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ABSTRACT. — We consider neutral nearly diagonal n-dimensional sys-
tems of the form &2y’ = ixA(x)y + g(x, ¢, y). We study the propagation
of solutions from x = — o0 to x = + oo past the complete degeneracy of

the linearized problem at x = 0. Under several conditions on A and g
we show that for small ¢ in ¢” there exists a global solution having the form

x

y= { exp iz j sA(s)ds } cnear x=—oo and y= { exp iz‘[ sA(s)ds } S(e, ¢)
13 € Jo

0
near x = + oc. Here S(g, ¢) € €" is the scattering function. Our main result

is an asymptotic formula for S(eg, ¢). We show that if g(0,0, y) = 0 and
g = Zgidx, &)y;yi + 0(] y |*) then s
S(e, ©) = ¢ + Ze;ei2mi { A©) — (4,0) + A(O)L )17 %(O, 0)
+0(] ¢ ) + 0fe).. )
To establish this formula we use the Kolmogorov-Arnold-Moser method
and the Moser-Jacobowitz approximation method to obtain a priori
estimates for solutions. These a priori estimates provide a rigorous justi-

fication for our calculation of explicit asymptotic formulas by a technique
of matched asymptotic expansions.

RESUME. — Nous considérons des systémes différentiels neutres a
n dimensions presque diagonaux de la forme &%y’ = ixA(x)y + g(x, &, ¥).
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2 J. NARAYAN AND G. STENGLE

Nous étudions la propagation des solutions depuis x = — oo jus-
qua x = + oc a travers la dégénérescence compléte du probléme
linéarisé 4 lorigine. Moyennant diverses conditions sur A et g nous
montrons que, pour ¢ assez petit dans ¢ il existe une solution glo-

bale de la forme y = { exp iz f sA(s)ds }c au voisinage de x = — o0,
e Jo

et y= {exp iz J sSA(s)ds } S(e, ¢) au voisinage de x = + co. Ici S(g, ¢)
& Jo

est la fonction de scattering.
Notre résultat principal est une formule asymptotique pour S(e, c).
Pour I’établir, nous utilisons la méthode de Kolmogorov-Arnold-Moser
et la formule d’approximation de Moser-Jacobowitz pour obtenir des
estimations a priori, qui nous permettent de justifier rigoureusement le
calcul des formules asymptotiques par une technique de comparaison.

Mots-clés : Matched asymptotic expansions, scattering function, Kolmogorov-Arnold-
Moser method.
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A NONLINEAR SCATTERING PROBLEM 3

PART 1

ASYMPTOTIC THEOREMS

1. Introduction.

Our purpose is to determine the asymptotic behavior of certain
systems &2y’ = f(x, ¢ y); f(x, & 0) = 0, near the zero solution in some
cases in which the linearized problem is neutral and degenerate. We ask
for results which are global in x, asymptotic as ¢ — 0%, and which do
not require that f be holomorphic in x so that we can study the effect of
smooth nonlinearities with compact x-support. We obtain results of two
kinds. First are definite computational procedures for sinning boldly
with the formal apparatus of perturbation theory to obtain explicit asymp-
totic formulas for solutions. Our main tool here is a technique of matched
expansions. Second are existence theorems which vindicate the formal
calculations. Here we need the Kolmogorov-Arnold-Moser technique.
We proceed by supposing that f is holomorphic in y (but not x) and studying
the asymptotics of the linearization problem that is, of reducing the nonlinear
equation to its linear part by a change of dependent variable given by
a convergent power series in y. Hartman [/ ] and Wasow [2] give accounts
of this classical method, the latter giving special emphasis to asymp-
totic questions. In this paper we study a problem which in fact lies beyond
a straightforward application of this method. Brjuno [3] gives a more
recent account of the linearization problem together with counterexamples
which show the unreliability of purely formal reasoning in this regime.

We consider nearly diagonal n-dimensional systems of the form

(1.1) 2y’ = ixA(x)y + glx, &, )

where g(x, ¢, 0) = g(0, 0, ¥) = 0, g,(x, ¢, 0) = 0, g is a smooth function of x
and ¢ holomorphic at y = 0, and A is a smooth real diagonal matrix valued
function satisfying certain nondegeneracy conditions to be stated below.
The salient features here are the neutral behavior of the linearized problem

and its complete degeneracy at x = 0. In addition we suppose that g
vanishes for large | x|. We can then formulate the following scattering

problem. Consider the solution which has the form { exp iz f sA(s)ds } c
£

0
for large negative x. If this solution exists for all x then for large positive x

it must have the form {exp izf sA(s)ds } S(e, ¢) where S(e, ¢) is a new
& Jo
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4 J. NARAYAN AND G. STENGLE

constant vector. The mapping ¢ — S(¢, ¢) is the scattering function which
measures the impact of the perturbation g on the propagation of solutions
from x = — o0 to x = + oc. By the scattering problem we understand:
find asymptotic formulas for the scattering function.

We have arranged our exposition in three stages of increasing difficulty
and technical complexity. In Sections 1-5 we describe the problem, give
motivating examples, discuss the chief difficulties, and state our main
results (in Section 4). Sections 6-11 present a second level. In Sections 6 and 7
we formulate and state without proof the asymptotic a priori estimates
necessary to prove our main results. In Sections 8-11 we show how these
estimates can be used to derive our asymptotic theorems. With them our
method of matched formal expansions, which often has only heuristic
significance, becomes a rigorous deduction of asymptotic formulas. The
balance of the paper exposes the third level of difficulty. In it we prove
our a priori estimates using the KAM technique [4] combined with the
approximation methods of Jacobowitz [5].

2. An elementary example.

The following explicitly solvable problem motivates and also delimits
our results. Consider

(2.1 &2y’ = imx™ 1y = g(x, e)y*

where g is a smooth function vanishing for large | x |. The solution reducing

l .
to cexp — X" near x = — 00 is
&

: x i -1
(2.2) y(x)=cexpizx"‘{l—%f g(s,s)exp—zs"‘ds} .
€ & ) €

A simple computation shows that if m > 1

-2+2 -1+2 -2+4

WO ~c { 1—c[g(0, 0)tme  "+8.(0, 0)Bme  "+ge(0,0yme  "H.]FT

where %,,, fm, 7m are certain nonzero constants. This formula shows that y
will not in general be holomorphic in ¢ on a domain independent of ¢
unless we require that g(o, 0) = 0 and restrict the degeneracy of the linearized
problem at x = 0 by demanding that m = 2. In this case the solution (2.2)
can be given in the factored form

2

x
(2.3a) V= P<x, &, exp is_2 S(x, ¢, c))

Annales de " Institut Henri Poincaré - Analyse non linéaire



A NONLINEAR SCATTERING PROBLEM

where

. -1
, [X 1
w<1 - %f gls, ) exp 5 (s — xz)ds) x<0
&2 Jox €

(2.3b) P(x,e,w) = w (= i 1
w(l +5 f (s, 9)exp 5 (57 x2>ds> x>0
€

X

and
c x<0

) ) -1
(2.3¢) S(x,¢c¢) = c<1 - %f g(s, &) exp%ds) x>0
€ €

- X

This formula has the curious feature that it expresses the holomorphic
function y as the composition of the discontinuous functions P and S.
However it has the virtue that P and S have simple, regular asymptotic
properties as ¢ — 0*. This follows easily from the condition g(o, 0) = 0
and elementary properties of the integrals in (2.3b) and (2. 3¢). For example
some computation shows

S(0*, & ¢) = ¢ + /me*g.(0,0)c* + 0(e?) + 0(c?).

