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ABsTRACT. — If g is nondecreasing function satisfying the weak singulari-
ties existence condition then all the positive solutions of Au<g(u)+f in
B, (0)\\{0} where f is radial and integrable in B, (0) are isotropic in
measure near 0. We apply this result to solutions of Autg(u)=0 in
particular when g (r)~r|r|?™*, g(r)~eP", or g(r)=r (L} N~
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REsuME. — Si g est une fonction croissante sur R vérifiant la condition
d’existence de singularités faibles et f une fonction intégrable radiale dans
B, (0), alors toutes les solutions positives de Au<g (1) +fdans B; (0)\ {0}
sont isotropes en mesure prés de 0. Nous appliquons ce résultat aux
solutions de Autg(u)=0, en particulier quand g(r)~r|r|*" !, g(r)~eP’
oug(r)=r(L}r~
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38 Y. RICHARD AND L. VERON

0. INTRODUCTION

Let Q be an open subset of RN containing 0 and Q'=Q\{0}. In the
past few years many results about the behaviour near 0 of a positive
function ue C?(Q) satisfying

0.1) Au=u?
or
(0.2 Au= —u?

(g>1) in Q" have been published ([1], [2], [7], [8], [11], [23]). Although
those equations are very different (existence or nonexistence of a compari-
son principle between their solutions), there exists a great similarity
between them in the case N=3 and 1<g<N/(N—2) in the sense that
there always exist solutions satisfying

(0.3) lim |xN"2u(x)=7v

x—0

with y>0, which implies that

0.4 Au=u?—C(N)y3d,
or
(0.5) Au=—u?—C(N) 79,

holds in D’(Q) ([23], [11]) where 3, is the Dirac measure at 0 and
C(N)=(N-2) [SN7!| if N=3, C(2)=2n, but the two proofs of this
phenomenon run very differently. In fact the main point to notice is that
for a u satisfying (0.3) u? is integrable near 0 and this leads us to a new
type of isotropy which is the key-stone for the study of isolated singularities
of positive solutions of nonlinear elliptic inequalities of the following type

(0.6) Ausgu)+f.

Assume N=3, g is a continuous nondecreasing function defined on
[0, + 00) satisfying the weak singularities existence condition

1
©.7 J gr* MrN"ldr< 4+ o0,
4]
feLi . (Q) is radial near 0 and ue C?(Q) is a positive solution of (0.6) in
Q. Then
(i) either there exists ye[0, + ) such that rN"2u(r,.) converges in
measure on SN~ to y as r tends to 0,
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NONLINEAR ELLIPTIC INEQUALITIES 39

(i) or lim |x|N"2u(x)=+ co.
x—=0

In the case N=2 it is necessary to introduce the exponential order of
growth of g [20]
+
(0.8) a;=inf{a>0zf e Tg(ndr<+o},
0
and we prove that under the same conditions on f and u satisfying (0.6) in
Q’; then
— if a =0 we have either (i) or (i) with | x |>~N replaced by Ln(1/|x|)
— if a; >0 we have
(iii) either there exists y€[0, 2/ag+ ) such that u(r,.)/Ln(1/r) converges in
measure to vy on S! as r tends to 0,
(iv) or lim u(x)/Ln(1/|x|)=2/a;.
=0

Those results play an important role for the description of isolated
singularities of nonnegative solutions of

(0.9) Au=g (u).

For example, when N =3 we prove that if g is nondecreasing and satisfies
the weak singularities existence condition, then any ue C?(Q’) nonnegative
and satisfying (0.9) in Q' is such that |x|N"2u(x) converges to some
YyeR*U{+00} as x tends to 0. This result extends to the case N=2
with some minor modifications. An other important tool for proving this
type of result is Serrin and Ni’s symmetry theorem [12].

When g has nonpositive values we prove that when N =3 any nonnegative
solution ue C2(Q’) of (0.9) is such that ™"~ 2u(r,.) converges in L' (SN™1)
to some y€[0, + o0) as r tends to 0. Under a moderate growth assumption
on g we prove that lim |x|N~2u(x)=y. When N=2 the situation is quite

x—=>0
more complicated. Using a result due to John and Nirenberg we prove
that when g has nonpositive values and is of exponential or subexponential
type any nonnegative solution u of (0.9) in Q’ satisfies

0.10) lim u (x)/Ln(1/|x|)=v€[0, 2/a}).

x—=0

The last section is devoted to the study of the behavior near 0 of positive
solutions of

(0.11) Au=u(Ln"* u)*

Vol. 6, n° 1-1989.



40 Y. RICHARD AND L. VERON

in Q' (a>0). This equation reduces to a Hamilton-Jacobi equation in
setting v=Ln" u and v satisfies

(0.12) Av+|Dv[>=v*

on {xeQ:u(x)=1}. If we set g(r)=r(Ln*r)%, it is clear that (0.7) is
always satisfied, hence for any y=0 there always exist solutions satisfying
(0. 3); however Vazquez a priori estimate condition

+
(0.13) J B i

for some r,>0 is satisfied if and only if «>2 and we prove the following:
Assume N=3 and ueC?(Q) is a nonnegative solution of (0.11) in Q;
then
— if0<ax2
(i) either u can be extended to Q as a C? solution of (0.11) in Q
(i) or there exists y>0 such that lim |x|N"2u(x)=7y.

x—>0

— ifa>2
(iii) either u behaves as in (i) or (ii)
(iv) or u(x)=y(,N) e @71 40 (|x[*®=2) near 0 with

2/(@-2)
Y()= < —25 ) and y (o, N) =@~ N~V @=2)22 This result extends in

dimension 2.
The contents of this article is the following:
1. Isotropic solutions of elliptic inequalities
2. Singular solutions of Au= +g (u)
3. Singularities of Au=u(Ln* u)~

1. ISOTROPIC SOLUTIONS OF ELLIPTIC INEQUALITIES

Throughout this section Q is an open subset of RN, N>2 containing 0,
Q' =0\{0} and g is a nondecreasing function. For the sake of simplicity
we shall assume that g is continuous. If N>3 it is wellknown that the
following condition

1
(1.1 f g NN 1dr< 4+ oo,
0
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NONLINEAR ELLIPTIC INEQUALITIES 41

is a necessary and sufficient condition for the existence for any y>0 of a
solution { belonging to some appropriate Marcinkiewicz space of

(1.2) —AY+g () =C(N) 8,
in D’ (Q) [3], or equivalently of a solution of

(1.3) —Ay+g()=0

in Q' with a weak singularity at 0, that is such that

(1.4 lim [x[N"2u(x)=y,

x—=>0

[22]. Moreover g () e LL . ().

If N=2 the situation is more complicated and we define the exponential
order of growth of g

+
(1.5) a;=inf{a>0:f e‘“’g(r)dr<+oo}
(0]

[20], and the condition ye[0,2/a,] is a necessary and sufficient condition
for the existence of a function { e C?(Q') satisfying (1.3) in Q" and

(1.6) lim Y (x)/Ln(1/]x|)=7.

x—=>0

Moreover for such a {, g(¥)eL} (Q) and (1.2) holds in D’ (Q) [21]. Our
first result is the following

PROPOSITION 1.1. — Assume By={xeRM:|x|<R}<cQ, g(0)=0,
feLl.(Q) is nonnegative and ue C*(Q') is a nonnegative solution of
(1.7) Ausgw)+f
in Q. If ve C*(Bg\\{0}) is a radial nonnegative solution of
(1.8) Av=g (v)

in Be\{0} such that g(v+38)eL'(Bg) for some 8>0, then there exists
a =0 such that for any qe[l, o)

x—=>0

(1.9) lim |x|1_NJ o= o ()/n () [1dS =0
lyl=lx]|

where @ =inf (4, v), p(x)=|x|>"Nif N=3 and p(x)=Ln(1/|x|) if N=2.
The main ingredient for proving this result is the following theorem due
to Brezis and Lions [5].

