be shown
that there exists yeh(W,NBx)NV, and therefore
z+yeh(Q,(R) NS, O

We denote by f|y, the Fréchet differential of f on the manifold M,, and
by ||.|| the standard norm in H'. Moreover we set

t=z, and x=(24,2,,23)

Now we prove that f| satisfies the Palais-Smale condition. More precisely
the following lemma holds.

Lemma 1.3. — Let g satisfy the assumptions of Theorem 0.1. Let {z,}
be a sequence in M,, such that

Sfim, (@) =0 ask— oo (1.5
and
{f(z)} is bounded (1.6)
Then {z,} is bounded in the H* norm and consequently it is precompact.
Proof. — Since z, e M,, we can set
ze=(t, x) =2+ (v, &)

with 1,eV, and §,eW, [¢f. (1.1), (1.2)].
By (1.5) we deduce that

{f' (). 5 )=¢]C|| forallieH, 1.7

where g, — 0 as k — oo.
Then for all {=(1,&), with teV, and £=(§,,&,,&;)e W,, we have

1 . 1 2 2 o S
J g(xk)[zkrélds""if Z z ag”(xk)'E:l(zk)i'(zk)jds=8k|]t.»”' (1.8)
0 0 i,j=01=10%
And, if we take {=(t;,0)=r1,, we get
1
j g(xk)[éka%k]ds=5k|ltkll (1.9
0
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32 V. BENCI AND D. FORTUNATO

Now set

7+1 0

T= (1.10)

Then
rk=§[zk—z‘+T<zk-z‘)1

and from (1.9) we get

1t ..o 1 . .o
‘J g(xk)[zkrzk—z]ds—ak“Tk”=_%J g(x) [z, T(ze—2))ds.  (1.11)

2 0 0

By (1.6) there exists c"l >0 such that for all ke N

1] [t .o
‘f(zk)‘=§ J‘ g(x) [z, zilds | S ¢y
, 0
From (1.11) we get
1! . .
"J g(x) [z, Tz ]ds
2Jo
1! .o 1t .o
§Cx+_J g(xk)[zktz]ds+_J g(xk)[zk’TZ]dS"'ak“Tk“
2Jo 2Jo
1 3 .
=61+J (800 () tt Y. 8oi () (x)) T-ds e || || (1.12)
0 i=1

where (7, x)=2z.
Since g,;(i=0, 1,2, 3) are bounded, from (1.12) we easily get
1
J g(x) [z, Tz ldsS2 ¢+, || ze || +2 8| e || (1.13)
4]

where ¢, is a positive constant depending on 7 and g,;(i=0, . . ., 3).
Now it can be easily verified that

3
g(xy) [Z.k,TZ.k]=gOO () tl% - Z 8ij (x) (xk)z (xk)_} (1.14)
i, j=1
From (1.13) and (1. 14) and by using (g,), (g;) we get
callzePS2 ¢ ey ||z ||+ 2 8 || ]l (1.15)

where c; is a positive constant.
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GEODESICS FOR THE LORENTZ METRIC 33

From (1.15) we deduce that

{z,} is bounded in H'. [
Proof of Theorem 1.1. — Set

W=y W, V=3V,

neN neN

(the closures are taken in the Hj-norm)
S=z+V, Q=QR)=z+WNBg.

It is easy to see that

f@)> —o as ||z| >, zez+W

and

inff(S)> — c0.
Then if R is large enough we get

supf(0Q (R)) <inff(S).
Let ne N and set
c,= inf supf(~£(Q,)) (1.16)
he#,

where
#H,={h:M, > M,, hcontinuous ands. t. h (u)=u,V uedQ, }

and Q, is defined in (1.2).
By Lemma 1.2 ¢, is well defined and

¢'=inff(S)<c,<supf(Q)=c".
Moreover by lemma 1.3 f), satisfies the Palais-Smale condition; then,

by the saddle point theorem (cf. [6] or Theorem 2.3 in [2]), ¢, defined by
(1.16) is a critical value of f, . O

We are now ready to prove Theorem 0. 1.

Proof of Theorem 0.1. — Consider the sequence {z,} of the critical
points of f|, found in Theorem 1.1.

The same arguments used in proving lemma 1.3 show that {z,} is
bounded in H!, then there exists a subsequence, which we continue to call
{z,} such that

z,— z* weaklyin H. (1.17)
We shall prove that
z,— z* stronglyin H!. (1.18)
We set
z,=z+G,  §,=(,&)
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34 V. BENCI AND D. FORTUNATO

T4, [=(EY)
and (v, &) =Cr=P,(*
P, being the projection on H,,.
Since z, are critical points of f,,, we have

@), TEC=E) )= j g (x) [z, T, — LN ds
0

102 2 og, o
——f YooY (). (6,89 (2 (2,);ds=0  (1.19)

2 0 i, j=01=1 6x,

where T is defined in (1.10) and (¢, x,) =z,.

H! is compactly embedded into L®, then by (1.17), §, —» &* in L™ and
{z,} is bounded in L. Therefore

9%;; —E%) 50 in L%
6_x1(xn) (E.m &n )l 0 inL (1 . 20)

@#,j=0,...,3and /I=1,2,3)
Then from (1.19), (1.20), (1.17) we deduce that

1
J g (x) [z, T~ EN1ds=0 (D). (1.21)

0

In (1.21) and in the sequel O (1) denotes a sequence converging to zero.
Since z,=z+(, we have

1 . 1
f g(X..)[Z_,T(C..—C,T)]dSﬂLJ g(x) (G TE,—EN1ds=0(1)
0 0

Then, since

TE,—{*)—0 weaklyinL? (1.22)
and g;;(x,) (é_),- converges (strongly) in L®, we get

J g () (6 TE,—EN1ds=0(1) (1.23)
0

which can also be written as

f gx) G ',’.*),T(C,.—ﬁ;")]dﬁj gx)Er T —Ehlds=0(1)
by (1.22) and since g;;(x,) (&*), converges in L2, we get

f (e[t T~ LD ds= O 1), (1.24)
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On the other hand,

j g ()G~ L5, T~ ] ds=const.||Ly— X 2. (1.25)
0

From (1.24) and (1.125) and since {, —» {* in H} we get
z,—z* inH. (1.26)
Let us finally show that z* is a critical point of f}. By (1.26) we have

VEeHs, {(f'(z).5) > <{f"(z").() asn—oo. (1.27)
On the other hand

1@, 6 =S (2. G > +<{f" (@), E= L) (1.28)
where {,=P,C(.
Since z, is a critical point of f}, and {—(, -0 as n— oo, from (1.28)
we deduce that

Sz, Ey=0(). (1.29)
Finally from (1.27) and (1.29) we deduce that

VEeH), (/' (z%).)=0

and therefore z* is a critical point of f},,. O
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