To explain the meaning of the factorization (2.3) for our subséquent ana-
lysis we distinguish functions of x according to their rapidity of variation,
that is, according to the way in which their x-derivatives are unbounded
in the parameter . Further simple calculations with (2.3) then reveal the

following.
)

1) The solution expli2 of the linearized equation is rapidly varying
at a rate O(g ™ 2). ¢

2) In contrast, the function P exhibits slower variation, O(¢~ ') at worst,
if we agree to use one sided derivatives at 0. Thus the most rapid variation
of y is accounted for in (2.3) entirely through dependence on the solution
of the linearized problem.

3) The function P is a generalized (discontinuous at 0) solution of the
partial differential equation 2P, + ix(WP,, — P) = gP? which (by remark 2)
satisfies the qualitative subsidiary condition of non-rapid variation. Such
solutions are far from unique but we show later that a properly formulated
version of this condition uniquely determines the asymptotic properties of P.

4) Dependence of y on the data ¢ is entirely through the piecewise
constant scattering function which is holomorphic in ¢ on a neighborhood
of ¢ = 0 independent of &.

If we bear these four properties in mind we can give another description
of this paper. It is devoted to obtaining analogous representations of solu-
tions for a class of general systems.

Vol. 3, n° 1-1986.



6 J. NARAYAN AND G. STENGLE

3. Hypotheses.
We suppose that the system

(1.1) ey’ = ixA(x)y + g(x, &, y)
satisfies the following.

H.1. Regularity conditions.

On (— o0, 0) x [0,60] X {|y| <ro}g is jointly infinitely differen-
tiable in (x, ¢) and holomorphic in y. The matrix A is real, diagonal and
infinitely differentiable.

H.2. FEigenvalue conditions.

On the x-support of g, for each j and each n-tuple of nonnegative integers

(my, ...,m,) with Em; > 2, the diagonal elements 4; of A satisfy
a) ;>0
b) /’{JZ Em,-/l,-;é().

H.3. Small perturbation conditions.
The perturbation g vanishes for large | x| and satisfies
8(0,0,y) = glx,e,0) =0,  gx,60) =0.

We remark that in the case that the A;’s are constant the eigenvalue
conditions H.2 are familiar sufficient conditions for linearizing a vector
field (Hartman [/]). It is also possible in this case to relax H.2a at the cost
of profound complications. Likewise in our problem this raises new diffi-
culties which we avoid in the present investigation. The eigenvalue condi-
tions ensure that the linearized problem is nondegenerate except at x = 0
where it is instead completely degenerate. However we emphasize that
even if we restrict our results to a closed x-interval not containing 0 (in
which case the factor x can be absorbed into A without altering the eigen-
value conditions, and the condition g(o, o, y) = 0 is vacuous) we obtain
results about a delicate problem, namely

(3.1 g1y = iAX)y + g(x,e1,y) g=0(|yl), & = ¢&%.

The e-asymptotics of this problem also demand the full power of the KAM
method and are not covered by classical techniques such as those appearing
in Wasow’s treatise [2]. We therefore also give a result (Theorem 3 below)
about this problem as a simple byproduct of our work.

Annales de I'Institur Henri Poincaré - Analyse non linéaire
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4. Solution of the scattering problem.

By a linearizing function we mean a piecewise solution P(x, g, w) of the
linearizing problem
&2P, — ixAP + ixP,Aw = g(x, ¢, P)

(4.1)
P|w=0 = Pw |w:0 =0.

If P=w+ Q we call Q a linearizing perturbation. An invertible solution
of this equation defines a change of variable y = P(x, ¢, w) which linearizes
problem (1.1). The following theorems justify a qualified reliance upon
the far simpler problem of finding formal e-power series solutions of (4.1)
(strictly speaking, solutions of the equation resulting when g is replaced
by its formal e-y-Taylor series at ¢ = 0, y = 0). Specifically we use the
following method of matched formal expansions.

By a formal solution of the linearizing problem we mean a formal e-power

oC

series solution Zs"Pk(x, w) of (4.1). We will find that this solution is
k=0

unique but fails, in general, to be defined at x = 0. In the technique of

matched formal solution we augment the previous procedure to obtain

formal results at x = 0 in the following way. Let

4.2) =
P(x, &, w) = p(s, & w)
Then
4.3) ps — isA(es)p + isp.Ales\w = ¢ 'g(es, &, p)
(44) p|w=0 ZO, Pw |w:0=0-

We note that our hypothesis g(o, 0, w) = 0 ensures that this problem
is regular in &. Formal e-power series solutions of (4.3) are determined
by a recursive set of equations with polynomial data. We will show that
there are solutions Ze&*p,(s, w) in which p, = 0(1 + | s|)* on the real s-axis.
We will also show that these conditions uniquely specify p. The matched
formal solution is then the pair (P, ).

The main content of the following theorems is that the above formal
procedure can be carried through and that it actually yields asymptotic
formulas for a linearizing transformation.

TueOREM 1 (Factorization of solutions). — Suppose the system
¢2)’ = ixAy + g satisfies conditions H.1-H.3. Then for small ce "

there exist solutions of the form y = P(x, &, expi7 f sA(s)dsS(x, e, c)>.
& Jo

Vol. 3, n° 1-1986.



8 J. NARAYAN AND G. STENGLE

The functions P and S are holomorphic at 0 € ¢" and have uniform asymp-
totic expansions given by the unique matched formal solution (P, p)
of the linearizing problem according to

P(x,e,w)  ag® <|x]|

4.5) P(x, e, w) ~ {

ps,ew) sl <as '

forany 0 < 6 < 1 and

4.6) S(x,s,c)~{f_1 o x<0
p (07,6 p07,¢ ) x>0

By carrying out the calculations described in Theorem 1 we obtain a
solution of the scattering problem. This we express in terms of the w-series

expansion of the perturbation g(x, ¢, w) = Z g4(x, ew? where g indicates

q
amulti-index of integersq = (g4, . . -, ¢n), W = wi ... wi,and| q| =qu.
j=1
THEOREM 2 (Scattering formula). — Suppose the system &y’ = ixAy+g
satisfies conditions H.1-H.3. Then for small ce ¢" the solution which

has the form {exp%f sA(s)ds }c near x = — oo exists for all x and
& Jo

x

has the form {exp %J sA(s)ds } S(e, ¢) near x = + oo where
. -

0
1

4.7 S(e,c)=c+ Z ct { 2m‘<A(O) —Z qj/“LJ(O)I> } % 0, 0)

lql=2 j=

+O(IC|;)+O(8).

Finally our analysis justifies the simplest methods in the nondegenerate
case.