LEMMA 1.1. — Assume N22, oe L} _(Q) satisfies

AweL;  (Q)in the sense of distributions in &',

Vol. 6, n” 1-1989.



42 Y. RICHARD AND L. VERON

(1.10) ®=0 a.e inQ,
Ao=Zaw+F a.e. in Q,

where a is some nonnegative constant and F e L}, (Q). Then e L}, (Q) and
there exist =0 and ®e Ll _(Q) such that

(1.11) —Ao=®+aC(N)3,
in D' (Q).

LEMMA 1.2. — Assume N =2, he L' (By) is radial and ¢ is a nonnegative
radial solution of

(1.12) —Ap=h

in D' (Bg\{0}) [resp. in D’ (BR)]. Then there exists ve[0, + o0) such that
lim @ (x)/p(x)=v[resp. lim ¢ (x)/u(x)=0].

x—0 x—=>0
Proof. — From Lemma 1.1 there exists v=0 such that
(1.13) —A@=h+vC(N)3J,

in D’(Bg) and @ =@ —vp satisfies (1.12) in D’ (Bg). Without any loss of
generality we can assume that h is nonnegative in B(O,R), hence
r—r™~1¢, (r) is nonincreasing and then keeps a constant sign near 0.

Case 1. — rN~1¢,(r)>0 on (0, ]. For n large enough define

1 if 0=r=<-,
n
(1.149) n,r)= l(1+cos(n1r(r—l>) if l§r§g,
2 n n n
0 if z§r§(»:.
n

0=1n,<1on [0,g] and j N, (dr=—1. From (1.12) we get
o

ra,(r)n,,(r)r“—‘dr
(1]

=rh(r)n.(r)r“"dr.

o
Using the monotonicity of ™~ ! @, (r) we deduce

(1.15)

N-1
0§(3) 5,(3)§
n n

2/n
I @, (N, (N tdr

1/n

2/n
5_-[ h(@)rN~tadr

1]
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NONLINEAR ELLIPTIC INEQUALITIES 43

2\N"1. (2
which implies lim (—) (p,(-):Oand

n— +wo \ N n

(1.16) lim ™1 @, (r)=0.

r—»0

Case 2. — ™~ 1@,(r)<0 on (0, €]. Using the same method as above we
get

(1.17) Oé—(1)1“6,<1>§r/"h(r)r’“—ldr
n n )

which again implies (1. 16).
From (1.16) it is clear that Lim @ (x)/p(x)=0.

x—=0
Proof of Proposition 1.1. — Let p be the C:! even convex function
defined on R by

|t|-8/2 for |t|=8>0

t)=
e { t3/28  for |t|<?

and let oz be %(u+v—p (u—v)). Then

1 1
(1.18) Aws= 5A(u+v)— %p’(u—v)A(u—v)— Ep”(u—v)]V(u—v)l2
It is clear that Aoze LL_ (Bg\{0}) and 0o <wo; <0+ 5/4. Moreover
1
(1.19) Am8§%A(u+v)—Ep’(u—v)A(u-—v)zF.

We now set B\ {0}=G, UG, UG; with

G1={x€BR\{0}:(u~—v)(x)>8}
(1.20) G,={xeB\{0}:(u—0v)(x)< -8}
G3={xGBR\{0}:|(u—v)(x)|§8}.

5 ,
On G, p'(u—v)=1 and F=Av=g(v)=g(ms— Z) On G,, p'(u—v)=—1

and

F=Au§g(u)+f=g(m5— §)+f§g(v)+f-

Vol. 6, n° 1-1989.



44 Y. RICHARD AND L. VERON

On G,, p’ (u—v)=(u—)/3, hence

(1.21) F=1 1—“"’>Aa+1<1+—“‘” Ao
2 2 S

o
< %(1— “g”)g(m %(1 - —“—gl’)g(vw

and by the continuity of g there exists 8=0(x)e[0,1] such that
F<g(@u+(1—-8)v)+f If we assume for example that v<u=<v+3, then

3 NPT
F<gW)+fand 0Su—w;= 26 which implies that

3
Fgg((na—i- ZB>+f§g(v+8)+f.
We do the same if u<v=<u+3 and finally
3
(1.22) Aws_s_g(m5+‘—‘8>+f§g(v+8)+f

holds in By \\{0}. We take now 8 <3, so the right-hand side of (1.22) is
integrable in By and there exists a>0 such that

(1.23) —Awy=0+aC(N) 3§,

in D’ (Bg) with ®e L] (Bg).
From Lemma 1.2. oz(x)/p(x) remains bounded near O and it is the
same with @;=ws;—ap. Moreover @; satisfies

(1.24) —Agy=®
in D’ (By). Let

— 1
Q5(r)= WLN‘I @5(r, 0)do

and
(T)(r)——l— ®(r,o)do
ISN_1| sN-1 ’

be the spherical averages of ¢; and ® respectively, (r, o) being the spherical
coordinates in RN\ {0}, then

(1.25) —AG=B<|®|.

Annales de I'Institut Henri Poincaré - Analyse non linéaire



NONLINEAR ELLIPTIC INEQUALITIES 45

Applying Lemma 1.2 we deduce that lim ¢ (r)/u(r)=0. As a consequence

r—0

lim | @5 (r,.)/n(r)—a|do=0,
r—0JgN—1
which implies (with the uniform boundedness)

N

(1.26) lim |@s(r,. )/ —al|?do=0
"_’OUSN—I

for any g€[l, + ). As 0S0=<w;<w+05/4 we deduce

y

(1.27) lim | |o(r,.)/n@)—al?do=0,

r—0Js

which is (1.9).
Remark 1.1. — As {Awz}=® is integrable in B; and

1
O=Aw;=F— 51‘)”(u—v)|V(u—v)|2 we get

(1.28) %p”(u—u)|V(u—v)|2§<l>+g(v+8)+f

and then p”’ (u—v) |V (u—v)[>e L' (Bg).

DeriNiTION 1.1, — Assume (E, X, p) is an abstract measure space where
¥ is a c-algebra of subsets of E and p a positive o-additive and complete
measure such that p(E)< + o0, and {V{,}, .0 r @ subset of measurable
functions (for the measure p) with value in R. We say that {{, } converges
in measure to some measurable function ¥ as r tends to 0 if for any ¢>0
we have
(1.29) lin:’u({er:|\|1,(x)—\jl(x)]>e})=0.

It is equivalent to say that from any sequence {r,} converging to 0 we
can extract a subsequence {r,, } such that {\I/,nk} converges to ¥ p—a.e.
on E as n, goes to + co.

The generic isotropy result is the following

THEOREM 1.1. — Assume N=3, g satisfies (1.1), feL\ (') is radial
near 0 and ue C? () is nonnegative and satisfies

(1.30) Ausgu)+f
in Q. Then we have the following

Vol. 6, n° 1-1989.