THEOREM 3 (Parametric asymptotic linearization of neutral systems). —
Suppose the system &)’ = iA(x)y+g(x, & y) g=0(] y|?), has smooth data
on | x| < x, and satisfies the eigenvalue condition. Then for small ¢ € ¢"

there exist solutions of the form sz(.\', &, exp—lj SA(s)ds c). The func-
£

0
tion P(x, ¢, w) is holomorphic at w = 0 and has a uniform asymptotic

expansion given by P, the unique formal solution of the associated problem
&P, — iA(x)P + iP, A(xX)w = g(x, ¢, P)

(4.8)
Plyueco=0, P,lueo=0.

Annales de I'Institur Henri Poincaré - Analyse non linéaire



A NONLINEAR SCATTERING PROBLEM 9

5. A remark on the role of power series expansions.

We call special attention to the fact that Theorems 1-3 make no direct men-

tion of convergent w-power series expansions P(x, e, w)=w+ wiP (x, £)
lgl=2

for the linearizing function P. Existence of this expansion together with

asymptotic expansions for its coefficients are consequences of our conclu-

sions. However a converse implication is not usually true. The existence

of a convergent w-series expansion for P(x, ¢, w) together with asymptotic

formulas for the P,(x, ¢) does not entail asymptotic information about

the sum unless the asymptotic formulas are uniform in the multi-index q.
es]

For example the series G(e, w) = Zw"(l + €*¢)™ ! is uniformly conver-

k=0
1
gent for [w| <1 — 6. But even for w = — we have
e
N N\ e*  [* e <t |
G<8,—>=Z % NJV € x——‘ S YT E :1+81n —_8 .
e 1+e% o (1+e&€%) 1 (1 +et) 1+¢

k=0

Here the limiting behavior of the sum simply cannot be described by e-power
series even though the behavior of each summand can be. Now it happens
that in our investigation the uniformity in g of the asymptotic behavior
of Py(x, ¢) is an exceedingly subtle problem. It is one of the difficulties
that we overcome with the KAM method. This explains why, although
we use w-power series expansion to compute individual terms in the
matched formal expansions (P, p), we never use the w-expansion as a direct
analytical tool for solving the linearizing problem itself.

These difficulties have been sometimes overlooked in the literature.
The main theorem on solution of nonlinear equations with a small para-
meter in Wasows’ book [2], Theorem 36. 2, falls short in this way. Although
this theorem is correct as stated it does not strictly contain asymptotic
information about solutions of the nonlinear equation to which it refers.

6. A measure of perturbation strength.

We now introduce a collection of norms which measure the strength
of the perturbation g(x, &, w). We study perturbations more general than
these described in conditions H.1 and H.3 above because this added
generality is essential for our proofs. We consider perturbations which
are piecewise smooth in x with possible discontinuities at x = 0. In the

Vol. 3, n° 1-1986.



10 J. NARAYAN AND G. STENGLE

following formulas we suppose that suprema over function values range
over both right and left limits at 0.
bet glv. o w) = Z 245, W8 Where g = (g, .. .. g, w9 = W' ... wir

lalz2
and |g|=q; + ... + g, Also let |w]| = max | w; |. Then to each real
<i<n

r >0 and each convex function ¢ : [0,00) — (— o0, 0c) we associate
the norms (possibly infinite) defined by

a) || g3, = sup r'¥ | Dig,(x, &) | e *®
x.q,1

6.1)
b) 1| llo.

Il

sup 74 { (| x| + ¢)D, }'g (x, &) [ e *D.

x,q,l

We also define the corresponding unit balls by

Bo,={glllegls,<1}
By, ={glllgller<1}.

The ball BS, consists of perturbations g(x, &, w) which are holomorphic
for |w| < r with a sequence of progressively higher x-derivatives growing
no more rapidly than e®®), The ball B, is similar but embodies estimates
which allow non uniformities in x and ¢ (of the kind appearing in the example
of Section 2). We make exacting use of the spaces B, , in our existence argu-
ments. However for the derivation of asymptotic results less precision
is required and it suffices to consider the spaces

By =(_Jm3,
¢

B, =|_JB,..
[

Our analysis requires perturbations which are 0(| x| + ¢) in the following
sense.

(6.2)

(6.3)

H.3'. Alternate small perturbation condition.

For some r > 0
ge(lx|+ ¢)B,.
However we prefer the simpler hypotheses H.3 for the statement of our
theorems.
We emphasize that the condition g B, is not numerical in character.
Each ball B, , embodies numerical derivative estimates. But the union

B, = U B, , instead embodies the existence of e-independent estimates.
¢

We refer to the containment of a linearizing perturbation in some B, or B?
as an asymptotic a priori estimate. The term « asymptotic » indicates the

Annales de I’ Institut Henri Poincaré - Analyse non linéaire



A NONLINEAR SCATTERING PROBLEM 11

non-numerical nature of the relation. The term « a priori » is generally
used for estimates which are established prior to existence. In this investi-
gation the basic existence problem is to find a linearization which depends
regularly on the singular parameter &. We will see that we find linearizing
perturbations in B, by powerful existence arguments which nevertheless
entirely preceed the resolution of this more delicate existential question.
It is with respect to this latter asymptotic problem that our estimates are
« a priori ».

The following shows that our hypotheses H.1 and H.3 imply that each
perturbation g belongs to some B,.

PROPOSITION 6.1. — If g satisfies H.1, g=0(]w|?), and g vanishes for
large x, then g € BY for some r > 0. If also g(o0, 0, w)=0 then ge(| x| +¢)B,.

Proof. — Let g(s, &, w) be the x-Fourier transform of g(x, &, w). Since g
has compact support, g is rapidly decreasing as a function of s. Moreover
if g = Zg,(x, e)w? for |w| < rthen g = Xg,w Since | s |*g is holomorphic
in|w| < rand continuousin ¢ for 0 < ¢ < ¢, thisimplies | s [*!? | ,| < M,
for a > 0. Define
6.4 = 5 sup o | ISPl gl as

T |ql,e -

We claim that log ¢ is a convex function of x. For
1

®ata = N e - )
tog | 15122 gys o tas stog (| tsri gy las) ([ 151z 1as
I%G'mmgwﬁ

logj s | g,lds.

- X0

=

<

+

S S

Thus log f [s]*| &4s, €) | ds is a convex function of a. Moreover

—

r“f |5%] &4(s, e)ds < 2| x0 | M,

if we suppose that g vanishes outside [— xo, xo]. Hence log ¢(x) is the
supremum of a pointwise upper bounded family of convex functions and

is therefore also convex.
ax€x

rlal ] R
We next show that ge BS , = BY. For 9Dk g (x, &)= 5 e=(is)* g (s, e)ds.
, T

lal [t
Hence r1 | Digy(x,¢)| < ;—f |s¥]g,(s, &) |ds < ¢(k). Thus ge B . If
2n ),

Vol. 3. n° 1-1986.



12 J. NARAYAN AND G. STENGLE

in addition g(o, o, w) = 0 then g has the form xh(x, ¢, w) + ¢k(x, &, w). Hence

1 X 3 3
g§= + k = sgnx h+
| x|+e | x|+e | x|+e | x|+e

ment above we can suppose that h and k belong to B?. We next show that h,
keBy,, for some ¢,. Computing recursively we find

K
k j
((x + &) %) h= Z mkj(x+e)j<%> h

=
where mgo =1 and myy; ;= Mj—1 = jm,,. These inequalities imply

my; < k! (a very crude estimate but sufficient for our purposes). It follows

d k
|:(|x|+8) d_x:| hy(x, &)

we can suppose ¢ is an increasing function so that

d k
[(IXH-S)E:I hy(x, €)

This shows h € By, , where ¢;(0) = ¢(o) +(x+ 1) log (a+1)+alog (| xo | +1).
Similarly k—heB,, ,. Finally an application of the Leibniz rule for the
3

(k-sgnx h). By the argu-

easily that 9!

< (k+1)!(|x0|+1)* max e??. Now
1<j<k

ridl < (k+1)!(Ix0] + 1)te?®.

derivation (Ix|+s)d— to the product | (h—k) implies
x X

+ &

k
d g 1 k k k+1 k
(x|+e— gl < ¢i(k)+2 et < DkH1pbalh),
dx | |x|+e j
=0

Hence if ¢,(«) = ¢y(®) + (k + 1)log2 then (| x| + ¢)”'g€By,, €B,.
We make two comments about the preceeding proof. First our hypotheses

rlal

d a
permit the definition of derivatives (d_) g for real @ > 0 by means of
X

the Fourier transform. Accordingly we invariably suppose that the func-
tion ¢(k) describing the growth of successive x-derivatives is a convex
function of a real argument as in formula (6.4). For convenience we also
define ¢(x) = + oo for x < 0. Secondly we call attention to the tedious
character of the preceding calculations with elementary derivative for-
mulas. Since we must perform numerous far more complicated estimations
of derivative growth rate, an essential part of our subsequent analysis will
be an effective and systematic technique for doing this.

7. Statement of a priori estimates.

In this section we state our main analytic results in the form required
to prove the asymptotic conclusions of Theorems 1-3. The proofs of these

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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results are far more technical than their applications. We give the latter
first. We believe that our method of separating these is itself a valuable
tool which can be applied to many other problems. We have therefore
tried to give a reasonable account of our asymptotic reasoning to a reader
who is willing to take the results of this section for granted.

We first state the main linearization theorem.

ProrosiTiON 7.1 (Linearization with derivative estimates). — Suppose
ged(| x| +¢)B, (gedB?). Then for each r' <r and for ¢ sufficiently small
there is a linearizing transformation w + Q for Problem (1.1) (Problem 3.1)

satisfying Q € 8B, (Q € 6B2).
We also require similar results for certain reduced linearizing problems
in the « outer scale », | x| > x; > 0 and the « inner scale » x = &s.

PROPOSITION 7.2 A. — Suppose geB?. Then for each ¥ < r and for & suffi-
ciently small there is a unique solution Q of —iAQ+iQ,,Aw=g(x, &, w+ Q)

satisfying Q € 6B?..
The following proposition provides solutions to the reduced linearizing

problem in the inner scale x = &s.

PROPOSITION 7.2B. — Suppose g(s, w) is holomorphic for |w|<r
and |Imlog (1+s)| < 0 <g and satisfies [(1 + s)"!g| < 6. Then for é
sufficiently small the problem

Q, — isA(0)Q + i1sQ,A(0)w = sh(w + Q) + k(w + Q)

has a unique bounded holomorphic solution on the domain |w| < <r,
[Imlog(l + s)| < 6 < 6 satisfying | Q| < M(r, 6')5 | w |2.

We also require similar (but much easier) results about linearized forms
of the preceedings propositions.

ProposITION 7.3. — Suppose g€ (| x| + ¢)B,. Then the linear problem
e?Q, — ixAQ + ixQ,.Aw = g(x, &, w) has a solution in B,. for any r’ < r.

PROPOSITION 7.4 A. — Suppose ge B, (geB?). Then
— IAQ + iQ,Aw = g(x, &, w)
has a unique solution in B,. for any ' < r.
PROPOSITION 7.4 B. — Suppose g(s, w) is holomorphic for |w|<r

and — 0 < Imlog (1+5) < 6,0 < 6 < g.SuppOSeigl <1+ syt wh.
Then given r’ < r the problem -

Q; — isA(0)Q + isQ,. A0)w = g(s, w)
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14 J. NARAYAN AND G. STENGLE

has a unique solution Q satisfying |Q| < M(1+|s|)y"|w|? for |w| <7,
— O <Imlog|l+s|<@.

In our reasoning we operate on B, with the common operations of
analysis. To express compositions of small perturbations of the identity
map we find the following notation for composition convenient (Stern-
berg [4]).

DEFINITION 7.5. — Qo R(w) = R(w) + Q(w + R(w)).

DEFINITION 7.6. — If Q o R = 0 then we write R = Q¥ and we call R
the quasi-inverse of Q.

The operations o and # are local in character and in general do not
carry B, x B, or B, into B,. The following proposition lists some closure
properties of the family { B, },-, as substitutes.

ProposiTION 7.7 (Closure properties of 6B,). If g, h belong to 6B, then

a) g + hedB,
b) g.,,(|x| + e)g.edB,forr <r

Moreover if § is sufficiently small then the following belong to oB;.

¢ I+g,) 'h |

d) g(x, e, w+h)—g(x, e w)and B [g(x, &, w+eh)—g(x, e w)]

e) goh

f g

We summarize the conclusions of this section broadly. They show that
our linear operations lead from data in B, to results in B,. for any ' < r.

Moreover the same is true for our nonlinear operations if the operands
are small.

8. Proof of Theorem 3.

We begin with the proof of Theorem 3 which shows our reasoning in
a relatively uncluttered form. We subdivide the proof into two parts.
The first shows the existence of an asymptotic linearization; the second
shows its uniqueness.

PrROPOSITION 8.1. — Assume the hypotheses of Theorem 3. Then pro-

blem (3.1) has a linearizing transformation w+Q where Q € B? for some
o

r > 0. Also Q has a uniform asymptotic expansion Q(x, &, w) ~ Z £ Qu(x, w)
k=0
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A NONLINEAR SCATTERING PROBLEM 15
with coefficients Q, e B?. This expansion can be x- or w-differentiated
term by term any number of times.