46 Y. RICHARD AND L. VERON

(i) either ™~2u(r,.) converges in measure on SN~! to some nonnegative
real number vy as r tends to 0,

(>ii) or
(1.31) lim | xN"2u(x)= + 0.

x—0

Proof. — We recall that (r, ) (0, + o) x SN~! are the spherical coordi-
nates in R¥\\{0}. For A>0 let v, be the solution of

Avx=g(vx)+|f' in Be\{0} cQ

v, =0 on 0By
(1.32) lim | x[N"2p, (x)=A.
x—0

Such a v, exists, is radial and positive near 0. As |f] is radial it does not
affect the behaviour of v, near 0 (see Lemma 1.2).

From Proposition 1.1 there exists v(A) =0 such that
(1.33) lim N~ 2inf (u(r,.),v, () =v(})

r—=0

in L1(SN™1), 1<g<+o00, and v(A)<A from convexity. Moreover the
function A+ v(A) is nondecreasing. ‘

Case 1. — Assume lim v(A)=y<+o00. For A>y we have (1.33).

A= +o0
Assume {r,} is some sequence converging to 0, then there exists a sub-
sequence {7, } such that

(1.34) lim ry~2inf(u(r,, o), 0,(r,)=v(A) ae on SN

nk
ng = t+o

Asv(M)<yand lim ry”?v,(r,)=y we deduce that

ng
ng = + o

inf (u (r,,, ©), v, (r,))=u(r,,c) a.e. on SN!

for n, large enough and

(1.35) im N 2u(r

o o)=v(A) a.e on SN 7L

ng’
ng = + o

For 1>\ we repeat this operation with {r,} replaced by {r,, } and there
exists a subsequence {r,, } such that

(1.36) lim " %u(r,,0)=v(X) a.e on SN71

nk;
ng, > +oo

From (1.35) and (1.36) we deduce that v(A)=v(A)=y for A>vy which
implies (i).

Annales de I'Institut Henri Poincaré - Analyse non linéaire



NONLINEAR ELLIPTIC INEQUALITIES 47

Case 2. — Assume lim v(A)=+o00. For >0 we call p the function
A— +o

introduced in the proof of Proposition 1.1 and for A>0,

0= %(u+vl—p(u—vk))+ 38. From (1.22) we have

(1.37) A®;Zg (@) +] f]-

Moreover rN~2 o, (r,.) converges to v(A) in LY(SN"1) (1<g<+ ) as r
tends to 0. We consider now w=uv, ,, the solution of (1.32) and we set
rN -2
TN-2’
w (s)=rN"2w(r), ®;(s, 0)=r""2a;(r, ), @ (s)=1(r).
Then (1.32) and (1. 37) become

1 ~ o}
¢ m’“+—AN—1m’§ksN/("‘2)( <___)+ )
(@) (N—2)2 S 5 g S(N—2) ¢

et g ) o)
& s(N-2) l(Pl

where k =k (N) =(N —2)“~"N/IN=2) and A-1 is the Laplace-Beltrami ope-
rator on SN~ Consider a C*® function p such that pe L*(R), p=0 on

N

(1.38)

(—00,0), p>0 on (0, +o0) and j(r)=f p(t)dt. From convexity and
o

monotonicity we have

2
(1.39) Szi;f W — @) do=0.
ds* JsN-1

do and as w'(s) and ®@;(s,.)

As f j(w'—mé)doéCj | w — g
SN—I sN—l
converges to v(A) in L!(SN7!) as s tends to 0 we deduce that

f jw —wj) do=0 on (0,RN"2/(N—2)] and w’ <@j or
SN-1

(1.40) Uv(x)(r)éma(r,0')§‘D(",0')+8/4

which implies

(1.41) v(M) £ lim | x|V 2@ (x) < lim [ x N2 u(x)
=0 =0

and we get (1.31).
Remark 1.2. — If u satisfies (i) then v, (x)Su(x) in Bg\{0}.

Vol. 6, n° 1-1989.



48 Y. RICHARD AND L. VERON

Remark 1.3. — If u is a radial solution of (1.29), u=0, in Bx\{0},
then a simple adaptation of the proof of Theorem 1.1 shows that
| x[N~2 u(x) admits a limit in [0, + o] as x tends to 0.

The 2-dimensional version of Theorem 1.1 is the following

THEOREM 1.2. — Assume N=2, fe L'(Q) is radial near 0 and ue C?(Q)
is a nonnegative solution of (1.29) in Q. Then

— If af =0 the alternative of Theorem 1.1 holds with | x|>~N replaced
by Ln(1/|x ).

— If aj >0, we have the following alternative

(i) either there exists a nonnegative real number ye|0, 2/a)) such that
u(r,.)/Ln(1/r) converges in measure on S* to y as r tends to 0,

(ii) or

(1.43) lim u(x)/Ln(1/|x)=2/a}.
=0

Proof. — Case 1. — Assume a, =0. We define v (1) as

(1.44) lim (Ln(1/r)) " Yinf (u(r, . ), v, (r)) = v (A).

r—-0

As v(A) is nondecreasing and v, exists for every A>0 we can

proceed as in the proof of Theorem 1.1 if lim v(A)=y<+oo. If
A=+

lim v(A)=+ o0 we introduce ®; and v, o=w as in Theorem 1.1 and
A= +o0

make the following change of variable

t=Ln(1/r)
wO=w), o;to)=0:(r0) fO=10).
Hence w’ and o} satisfies
(1.46) (@) +(&);3.,; se ' @@)-+)

wp=e 2 gW)+|f)

on (T, +00) xS' and with the same function j as before
d2
de? Jg

(1.45)

(1.47) jW — ;) d6=0.

As t7! (W —®p) converges to 0 in L!(S!) we deduce that JjwW —ay)=0
and we get finally

(1.48) lim u (x)/Ln(1/|x|)= + co.
x—>0

Annales de I'Institut Henri Poincaré - Analyse non linéaire



NONLINEAR ELLIPTIC INEQUALITIES 49

Case 2. — Assume g, >0 and set y= lim v(A). Clearly y<2/a). If

At 2/a;
Y<2/a; we can proceed as in Theorem 1. 1. If y=2/a; we get as in Case 1

. )
(1.49) inf (1 (x), v, (x)) = Uy (x)— Z
2 . . 2
for any A< — and xeBg\{0}. We can take in particular A= — =v(})
a, a,
and we get (ii).
2. SINGULAR SOLUTIONS OF Au= 1g(u)
The first application of Theorem 1.1 is the following
THeEOREM 2.1. — Assume N =3, g is a nondecreasing locally Lipschitz

continuous function satisfying (1.1) and ue C?(Q') is a nonnegative solution
of

Q.1 Au=g(u)

in Q. Then |x|N~2 u(x) admits a limit in [0, + o0] as x tends to 0.

Proof. — From Theorem 1.1 we can assume that there exist ye[0, + o0)
and a sequence {r, } converging to 0 such that

(2.2 lim N 2u(r,,.)=y a.e in SN7L
n— +oo
Case 1. — Assume y>0. For £>0 set w, the solution of

Aw,=g(w) in I, zg={xeRM:e<|x|<R}
w,=u on 0B,
w,= max u(x) on 0By
x € IBR

(2.3)

(we may assume that By = Q). From maximum principle u<w, in I, g.
Let w*=u+w,(R), then

(2.4 —Auw+g ()20

and finally u<w,<u* in I', ¢ and there exists a sequence {€,} converging
to 0 and a function weC?(Bg\{0}) satisfying —Aw-+g(w)=0 in
Bx\{0} such that {w,_ } converges to w in the C},.-topology of Bx\{0}.