Proof.— Suppose g € BY. We observe that the change of variable w — 6w
replaces g(x, &, w) by 6 'g(x, ¢, dw) in the linearizing problem (4. 8). Since
g =0(|wl|? we have 5 'g(x, &, ow)e6BOs = OB if § <s. Thus at the
cost of shrinking the w-domain we can suppose that ge JB9. (However
it 1s vital that such shrinkage be controlled in later steps.) Then Propo-
sitions (7.1) and (7.2) provide a solution w + Q of the linearizing pro-
blem (4.8) and a solution w + Q, of the corresponding reduced problem
— iAQo + Qo Aw = g(x, 0,w + Qo), where Q, Qo€ 6B, if & is small.
Also by Proposition 7.7 we can suppose that Qf - Q, (Qf < Q),, QF,

1
h=(I+ Qo)™ {; [g(x, &, w)—g(x, 0, w)] — Qox ¢ and h(x, &, w+Q{ = Q)

all belong to 6B, if 4 is small.
Let ¢eR = QF - Q, that is Q = Q¢ ¢eR. Then R satisfies

8.1) eR, — iAR + iR, ,Aw = h(x, &, w + ¢R)

where h is defined above and hedB{,,. We show that ReéBY; by an
argument which exploits the fact that R is the « compositional » remainder
of a solution Q satisfying the a priori asymptotic estimates Q € 6BY,,.
Equation (8.1) implies that R satisfies the linear problem

(8.2) — iAR + iR, Aw = h(x, &, w + QF - Q) — (Q& - Q),

with data in 6B ,. Unlike (8.1) this problem has a unique solution in 6B 3
which must be R. Thus we find Q = Qg - ¢R where Q, Q, and R belong
to 6BY;3. This implies that Q = Qo + ¢R; where

1
R; =R + = {Qq(x,& w + eR) — Qq(x, &, w) } belongs to 6B}, for suffi-
€

ciently small e. This establishes the lowest order finite asymptotic expan-

sion of Q with remainder, Q = Qq + ¢R;.
Obtaining higher order finite expansions with remainder is easier (the

reasoning illustrates further use of our a priori estimates). Let #(g) be the
unique solution of — iAQ + iQ,Aw = g(x, &, w), Q = 0(|w|?). Then
equation 8.1 can be transformed into

R = L(h(x, e, w + eR) — eR,)

Since RedBY,; this implies immediately that R = L(h(x, 0, w)) + eR’
1

(where R'=% { — [h(x, &, w+eR)—h(x, 0, w)]—R,. } ) Moreover, simple
£
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16 J. NARAYAN AND G. STENGLE

1
iteration leads to higher order formulas with terms in BY for any r < -
if ¢ is sufficiently small. For example 3

R = Z {h(x,e,w + c¢ZL(h(x,e,w + eR) — e ZR,))
— 8i($(h(x, ew + eR) — st))}
dx

= L(h(x, 0,w)) + ¢ { L(hfx,0,w) + h,(x, 0, w)Z(h(x, 0, w)))
— P?*hy(x, 0,w)) } + 0(c?).

Thus the functional equation (8.1) and the estimate R eBY3 together
. . . 1
imply that R has an asymptotic expansion for, say, |w| < —. The same

will be true of the composition Q = Qg - ¢R for ¢ sufficiently small and

1
jw] < 3 This establishes the proposition.

We next show that the expansion of Proposition 8.1 is the unique formal
solution of the linearizing problem (4.8). This fact is well known and is,
so to speak, the basis of the formal utility here of perturbation methods
(see Wasow [2], p. 218-219). We give an alternate proof.

ProPOSITION 8.2. — The formal series of Proposition 8.1 is the unique
formal solution of the linearizing problem (4. 8).

Proof. — Let w+(§ be the given formal solution. Suppose w+Q’ is an-
other. Then R= Q# o Q' is a formal solution of eR 1Aﬁ+lf( Aw=0.Hence
R= —¢%(R,) where & is the linear solution operator of —iAQ+ QnAw=g¢.
Iteration gives R = — &N#NDYR which shows R =0 on any domain
|w| < # <r, supposing that the terms of R belong to B,.

Propositions 8.1 and 8.2 together establish Theorem 3. We remark
that all our derivations of asymptotic expansions are variants of the argu-
ment of 8.2 which appears here in its purest form.

9. A proof of asymptotic uniqueness.

Our proof of Theorem 1 will use the ideas of Section 8 but will require
separate arguments in the inner scale | x | < ae’® and the outer scale | x | > ag’.
A new difficulty arises in the inner scale where the reduced linearizing
equation (set ¢ = 0 in problem 4.3) no longer has a unique solution.
We also note that in the proof of Proposition 8.1 in the previous section
we estimated the remainder R by alternately representing it as the unique
solution of equation (8.2). Our next result provides a substitute for this
uniqueness. We show that our qualitative estimates Q €6B, are suffi-
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A NONLINEAR SCATTERING PROBLEM 17

cient to determine uniquely the asymptotic properties of solutions of
certain problems.

ProprosITION 9.1. — Suppose Q and Q’ are solutions of
glx,e,w + Q)
£2Q, — ixAQ + ixQ,Aw = { or
g(x, &, w)
belonging to B,. Then Q’ ~ Q uniformly in some domain [w| < ¢ <.
Q# ° Q/
Proof. — Let R = 4 or . Then in either case R satisfies
Q-Q

2R, — ixAR + ixR,Aw = 0

and by choosing r’ sufficiently small we can suppose ReB,.. For x > 0
this implies that R can be represented in the form

R = exp22 f sA(s)ds c(a, exp { ——21 J OA(s)ds } w)
s & ags

where c(e, w) is holomorphic for | w| < r’ and c(e, w) = R(aé’, &, w). (R also
has a similar representation for x < 0.)

d k
The idea of the proof is that R e B, implies <d_> R |x=ges = O(e™*),
X

k
while the preceeding representation implies <d_> R |iogee = O(ce ™27 9k),
X

These estimates are compatible only if ¢ = 0(2! ~9%), that is, if ¢ ~ 0.
To make this precise we again use %, the linear solution operator of the
problem
—iAR +R,Aw=h; R=0]wl]?).

2

ThenR = _—F ZL(]x|+¢)R,).Since (by Proposition 7.7) (| x| + ¢)R.€B,.,

x(|x|+e)
this representation immediately shows that c(e, w)=R |y s = 021 79,

Moreover, iterating the representation gives
82 2

€
*= e (e g < on )

—4< ! &z D,Z {(|x| + DR
=¢ m{ (Ix|+&eDZ {(Ix]| + ¢e)DR} }

— 1 sgn x ) )
<x3(1x|+s)+x(|x,+£)3>$ {(Ix| + ¢D,R}
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18 J. NARAYAN AND G. STENGLE

Again setting x = ae® we find c(e, w) = 0(s** ~?). An elementary induction
argument shows similarly that c(e, w) = 0(e*N* ~9) for each N, establishing
the proposition.

10. Proof of Theorem 1.

We roughly follow the pattern of Section 8. The following is a two-scale
analog of Proposition 8.1.

ProposiTION 10.1. — Assume the hypotheses of Theorem 1. Then
Problem (1.1) has a linearizing transformation w + Q where Qe B,
for some r > 0. Moreover, Q has outer and inner expansions

Z Ri(x, w)ek  ae' ™% < | x|

L,jz0

z Sk<f,w>£" x| <a.
e

i,j=20

(10.1) Q ~

uniformly valid for any 0 ¢ 6 { 1 where x*R, and (| x| + &)~ *S, belong to B,.
.These expansions can be x- or w-differentiated any number of times.