Vol. 6, n° 1-1989.



50 Y. RICHARD AND L. VERON

Moreover
(2.5) usw=u'=u+maxu(x)
OBR

'N—Z

From Remark 1.2 lim |x w(x)=1, hence we deduce from Serrin and
=0

Ni’s results [12] that w is radial and from (2.2) and (2.5)

(2.6) lim N 2w(r)=y.
Ifw (s)=w (N 2)(N—=2))=rN"2 w(r), then
(2.7) 2w =k (N) sV~ g (w'/s (N —2))
we deduce that s - w’ (s) —k (N) (N —2)2/(2N) sNV®~2) g (0) is convex and
(2.8) lim N2 w()=v=lim |x [N 2u(x).
r—+0 x =0

Case 2. — Assume y=0. For £¢>0 and v>0 set w, , the solution of

Aw, ,=g (wﬁv_"%, in T ¢

(2 9) We, v=u+V8 on aBz
: w,, ,= max (u(x)+v|x|>*™ on 0Bg.
x € OBR

As in case 1 we have
(2.10) u(x)sw, ,()=Sux)+v|x]*N+w, (R)

in I', . For O<v <v let v, be the radial solution of
—Av,+g(@,)=C(N)v'§, in D'(Bg) such that v,=0 on 0Bg. As
lim |x N2, (x)=V we deduce that for ¢ small enough v, <w, , on 9B,

x—=+0

and finally
2.11) w

€, vgvv’

n I, ; and as in Case 1 there exists a subsequence { €, } such that lim g,=0
and a function w" satisfying —Aw"+g (w") =0 in By such that w, , conver-
ges to w' in the C. topology of Bg\{0} and we have

(2.12) max (4, v,) W' <u+v|x|> N+ maxu(x).
IBR

Applying again [12] we deduce that w" is radial and as in Case 1 we get
that

(2.13) lim |x[N"2u(x)< lim |x[N"2w" (x)=V.
x—0

x>0
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As v is arbitrary lim |x|¥"?u(x)=0 and u can be extended to Q as a C?
x—=+0

solution of (2.1) in Q.
In the same way we can prove the two dimensional case

THEOREM 2.2. — Assume N =2 and g is a nondecreasing locally Lipschitz
continuous function defined on R*. If ue C2(Q) is a nonnegative solution
of (2.1) in Q’, we have the following:

— ifa; =0 u(x)/Ln(l/lxl) admits a limit in [0, + 0] as x tends to O;

— ifa; >0 and g satisfies
(2.14) for any a=0 lim e~ * g(r) exists in [0, + 0],

r— +o
u(x)/Ln(l/] xl) admits a limit in [0, 2/a;] as x tends to 0.

Proof. — If aj =0 we proceed as in Theorem 2.1. If aj = +c0 and g
satisfies (2. 14), u can be extended to Q as a C? solution of (2.1) in Q [21].
If 0<a; < + oo we have two cases

(i) either there exists ye[0,2/a,") and a sequence {r,} converging to 0
such that
(2.15) lim u(r,.)/Ln(l/r)=vy a.e inS!

n— +o

(ii) or lim u(x)/Ln(1/|x|)=2/a;.
i50

In case (i) we have lim u(x)/Ln(1/|x|)=y as in Theorem 2. 1. In case (ii)

x—=0

we have an a priori estimate thanks to (2. 14) [21]:

2
(2.16) u(x)§<—++s>Ln(1/|x|)+B(s)

ag
near O for any €>0. This clearly implies
(2.17) lim u (x)/Ln(1/|x|)=2/a; .

x—0
THEOREM 2.3. — Assume N=3, g is a continuous function defined on
[0, + o0) such that lim g(r)/r=K for some K> —oo and ueC?*(Q) is a
r— +o

nonnegative solution of
(2.18) —Au=g(u)

in Q. Then there exists y€[0, + o) such that
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2.19) 1im|x|1‘NI ly—=| %2 u ()| dS =0,
lyl=lx|

x—=>0
g(u)eLl . (Q) and u solves
(2.20) —Au=g (u)+C(N) v,
in Y (Q). If we assume moreover that
1
(2.2D) j inf(gar?™™,gBr> M) M ldr=+w
0

for any a, >0, then y=0.

Proof. — The fact that g(u)eLl (Q) and u satisfies (2.20) for some
y20 is proved in [5]. If u(r)[res.g(u)(r)] is the spherical average of u
[resp. g (u)] then

(2.22) Au=g (u)

in Bg\ {0} = Q" and we deduce from Lemma 1.2 that

Y —|xN"2u(y)|dS=0

x—0

(2.23) lim |x|1—~f
lyl=|x]|

for some y’ =0 and u solves
(2.24) —Au=gu)+C(N)y’ 3§,

in D’(Bg). Whence y=v". Let us assume now that y>0 and g satisfies
(2.21) for any a, B>0. As ™ 2u(r,.) converges to y in L*(SN7!) it
converges in measure and for any 'qe(O,ISN‘l |) there exists r,€(0,R)
such that for any re(0,r,) there exists a measurable subset ®(r) = SN™!
such that |e()|2n and [N 2u(r,0)—y|<y/2 for ceo(r). As
g(r)=K’r—L and ue L, (Byg) there is no loss of generality to assume that
g(@)=0 on (0, + o©), hence )

(2.25)
I,

For pe(0,r,] and cea(p), %pz""gu(p, 6)<2yp?™N and as g is conti-

g(u)dx=jrof g(u)rN_ldUdrgJ‘roJ gy~ tdodr.
o JsN-1 0 Jor)

0

nuous, g (u(p, o)) =inf ( g (% p? “N>, g2 Qyp? ‘N)). As g satisfies (2.21) we
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get

(2.26) '[ g(u)dx;nJroinf<g(%r2‘”>,g(27r2‘"))r""dr=+oo,
By,

0o

contradiction. Hence y=0.
Under an assumption of monotonicity on g we get a much more accurate
result:

PROPOSITION 2. 1. — Assume N =3, g is a nondecreasing locally Lipschitz
continuous function defined on [0, + o0) and ueC?(Q') is a nonnegative
solution of (2.18) in Q. Assume also that By = Q and that there exists a
radial continuous function ® defined in B \{ 0} and satisfying

—AD2g(®) in D'(Be\ {0}),
®=u in Bx\{0}.

Then |xIN‘2u (x) converges to some nonnegative real number y when x
tends to 0.

(2.27)

Proof. — From Remark 1.3 | x|¥"2®(x) converges to some y'>0 as x
tends to 0. If y'=0 then lim |x|¥~2 u(x)=0. Let us assume that y’>0.

x—>0

From Brezis and Lions’ result
—AP=—{AD}+C(N)Y' 3,

with —{A®}eL} (Bg) which implies that g(®)eL'(Bg) and g satisfies
(1.1). From Theorem 2.3 there exists y€[0,y] such that N~ 2u(r,.)
converges to y in L (SN™!) as r tends to 0. We consider now the sequence

of functions { " } defined by u®=® and for N> 1

AN o (N~ 1 : ,

(2.28) Au=g@u " HY+C(MN)vd, in D’'(Bgy)
uWN=® on JBg.

Then u" is radial and u<uN<u™"!'<®. It is clear that {4} converges
in Ci,_(Bg\{0}) to a radial function u which satisfies

(2.29) —Au=g (@ +C(N)y8, in D’ (By)
and u=u. As a consequence of Lemma 1.2 lim |x|N"?u(x)=y. From
x—=>0

Remark 1.2 lim |x|N~2u(x)=7y which ends the proof.
x—=0

Remark 2.1. — The hypothesis of radiality of ® which is rather
restrictive can be withdrown if we know that lim u(x)= + oo and

x—=0
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® = sup u(x). In that case we can consider the following iterative scheme
| x|=R

with ®°=® and

—ADN=g (O )+ C(N)Y' 8, in D'(By)
(2.30) ® = sup u(x) on OBg.

| x|=R

Then u<O®N<ON"'<® and {®"} converges in Cl.(Bx\{0}) to some
@~ satisfying

—AD =g(@® )+ C(N)Y' 3, in D'(Byp)
(2.31) ®~ = sup u(x) on 0By

| x|=R

and @~ >u. As lim @~ (x)= + oo we deduce from Serrin and Ni’ results
x—= 0

[12] that ®~ is radial and we can apply Lemma 1.2.

PROPOSITION 2.2. — Assume N =3, g is a nondecreasing locally Lipschitz
continuous function defined on [0, + o0) satisfying for some q>N/2.

(2.32) sup (2' (@), 8" (V) e L, ()

for any @ and \ continuous and nonnegative in Q' such that g(o) and
gWell (Q). If ueC?(Q') is a nonnegative solution of (2.18) in Q’, then

loc
| x|N"2u(x) converges to some nonnegative real number y as x tends to 0.
Proof. — From Theorem 2.3 we have (2.20) for some y=0 and
gw)eLy, (Q).

loc

Case 1. — y=0. Without any restriction we can assume that u>¢ in
B\ {0} = Q and we write (2. 20) as
(2.33) Au+du+g(0)=0

in Bg\ {0} where d(x)=(g (u)—g(0))/u. As g(u)eL!(Bg) (2.32) implies
that de L9(Bg) and we deduce from [18] that either u has a removable
singularity at O or

(2.39) 0< lim [x[N2u(x)< im |x [N~ 2u(x)< + oo,
x—0 x—-0

which is impossible as y=0.
Case 2. — y>0. Let v, be the solution of

~Av,=g(2,)+C(N)v3, in D' (By),

(2.35) )
v,=0 on OBy,
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v, is constructed using an increasing sequence of approximate solutions as
in [11], 0=<v,<u in Bg\\{0} and v, is radial. Let w be u—v,, then

(2.36) Aw +dw=0
in Bg\ {0} with d=(g (u)—g (v,))/(u—v,) e L?(Bg). Then we deduce from

[18] that either w has a removable singularity at 0 or

(2.37) 0< lim |x|N_2w(x)§m |x|N_2w(x)
x>0

x=>0

which is impossible as

(2.38) y=1lim |[x[N"20,(x)= lim |x[N"2u(x).
x—=0 x—=>0

Remark 2.2. — Under the hypotheses of Proposition 2.2 two nonnega-
tive solutions u; (i=1, 2) of

(2.39) —Au=gw)+C(N) 73,

in D’() are such that u; —u,eL (Q). As for the solvability of (2.39)
we have

PROPOSITION 2.3. — Assume N=3, Q is bounded with a C! boundary
0Q and g is a nondecreasing function defined on [0, + o©), satisfying (1.1)
and g(r)=o0(r) near 0. Then there exists y*e(0, + o] with the following
properties:

(i) for any v€[0,y*) there exists at least one nonnegative function
ue C*(Q\{0}) vanishing on 8Q solution of (2.39) in D' (Q),

(ii) for y>vy* no such u exists.

Proof. — Step 1. Assume Q=B;. — A function u vanishing on 0By is a
radial solution of (2.40) in D’(Bg) if and only if the function v (t)=u(r),
with t=r?"N, satisfies

1

b+ tT2N-DIN-2 5 )= on (R?7N, + o0),
+ N g (
(2. 40) v(R?27 M =0,
lim ov(t)/t=Y.
t—> +o

As v is concave the last condition is equivalent to

(2.41) lim o,(H)=7.

t— + o
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For a>0, let v* be the solution of the initial value problem defined on a
maximal interval [R2~N, T*)

1
vy + 2NN o) =0 on (RZ7N, T*),
Q.4  (N-2?
' (R2" N =0,
B (R2 Y=o
If T*<+ oo then lim v*(¢)=0 as a consequence of concavity and there

t1T Tx

exists Te(R2™N, T*) such that v,(T)=0. If T*=+4o00 and lim v,(£)=0

t— +oo
then the same relation holds with T= + co. As a consequence if no solution
v* of (2.42) satisfies (2. 41) with y>0 we have

T
(2.43) (N—2)2a=J

, Nt—z (N—l)/(N—Z)g(vu (t))dt
R

and the right-hand side of (2.43) is majorized by
+ oo
j t"2MN-DIN=2) o (4 (t —R27N)) dt, which implies

rR2-N

+ oo
(2.44) (N—2)2aR‘N<j (t+1)"2N-DN-2 g (4 R2-Np) gy,

o
or

+ 2—-N
(2.45) (N—z)ZR-2<I pe+ 1) N2 @RT D 5
2-N
0 aR t
For €>0 there exists mn>0 such that oR2 Nt<mn implies
g(aR?™Nf)<egaR27Nt. Hence the right-hand side of (2.45) is majorized
by

RN—-2 +
J (t+1)"2N-DIN=-2) g (¢ R2"Np) gy

& JrN=2y4

RN—ZMG
+8J. t(t-l—l)—z(N_lmN_z)dt
o

or

+
azm—l)/m—z)f ao(RN—zs+a)—2(N—l)/(N-Z)g(S)ds
n

+
+8I t(t+1) 2N DN=D gy
o
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Consequently

+ oo 2-N
(2.46) lim t(t+1)‘2(N'”"N_2’g—(ww=0
a—0Jo aR*™ Nt
contradicting (2.45). As a consequence there exists a*>0 such that for
any ae(0,a*) the solution v* of (2.42) is defined on [R?>™N, + o) and
satisfies (2. 41) for some y>0.

Step 2. The general case. — There exists R >0 such that Q < Bg. If
¥>0 is such that there exists a solution v to (2.40), then for any ye[0, ¥]
the sequence {u,} defined by u,=0 and for n=1

—Au'=g ")+ C(N)v5, in D'(Q),

(2.47)
u"=0 on 0Q,

increases, is majorized by v in Q and converges to some u which vanishes
on 0Q and satisfies (2.39) in D’ (). For the same reasons, the set of y>0
such that there exists a nonnegative solution of (2. 39) vanishing on 0Q is
an interval.