Proof. — We begin with the outer expansion. As in the proof of Propo-
sition 8.1 we can suppose g € 6B,, by a preliminary shrinking of the
w-domain. Since g(o, 0, w) = 0 we have g = xh + ¢k where h, ke dB,,.
Let Qo(x, w) be the solution of —iAQq+iQo.A=h(x, 0, w+Qp) in 5B3r

2
provided by Proposition 7.2 if § is small. Let Q € 0B; be the linearizing
31‘

perturbation given by Proposition 7.1 and let Q = Q,° U where also
UeéBs . Then
2"

(10.2) e?U, — ixAU + ixU,Aw = &f (x,e,w + U)

where

f=(1'+_Q0w)—1 {k(x’ &, W+Q0)+§ [h(X, &, W+Q0)_h(x5 0,W+Q0]+8Q0x}

For small 6 we can also suppose that fe B3 . Moreover, g has a uniform
7"

asymptotic expansion in ¢ since k and h do. In a word we have normalized
the problem to the case in which the perturbation has the form &f.
We now establish that Q, is the leading term of the outer expansion.
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Let U = V. Then
¥ V=Z{f(x,ee w+ U)—eU,}.
This shows that for § sufficiently small (so that the composition f(x, &, w+ U)
can be estimated) we have VeéBir. Hence Q = Qg o)—iV =Qp+0 E .
3

. . & . . .
To obtain higher expansions we replace U by — V in the previous relation
x

obtaining
€ &2
V=24 flxew+t-V|+ S (V-xV,) .
X X

From the standpoint of the outer expansion the occurrences of V in the
right hand side are all small. Once again iteration can be seen to yield finite
expansions with remainder of any order for V. Hence we omit further

. . .. € .
details. Finally the composition Q = Q, = — V also has an outer expansion.
x

To obtain the inner expansion we return to the original linearization
problem (4.1) and its rescaled form (4.3). Its derivation is slightly more
complex. In the preceeding argument x played the role of an inert para-
meter because the reduced problem (set ¢ = 0 in (4.1)) is no longer a diffe-
rential equation in x. However here the reduced problem (set ¢ = 0 in (4.3))
has the same character as the full problem. We therefore require a somewhat
more elaborate argument although the general idea is the same.

Since the first transformation Q = Qg o U is valid in both scales it will
suffice to establish an inner expansion for the solution U = Qg - Q of
(10.2). Let U, be a solution of the leading part of (10.2) in the inner scale

(10.3) £2Uqy — ixA(0)Uq + ixUg, AW = & (0, 0, w + Up).
We can suppose that Uy e B, for small 6. Let U = U, = R;. Then
5"

(10.4) &Ry, — ixAR, + ixR; , Aw = ¢fi(x, &, w + Ry)

where
Ji =0+ Up) ' { fix,e, w + Ug) — fo.0,w + Uo)

+ i;x(A(x) — AO)Uo — %U""‘A{x’ ~ A0 } '

Since fi(o. 0,w) = 0 we can suppose f; e(|x| + ¢B s for small 6. (This
4

is the last shrinkage of §. We prevent further shrinkage of the w-domain

by choosing ¢ sufficiently small.) By Proposition 7.1, for ¢ sufficiently

small, problem (10.4) has a solution Q] € éeB¢ . However since the solution
5"

Vol. 3, n° 1-1986.



20 J. NARAYAN AND G. STENGLE

to this problem is not unique it need not be true that R}, = R;. We therefore
appeal to the asymptotic uniqueness result, Proposition 9.1, which shows

that, as elements of B 7, Ry ~ Ri. It follows that R, € ¢éB 7 . Let Ry = €Ty
Then 6" 6"

(10.5) T — ixAT, + ixTyAw = fi(x, &, w + €Ty).

This is an equation in which the occurrence of T, in the right hand side
is small and which therefore can be used for an iterative derivation of
finite asymptotic expansions with remainder. To elaborate this proce-

dure it is convenient to introduce the « inner » variable s = = into (10.5)
€

and to separate out the « intermediate » and « slow » x dependences of f;

in the following way. As a function of s, our solution U, of 10.3 satisfies
du,

— isA(0)U, + isUo, A(O)w = f(0,0,w + U,). By Proposition 7.2 B

we can choose Uy to be of the form Ug(s, w). The perturbation f, of (10.5)
can then be expressed

Ji={T+Ugus, w) } 1 { f(x, &, w + Ug(s, w)) = f(0,0,w + Uy(s,w) }
+ iS(AGY) — AO)Uo(s, w)— isU(ACx) — A(0))
=Fi(s, x, ¢, w).

We can then express (10.5) in the form

(10.6) Ty, —isA(O)T; +isT;,, A(Q)w=Fy(s, s, &, w+£T;) + es2k(es) T,

ix ix
where esk(es)T,; = ;(A(x)—A(O)Tl— ;TIW(A(x)—A(O))w. If we regard
the right hand side as a given element of (| x| + &)Bg then we have a
7"

linear problem which by Proposition 7.3 has a solution T; € By which
we indicate by 8"

T = &, {Fils, es, 6, w + €Ty) + es?k(es)Ty }.
We cannot assert that T7 = T,, but by Proposition 9.1 T} ~ T, as ele-

ments of B, . Hence
Tr

(10.7) T, = %, {Fi(s,e5,6,w + €Ty) + es?K(es)T, } + Z
where Z ~ 0. This relation implies immediately that
Ty = Zy(Li(s, 0,0, W) + O(| x| + €).
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Similarly iteration gives higher order finite expansions with remainder

of the form
N

T, = ZEle(k) + ¥Ry

k=0

where sT® e (| x| + ¢)*B;; ande¥" 'Ry e (]| x|+ &)¥"'B;; . Theexpan-
x 10" 10"

sion T; ~ &T® thus is an asymptotic expansion in the inner region

k=0
| x| < ag® where (| x| + &) = 0(¢%). It is not however strictly the desired

inner expansion since it is obtained by using a uniform solution operator .%;
provided by Proposition 7.1. This %; is not the simpler holomorphic
solution operator of the reduced problem in the inner scale analysed in
Proposition 7.4.B. For this reason the functions T are, in principle,
functions of (s, ¢, w) rather than (s, w) as required in our inner expansion.
However the T are solutions of the recursive system of linear equations
obtained by expanding (10.6) in powers of ¢. These problems have poly-
nomial data, and Proposition 7.4 B ensures their recursive solubility for
functions T¥(s, w) obtained by separately solving the system on the com-

plex domains —0 < Imlog (1 +s)<fand —6 <Imlog(l —s)<6,|w]| s7r
and piecing together at s=0 their restrictions to the real s-axis. These solu-

tions T{‘(—, w ) satisfy our derivative estimates and by Proposition 9.1
€

X
we have TP(x, g, w) ~ T‘l")<—, w> as elements of B;, . Hence
e

T, ~ ZskTW(i‘, w)
&

11"

which gives us the required inner expansion.

Finally, the composition Q = Qg < U, c¢T; has a similar expansion
with terms in B, which we obtain by combining the above expansion of T,
with Taylor expansions of Qg(es, w) in both arguments and of Ug(s, w)

in its second argument.
This establishes the existence of a matched asymptotic expansion (10.1).