Remark 2.3. — If lim g(r)/r>0 it is proved in [11] that y* < + co. If
r— +owo

we no longer assume that lim g (r)/r=0 it can be proved that for any

r-o0
Vo >0 there exists R,>0 such that for any Q < By, and any ye([0, vo)
there exists a solution u of (2.39) in D’ (Q).
The two-dimensional version of Theorem 2.3 is the following

THEOREM 2.4. — Assume N=2, g is a continuous function defined on
[0, + ) such that lim g(r)/r>—oco and ueC?*(Q) is a nonnegative
r— +o

solution of (2.18) in Q'. Then there exists y€[0, + o0) such that

x=0

2.48) lim |x|“J. ly—uG)/Ln(1/]x | dS=0,
Iyl=lx|

gw)eLl.(Q) and u solves
(2.49) —Au=g(u)+2myd,
in D' (Q). If we assume moreover that

(2.50) J-linf(g(czLn(l/r)),g(BLn(l/r))rdr=+oo

0o

for any o, B>0, then y=0.
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Remark 2.4. — When a,; =0, Proposition 2.2 which holds in the case
N=2 with | x|>~N replaced by Ln(1/|x|) provides an interesting criterion
for proving that

(2.51) lim u (x)/Ln(1/|x|)=7y

x—0

for some y=0. Proposition 2.1 is also valid in the case N=2 (with the
same modifications).

We introduce now a class new of g’s defined on [0, + co) which are
those satisfying

(2.52) Vo>0, lim e *g(r)=I(o) exists in [0, + o],

r—+ +o

and we have [20]

(2.53) a; =sup{c>0:1(c)=+o0 }=inf{6>0:1(c)=0}.

THEOREM 2.5. — Assume N =2, g is a continuous function defined on
[0, + c0) satisfying lim g(r)/r>—co and (2.52) with af <+ and
r—= +wo

ueC2(Q) is a nonnegative solution of (2.18) in Q' and assume also
(i) either a; =0,

1
(ii) or a; >0 and j g(%Ln(l/r))rdr= + o0.
a

0 (]

Then there exists ye[O, %) such that u—vy Ln1 is locally bounded in Q.
a r

)

Proof. — The main ingredient for proving this is a theorem due to John
and Nirenberg ([9], Th. 7.21) that we recall

«Let ue W' (G) where G = Q is convex and suppose that there exists
a constant K such that

(2.54) J |Vu|dx<Kr for any ball B,
G n B,

then there exist positive constant p, and C such that

(2.55) j exp(£|u—uG |> dx <C (diam (G))?
G K

where p=p,| G| (diam(G)) "2 and ug= ﬁj udx».
G

From Theorem 2.4 there exists y=0 such that u(r,.)/Ln(1/r) converges
to y in L'(S') as r tends to 0 and g(u)eL}, (Q). Set w=u—yLn(1/|x|),

loc
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then
(2.56) —Aw=g(u)
in D’ (Q). It is now classical that Vwe MZ_(Q) where M?(G) is the usual

loc

Marcinkiewicz space over G. If we take G=B; = Q then Vw satisfies
(2.54) for some K >0, which implies

(2.57) f edx<C(p)
Bp
for some a>0 and O0<p=R.
Case 1. — Assume a; =0. Then for any £>0 we have
(2.58) lg ()| <K e

for some K, >0 and any r=0. From (2. 57) we have

(2.59) J e | x| dx<C(p).
B

P

If y>0 we have for p, 6>1 and A>0

1/c 1/c’
@ | emins(| emiaa) ([ 1x1an)
B, B B,

(6'’=0c/(c—1)). We set ocpe=a, cA=ay, hence A=7pe, o‘=1and
PE

p

o’'A=aype/(a—pE).

Hence for any p>1 we can take £ small enough so that c’A<2 and
o>1. As a consequence g(u)eL?(B)) and weL®(B). If y=0, (2.59)
implies that g (u)e L?(B,) for any pe[l, o) and ue L (B)).

1
Case 2. — Assume a, >0 andf g<

0o

iLn(l/r))rdr= + 0.
ag
2

2 .
Step 1. — 0<y< —. Assume the contrary thatis y= —. As a; >0
9

a
g
we have lim g(r)= + oo and from Remark 1.2

r— +w
(2.61) u(x)>v,(x),
where v, satisfies

(2.62) —Av,+g(v,)=27Y8,
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in D’(Bg), v,=0 on JBg. As a consequence [21] lim u(x)= + co and for

x—=>0
| x| <R’ small enough
(2.63) —Au=2myd,
in D’(Bg). As a consequence u(x)=yLn ( |—1| ) —I, which implies
x

J g (W)dx= + o0, contradiction.
Br

Step 2. — We claim that for any a>0 there exist pe(0, R] such that
(2.57) holds. We fix 0<R’<R and write w=w, +w, where w, is harmonic
in Bg, and take the value w on 0Bg. and w, satisfies

(2.64) —Aw,=g(u)
in By, and w, =0 on 0Bg.. As Vw, e L2 (Bg.) we deduce
(2.65) | VWi w2 @y — 0

p—0

and for w, we have

(2.66) VW22 mey = Cll & @) ||t wgy
where C is independent of R’. As a consequence we get
(2.67) lim ||V w||\2 ®y)=0

p—0

and the constant K in (2. 55) can be taken as small as we want provided
G =B, and u is replaced by w. This implies that for any >0 we can find
p€(0, R) such that (2.57) holds.

Step 3: End of the proof. — From the definition of a;, for any £>0
there exists K, >0 such that

(2.68) lg ()| <K, e *or
for r=0, and we have from (2. 59)
(2.69)

. . 1/c i 1/’
ep(ag +a)udx§ eop(ag +s)u|xlcldx lxl—uldx .
B, B, B,

We take op(a, +€&)=ao, cA=ay [we assume y>0 other-while gWell (Q
for any p>1 and weLy (Q)] and A=yp(a; +¢), o=a/p(a, +£) and
Ao’ =ayp(a; +e)/(a—p(a, +¢)). As ya) <2 there exist p>1, £>0, a>0
such that ¢’ A <2 which implies g(u) e LZ, (Q) and we end the proof as in
Case 1.
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Remark 2.5. — If a] = + co then y=0 from Theorem 2.4. In that case
it is unlikely that Theorem 2.5 still holds. However we conjecture that
lim u (x)/Ln(1/|x])=0.
x—=+0

Concerning the existence of solutions of (2.49) the following result can
be proved as in Proposition 2. 3.

PROPOSITION 2.4. — Assume N=2, Q is bounded with a C' boundary
0Q and g is a nondecreasing function defined on [0, + o) such that
a, €(0, + 0] and g(r)=o0(r) near 0. Then there exists yv*€(0,2/a,] with
the following properties:

(i) for any vel0,y*) there exists at least one nonnegative function
ue CH(QN\{0}) vanishing on 0Q solution of (2.49) in D’ (Q),

(ii) for y>v* no such u exists.

Remark 2.6. — If g(r)=e" it is easy to see that y* exists only if

diam. (Q) is small enough. Moreover in that case y* < % = g

a, a

3. SINGULARITIES OF Au=u(Ln* u)*

Our first result deals with the one-dimensional case

THEOREM 3. 1. — Assume ueC?(0, R) is a nonnegative solution of
3.1 u,=u(Ln™ w)?* in (O,R).