To establish its identity with the matched formal solution (P, p) we observe
that the reasoning of Proposition (8.2) applies separately in each scale
and we easily obtain the corresponding result here which, as a parallel

to Proposition 8.2, we state as:
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ProposiTiON 10.2. — The matched expansion (10.1) is the unique
matched formal solution of the linearizing problem (4.1).

Propositions 10.1 and 10.2 together establish relation (4.5) of Theo-
rem 1. To obtain (4.6) we observe that if y =z + Q(x, ¢, z), then z is a

solution of &2z’ = ixA(x)Z with a possible discontinuity at x = 0. Sup-
pose for x < 0

z = expgi2 L sA(s)ds c.

In any case for x > 0 z is given by

z= expgi2 J sA(s)ds z(0%, ¢) .
0

But y is an ordinary solution of the full problem, that is, y is continuous
at zero. Hence

P07, & 207, 8) ~ PO, & c)

Solving for z(0*, ¢) and using

y = P(x, &, €Xp %j sA(s)ds (0™, 8)> for x>0
g

0

gives us formula (4.6). This completes the proof of Theorem 1.

This result fully justifies more conventional calculations with formal
series to which we now turn.

11. Proof of Theorem 2.

By Theorem 1 there is a linearizing transformation w + Q holomor-
phic at w = 0 with a matched asymptotic expansion. Let

Q(x, & w) = Z Q,(x, e + 0(w?).

lal=2
Then the Q, must satisfy

82qu —ix { A(X) - Zqz/l(x)l } Qq = gq(xa 8)

for | g| = 2. Moreover the Q,’s inherit matched asymptotic expansions
from Q. For example it follows that for | x| > ae® we have

1 £
Qq = — { ZQi;~iI — A }'lgq + 0<—>
X

ix
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Similarly for | x| < a¢® we have

1
Qq = - {Zg;240) — A©)}~'£,.(0, 0)

* (s> = 6?) .
— | expi —5 { A(0) — 2q;/40) } dog,(0, 0)

+0(|x|+ ¢
x> 0 and |
Q, = 7 { Zg;/440) — A(0) } £,x(0, 0)
(s = o?)
2

+ fs exp i ———A(0) — Zq;/4{0)do + O(| x| + ¢)

for x < 0.
The scattering function S is determined by

c+QO07,60)=S+0Q0%¢5)
which implies
S=c+Q07,6¢)— Q0" &c)+0(|cl).

Combining this with the preceeding formulas for Q we find

x _ i0'2 )
S=c+ Z f exp { A0) — 24q;7;(0) } doc?

2
lgl=2

+0(|c?) + 0(e).

Evaluating the integrals explicitly we obtain (4.7).
PART 11

LINEARIZATION WITH DERIVATIVE ESTIMATES

12. A sketch of some analytical methods.

The balance of our analysis is essentially devoted to proving Propo-
sition 7.1 which establishes the existence of a linearizing perturbation
satisfying our derivative estimates. Most of the other propositions of
Section 7 will appear in the course of proving this main analytical result.
We shall be operating with the collection of spaces { B,, } keeping much
more careful account of ¢ and r than was necessary in our asymptotic
analysis. We find a powerful tool for manipulating the necessary deri-
vative estimates here by combining the ideas of Jacobowitz [5] with some
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simple resources from the theory of convexity in a form which the second
author has used previously in [6].

The method of Jacobowitz is to represent differentiable functions g
on a real domain Q by a sequence g™ of functions holomorphic on nested
complex domains Qy in such a way that the convergence of g™ to g as Qy
converges to Q accurately reflects the differentiability properties of g.
For holomorphic functions h the problem of obtaining derivative estimates
is simple since the Cauchy integral formula gives estimates in terms of
sup | h| for all derivatives of h on a slightly smaller domain. In the next
section we show how to obtain from data g in B, a sequence of approxi-
mations g™ holomorphic in x so that the rate of convergence of the g™
1s governed by the convex conjugate function or Young transform of the
convex function ¢. This is defined by

(12.0) *(t) = max {tu— ¢}

We show roughly that if g € B, , then we can find g™ and nested domains Qy
so that on Qu,; we have g™ — g™ x exp — ¢*(N). Conversely we
find that if A% is holomorphic on Qy and KNV — ™ ~ ="M on Q4
then h®™ — he B,,. We thus have a duality between smoothness properties
and approximability properties corresponding to duality of conjugate
convex functions. Here we require the simple fact that our growth moduli
are closed convex functions [7] so that invariably we have ¢** = ¢.
Our main use of this technique is to solve

(12.1) 2Q, — ixA(x)Q + ixQ,A(x)w = g(x, &, w + Q)

by choosing a sequence of approximating problems
(12.2)  £2QP — ixAMX)QM + ixQMAM)w = gMN(x, &, w + QM)

with data holomorphic on an x — w domain Qy (which we do not describe
yet). We then solve (12.2)y on a smaller domain Qg by the KAM method,
obtaining a sequence Q™ of holomorphic approximate linearizing per-
turbations. Finally we deduce the differentiability properties of Q = lim Q™
from the convergence properties of the sequence Q™ and Q4. A notable
advantage of this procedure is that it permits us to use the rather arduous
KAM procedure only in the simple case of holomorphic data.

We have relied on Sternberg’s account of the KAM method [4], speci-
fically his lucid and technically complete exposition of holomorphic pro-
blems admitting the action of a group nucleus. However his treatment of
problems with C* data is now technically obsolete. In any case since no
general theorems obtained by this method appear to come within light-
years of our higly idiosyncratic application we are forced to give a self-
contained analysis. This proceeds along the following lines.
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In Section 15 we solve the linear problem
QN — ixAM(x)QEY + ixQNAM()w = g™(x, & w)

with holomorphic data. This problem is solvable by quadratures but
demands some delicate analysis of paths of integration in the complex
x-plane to obtain a solution Q§¥ which depends regularly on &. A most
characteristic feature here is that QYY) = D,g™. We give up an x-derivative
in passing from g™ to Q§Y in exchange for estimating Q¥ uniformly
in the singular parameter ¢. This is the famous « loss of derivatives » phe-
nomenon which precludes the use of ordinary successive approximation
methods in solving the full linearization problem. This difficulty requires
Kolmogorov’s idea of quadratic convergence which we next describe.

In Section 17 we introduce the change of variable Q™ = Q¢V o RV
into (12.2)y obtaining

R — ixAMX)RPY + ixRNAMx)w = gMV(x, &, w + R))

where gV =(I+Q%) ! {g™(x, &, w+QF)—g™(x, &, w) }. We thus have a
problem of precisely the form (12.2)y in which g™ ~ gMQ® x g™D, g™
if QYY) is small. Since g™ is holomorphic in (x, w) we have the vital qua-
dratic estimate gf¥ ~ (g™)? on a suitably smaller (x, w) domain. Now
let QY be a solution of
Z2QN — ixARQPY + ixQNAM(x)w = gM(x, &, w).