Then:
— if0<a<?2,
u (r) admits a finite limit as r tends to 0;
— ifa>2,
(i) either u(r) admits a finite limit as r tends to 0,
(1) or
3.2) u@)=fee @ (140 (M),
¢ {u, (= — Je(y ()P /3 2 er @™ (14 0 (2=~ 2)),

near 0 where

2 2/(@—2)
(3.3) 'y(u)=<_) X
a—2
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From (3.1) u is convex and u(r) admits a limit in R* U{+o0} asr
tends to 0. If this limit is larger than 1, (3. 1) is equivalent to

(3.4 v, + 0 =1"

on some interval (0,R’) with the transformation u=e®. Theorem 3.1 is
an immediate consequence of the following result

LEmMMA 3.1. — Assume veC2(0,R’) is a nonnegative solution of (3.4)
in (0O,R"). Then

— if 0<a =2, v remains bounded near 0;

— ifa>2

(i) either v remains bounded near 0,

(ii) or

re=2y(r)=y (@) + 1rz/“"_2)+0 (r¥@=2)
(3.5) 2
r/e Dy, ()= —(y (@))**+0 ().

Proof. — Assuming that u is unbounded mnear O, then

lim u (r)= + co = lim v (r) and v is decreasing near 0. So we can define
r—+0 r—-0

(36) {p:ve[o, +CD),
h(p)=0?,
and (3.5) become

1 .
3.7 Ehp+h=p“ in [o, + ).

p
Hence h(p)=h(c)e? ‘°“")+2e'2"j s*e**ds.

o

As
1] 1 —D[(r
J. s’ezsds=—[s’e“]g—g[s"’le“]ﬂ+——a(a l)j 2 2e?%ds
- 2 4 4 o
and
—2p [p 1
¢ . j s“'ze“ds=0<—2+i)
p* Js pe P
we get

(3.8) h(°)=1—i+o(—15+l)
p* 2p p* P
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as p goes to + oo, which implies

v, (r)

r- 002 (r)

Integrating (3.9) implies that v?~2(r) (if 0<a<2) or Ln v(r) (if a=2)
remains bounded near 0 which is a contradiction. So we are left with the
case a>2, lim v (r)= +oco. From (3. 8) we have

r—>0

3.9 =—1

p*/? 4v v?

(3.10) b =_1+l+o(‘),

2/(a-2)
near 0, which implies lim r?@~ 2y (r)= ( %) =v(a). As a conse-
a —

r—-0

quence L 1+—o(l)r2/(a_2) and (3.10) becomes
v Y@

(3.11) U _ 1+—0(1)E,.2/(a-2)

v4/2 v(o) 4
Integrating (3. 11) on (0, r) for r small yields
(3.12) v(N)=y (@) r*-2 (1 + 1+o() rz/(“'”),

2y(®
which implies, with (3. 10),
v a

3.13 Pom e g (D),
(3.13) o ypres (r¥e=2)
Reasoning as before we get
(3.14) v()=y(@)r¥* 94 % +0 (r¥e—2)
near 0 and
(3.15) 1820, (1) = — (1 ()2 +0 (/7).

We assume now that Q is an open subset of RN, N>2, containing 0,
Q' =0\{0} and we consider the following equation in Q’

(3.16) Au=u(Ln* u)*
where ue C?(Q’) is nonnegative.

LemMa 3.2. — If a>2 and By c Q; then there exists a constant
C=C(o, N, R, dist(dBg, 6Q) such that
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(3.17) u(x) <S> in BN\JOL

Proof. — We define B@)=t(Ln*1)* j@®)= J’ B(s)ds and
0

+ oo
t(t)=j‘ d't . As 1(2) < + 0 we deduce from Vazquez’s result that
e JI)
the equation (3. 16) satisfies the a priori interior estimate property [19]: if
xo€Q’ and if the cube Q,(x,) ={xeR: sup |x'—x}|<p} is included in
1<iEN

€', then for any ae(0, 1) there exists a constant p=p (a)>0 such that

N _
(3.18) u(xo) = 2T ' (np)-
So the main point is to get a precise estimate on 1. If s,>e*? and
C(sg)= 1 it is easy to check that
2 4Llns, ’

Jj@®>C(so)t*(Lnt)*  for t>s,.

If C then 1(s)<C,(Lns)?~ %2 for s>s, and

2
* (@—2) /C(s0)

(3 . 19) T~ 1 (y) é ec%/(u—Z) y2/(2 —a)'

JN
for 0<y<1(s,). For |x|< ~2~R, Q211 (x) = Bg. We set
JN

R0=min<-1— ,l—r(SO))
2 2
and for |x|<R, we can apply (3. 18), (3.19) which gives

(3.20) u(x)< E o(Co yN)/2)2/@=2)| x |2/~ o)
a

The estimate in Bg\ Bg, is obtained from (3.18) with a simple
compactness argument and we get (3.17).

LEMMA 3.3. — Assume N22, a>0 and ve C2 (Bg\{0}) is a nonnegative
solution of '

N-1
r

(3.21) v, +

v,+vi=v* in (O,R)
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such that lim v(r)= + co. Then for any £>0 there exists r(€)e(0,R) such

r—+0

that

N-1_,_ ”;2§—1+s in (0, (g)).
vu

(3.22) -

rvu/ 2

Proof. — From (3.21) it is clear that v,<0 on some (0,7,) = (0, R) and
we get

(3.23) v, +022v* in (0,r,).

Taking v=p as a new variable and h(p)=0v? as a new unknow we get as
in Lemma 3.1

1
Eh,+h;p°‘ for pzp,,

which implies (e?* h), =2 e?° p* and by integration we get h®) 1—¢ for

p*
any €>0 and p>p(¢), that is

% <—1+4+¢ in (0,r(g)),

(3.24) =

where r (g) is small enough. As a consequence lim v, (r)= — 0. If we set
r—-0

o=v, we get from (3.21)

a—1

— N-1
(3.25) u),,+i-—1-(o,+2m(o,——-—2—m=amv
r r

As <0 on (0, ry), (3.25) implies

(3.26) u),,+<N—1 +2u))0),<0 in (0, 7).

r
Hence if o, (r;) <0 for some r, €(0, r,) we would have o, (r) <0 for re(0,r,)
contradicting lim ® (r)= — c0. As a consequence ®,>0 and

r—+0
N-—

r

(3.27) v+ lv,—v“_go in (0, r,).

A simple algebraic computation implies

_ —1\2
(3.28) —N 1— (N 1) +v°<9,<0
2r 2r
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and

(3.29) _UL>_N—1_

vu/Z =

which ends the proof.

LEMMA 3.4. — Assume N2, a>1 and ue C*(Bx\{0}) is a nonnegative
solution of

(3.30) u + N

r

1 u,=u(Ln*uw* in (O,R).
Then lim u (r)/u(r)= + o if and only if lim r**Lnu(r)= + 0.
r—-0 r—>0
Proof. — Case 1: N=3. — We consider the following change of variable
(3.31) s=r2"N  u@s)=u();

u satisfies

~ 1 ~ ~
3.32 u. = sT2N-VN=-D G (Lpt ) in (S, + ),
( ) 5= (N_2)? ( ) (
with S=R2?7N and if lim Y 2u(r)= + oo we have
r—-0
(3.33) lim u(s)/s= Lm u,(s)=+ co.
r— +o s> +o

From convexity u(s)<s u,(s) (1+0(1)) and
(Lnua)*<(Lns+Lnu,+0 (1))*<(N—2)2(Lns)*(Ln uy)®

for s large enough; so (3. 32) becomes

(3.34) u, <s NN=2y (Lnu)*(Lns)

As a>1

+ i"'ss 1 - ‘e
= ~——ds= (Lnug (o)) ~°
s ug(Lnuy)® a—1

and

+ o
j sTNIN=2(] n5)*ds <A o~ 2N-2(Lno)

[

for some constant A and o large enough. As a consequence Lnu, (c)>B
G- @~ L( p5)¥ -9 A straightforward computation implies that for
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any £>0 and for s large enough

7(s)2 et HAmIN-D)
which means
(3.35) Lnu(@=rt2i-o

for r small enough and limr?®*Lnu(r)=+o0. Conversely

r—-0

lim r**Lnu(r)= + oo implies lim u (¥)/n(r)= + o0 (N=2).

r-0 r>0
Case 2: N=2. — We make the following change of variable
(3.36) r=e”,  u@®=u(),
and we get (with T=Ln (1/R))
(3.37) u,=e 2*u(Lnu)® in (T, + o).

If we assume lim u (r)/Ln(1/r)= + oo then

r—+0

lim u(t)/t= lim u,(f)=+ oo

t— +oo t—> +o

(by convexity) and we get

~

—t__ <e~2tt(Lnty(1+0(l)) for t»T
u,(Lnu)

and

(3.38) Lnu, ()2 B0~ (Lng)? - =261 -0
for some B>0 and ¢ large enough, which implies

(3.39) u(f)ze?e-n-at

for any €>0 and ¢ large. From (3. 39) we get the result.

With lemmas 3.2-3.4 we can describe the behaviour of nonnegative
radial solutions of (3. 16) with a strong singularity at 0, when o> 2.

LEMMA 3.5. — Assume N2, a>2 and ue C?(Bg\{0}) is a nonnegative
solution of (3. 30) in (0, R) such that lim u (r)/u(r)= + 00. Then the following

r—-0

holds near 0

3.40) r?e"DLnu(r)=y(@+ G—(N—Zg(a—ﬁ p2a-2 4 @ (pH-2),

=2 (Lnu (), = — (v ()** + 0 (r*™2).
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Proof. — From the preceeding lemmas lim v, (r)/v“2(r)=—1 where

r—+0
v=Lnu. As a consequence
lim 72/~ p () =1y (®)
(3.41) r=0
lim P2, (1) = — (y ()"

r—0

N—lv,(r)=(—l+0(1))(—N—_—%.£_—22v""(r) near 0. Pluging this
r

estimate into equation (3.21) yields
(3.42) v,+v2=1"+C(1+o(1))v* !

with C=(N—1)(a—2)/2. Taking again p=v as the variable and h(p)= v?
as the unknow implies

and

S h(E),=p" e+ CL+o () e?

and
(3.43) m=1+(1+o(1))<C—3>l as p— + .
p* 2/)p
IfwesetA=g—E=a_(N_l)(a_2)wehavei=—l+—1+—o(—l)-A,
4 2 4 ™2 v

which implies v (r)=7v(a) (1+0(1)) 2>~ and finally

3.49 'J;Z =—1+1+—0(1)Ar2/("—2>,
v Y (@)

Integrating (3.44) on (0, r] for some small r implies

v(N)—y (@) 9=(1+0(1))(2A/a).

As v,= —-v"’z(l+0(l>>, we have N_lv,= —Cv""‘(1+0(1)) and v
v r v

satisfies
(3.45) v, +02=0"+C0* 140 (v*"2);
using p and h(p) yields
h 2C—-al 1
(3.46) (f)=1+ ¢ Oc—+O<—2),
p 2 p p
v _ A 1
e pames o)
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and, as v=y r¥¢~9 (140 (*/="2)),

A
(3.48) v':;z =—1+ e rl@=2 4 g (p4/e-2),

Integrating (3.48) gives v(r)=7(x)r¥? 24 24 +0 (r*©®=?)  which
o

implies (3. 40).

N-—
Remark 3.1. — If N=3 and a=2N—;,\]1(r)=y(oc) r?/2-9 js a solution

of (3.30) in (0, + o).
We are now able to prove the main theorem of this section

THEOREM 3.2. — Assume N=2, a>0 and ueC*(Q') is a nonnegative
solution of (3.16) in Q’. Then
if0<axz2:

(i) either u can be extended to Q as a C? solution of (3.16) in Q,
(ii) or there exists y>0 such that lim u(x)/p(x)=7 and u satisfies

x—=>0
(3.49) Au=u(Ln* u)*—C(N) v5,
in D' (Q);
ifa>2:

(iii) either u behaves as in (i) or (ii) above
(V) or u(x)=y(e, N) e @1 =7 (140 (| x [P 2))
2/(@—2)
near 0 Wlth 'Y(u)_—_ (_?_2> and —Y(a,N')=e(!—(N—1)(d—2))/2a.
a._

Proof. — From Theorems 1.1, 1.2 we know that u(x)/u(x) admits a
limit in (0, + co] as x tends to 0. If the limit is finite we get (i) or (ii) [(iii)
if a>2] and (3.49) from Theorems 1.1, 1.2 and Remark 1.1 (if the limit
is 0 then u is regular as in Proposition 2.5). So let us assume that
(3.50) lim u(x)/p(x)= 4+ co.

x—>0

For any ¢>0 let @_ be the solution of

(@t " (@), =@.(Ln" @)" in (O.R),
lim ¢, k() =c,  o.(R)= min u(x)

r—-0 |x|=R

(3.51)
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(we assume By < Q). It is clear that 0<¢.,<u for 0<|x|<R, c> @, is
increasing and lim ¢,=¢ where @ satisfies

c— +o

N-1 .
¢+ —0,= (p(Ln+ (p)a m (0’ R)a
(3.52) r .
lim o (r)/p(r)= + oo, @ (R)= min u(x).
r—0 |x|=R
Moreover 0<@<u in B\ {0}.
If 0<a<2 we can take R small enough such that ¢(R)>e and we
construct in the same way as @ a function @ such that 0<S@<¢ and

B e P
¢+ ——&,=0(Ln" ) in (O,R),
r

lim ¢ ()/n(@)=+w, ©(R)=¢(R).

r—-0

(3.53)

From Lemma 3.4 lim r¥*Ln@ (r)= + co. If we set {=Ln @, then Lemma

r—-0

4

3.3 implies that lim > (r)= — 1 which implies by integration that { remains

r—=0
bounded near 0 and so does @, a contradiction.
We assume now a.>2. We define {, as the solution of

Wt Y=L (g, =0 Lt ¥ in (1,R>,
(3.54) r n

v, ( ! ) = max u(x), ¥, (R) = max u(x).
n

Ix|=1/n Ix|=R

Using Lemma 3.2 and the same device as in the proof of Proposition
2.5 we deduce that for some subsequence {V,, } we have lim \, =V in

nyg — o

the C*((0, R])-topology and Vs satisfies
(3.55) Vot Ly g @nt e in (OR)
r

Moreover 0<u =<V in Bx\{0}. Applying Lemma 3.5 to ¢ and ¥ we get
(iv).
Remark 3.2. — It is interesting to notice that if u is a positive solution

of (3.16) with a strong singularity at 0, then v=Lnu behaves like the
explicit radial singular solution of the following first order equation in

RN{0} (a>2)
(3.56) |DU=U"
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that is U (x) =1y (o) | x [ ~%.

Remark 3.3. — There is an alternative way to prove Theorem 3.2 in
the case a>2, it is to obtain Harnack type inequalities as in [23] and to
use Lemmas 3.3-3.5 (see [16] for details). Unfortunately such inequalities
are out of reach in the case 0 <a <2 as Lemma 3.2 no longer holds.
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