Let RN = Q™ < RV, etc. We obtain a sequence Q8V, QY . . . of successive
approximate linearizing perturbations which (because of quadratic conver-
gence) converge rapidly to zero on some fixed smaller (x, w) domain Qg
and there give a linearizing perturbation in the form of an infinite compo-

QY = Q- QM- Qg ...

In Section 19 we conclude our basic existence argument by showing
that the Q™ can be found converging to a linearizing perturbation Q
belonging to some B,,.

sition

13. Piecewise holomorphic approximation in B,.

In characterizing functions by membership in some B, 4 we find it neces-
sary to avoid the use of small ¢’s which can impose very subtle condi-
tions on g. (€. g. ¢(k) = k implies g is an entire function of s of exponential
type) to which our methods are insensitive. Since ¢* > 0 implies By, = By,
we can always choose a larger ¢ if we please. Actually a decisive condi-
tion (Carleman [8]) is that ¢(k) should grow rapidly enough so that

k
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the corresponding derivative estimates. However we easily pass over these

refined questions by agreeing to use only ¢’s which permit partitions
of unity and which even satisfy ¢(k)/k logk — oo as k — oo.

Now suppose that g belongs to some By, and vanishes for | x| > x,.

The norm || gl|4, defined by (6.1.h) can be expressed in terms of the
variable

(13.1) z = log <1 +w> sgn x
€
in the simple form

Il &llo, = suprff | Dzg, | exp — ¢(1)
z,9,

Letg, =gifz>0and g, =0if 2z < 0. Let g — g, = g_. We assume
(choosing ¢ larger if necessary) that g_ (that g.) has a smooth extension
to (— o0, 00) vanishing identically for z > 1 (for z < — 1) and satisfying
the same bounds. Then

(13.2) i gllg, = sup ri4l exp — $(l) max { | Dig_|,|Dig. |}

In terms of (13.2) we now construct a pair of sequences of holomorphic
functions g9 converging to g.. The functions g will be holomorphic

on domains of the form Qy,- where ' < r and

" -N
QN={x| —e‘NgRezslog<l +'\—Ol>,lmzse'l"}
€
O, = x {|w|<r}

The functions g™ will be holomorphic on — Q. The domains Qy are
simply rectangles in the z-plane

0

Fic. 13 A.

corresponding to truncated sectors

(o
e

-
-~

FiG. 13 B.
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in the x-plane. As N — oo these latter domains converge to the inter-
val [0, xo]. Our construction of the approximating sequences appears

in the proof of the following result.

ProprosITION 13.1 (Conjugate duality between smoothness and holo-
morphic approximability). — Suppose g € B,, and satisfies (13.2) where
¢(k)/klog k — oc as k — oc. Then there exist sequences g‘N’ of approxi-
mations to g, which are holomorphic on + Qy, for any r’ < r and there
satisfy estimates of the form
sup | g®| < M<1 - Cr_>

QN

(13.3)

(where n is the dimension of the system).

’

(13.4)  sup |[g®*Y —gP|< M<1 - —r—> exp — ¢*(N — 1) + N
r

TON+ 1,7

Conversely if the h” are sequences of functions holomorphic on + Qy.,,

|h?| <1 and
sup |AE*D — b | < exp — ¢*(N)

+ON,r

then the limits b, = lim h® exist and satisfy
(13.5) ()4 | Dlhy, | < M(6) exp (1 + d)¢(l + 1)

for any v’ < r and any 6 > 0.

Proof. — Let 2. be the z-Fourier transform of the smooth extensions
of g appearing in (13.2). Let 0 < 6(z) < 1 be a smooth function vanishing
identically for | z| > 1 and identically 1 for | z| < e~!. We choose

1 x
(13.6) gz, w) = Z_J Be "No)g +(a, w) exp izodo .
n

Then it is easy to verify that

,.Iql(g(N +1) _ m

rlql
Jf [6e N "1o)—0(e No) } g+ [s)exp i(z — s)odsda
eN-lg|g|<eN+1

lal
=3 ff" t<iof< wvlm( D2) { [6(e” N Y)o)—6b(e No)]

. (m) '} Dig. expio(z — {)ddo .
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For |Im z| < e"N~! we can estimate this by

1 [~ d¢ CN-
la| (N+1) _ ,(N) s I_DZ e N 14
r l(gi’q T8 )l 2nj 1+(Z-02 £N‘15IGISeN+1I( )[( )

— O8(e No)]lo ! | do.exp ¢(1)
< Mexp p(I)—-(N— DI+ N<Mexp —¢p*(N—-1)+N.

Hence on Q. -, where r’ < r, we can estimate

7\l
| g&*P — (E)ISIZ(g‘E,Z”)w"\SMexp{—(j)*(N—l)—i-N}.Z(;)
lal la|

'/ -n
SM(I——) exp — ¢*(N - 1)+ N
r
which proves (13.4).
Similarly on Q,, we can estimate

Pelg,(2)

r|q| 1
1-D2) dtd
J\J; t<lo|<1 1+(Z C)Z( ) (0)g+ q(c n)exp 10-(2 C) c o
by .
riel| g(g),ql < 5—(1 —e YHsup|(1 — D2)f,|e<M
74

This implies that on Qg , we have \
r\~
|g‘§’|£M(l __> .
r
Hence on Qy,-

N-1
#0]< 201+ ) |4t
j=0

This establishes 13.3.
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For the converse part of the argument if AN satisfy |h'®| < 1 and
[ANTD ™| < ¢7¢"™ then we can estimate DYANT" —h™) on Q. 5.,
by the Cauchy integral formula. Since each - in the projection of Qy,
is the center of a disc of radius e~~~ ? contained in the projection of Q. ,-

we have
sup ()| DYATTY — h{Y)| < —x— exp — ¢*(N)
402N+ 2,7 (6 )l

< Ile*exp — ¢*(N) + IN
<e Mlexp — ¢*N) + (I + )N + 2
<Me Nexpop(l + 1) + 21 + llogI.

Since llog! = 0(¢(l)) we can estimate this more crudely as

M(d)e~N exp (1 + 8)g(l + 1).
This combined with the easily obtained similar estimates for A‘”
| DR <1!e < M(d)exp (1 + d)p(l + 1)

implies that the restrictions of K™ to the positive real axis converge geo-
metrically in the norm || ||, specified by ¢’(l) = (1 + 8)¢(I + 1).

We remark that the shifts of argument / - [+ 1, N - N — 1 and
the factor 1 + ¢ in our conclusions produce « loss of derivatives » so that
at our level of formulation we have only an approximate duality. We have
not attempted to minimize loss of derivatives although for other appli-

cations it would be valuable to do so.

14. Closure properties of the family { B, }.

We now use Proposition 13.1 of the previous section to establish closure
properties of the kind given in Proposition 7.7. We obtain most of these
properties from the following simple principle.

Qn, (from

ProPOSITION 14.1. — Let F be a mapping from =+ Q,
=0 (F(0,0)=0)

+ On, X £ Q) into + Qg for v < r satisfying F(0)
which is Lipschitzian in the sense that

sup |F(g:) — F(g2)| <M sup | g1 — g2/

TQON+ 1,7 +ON .-
N QSUP | F(g1,82) — F(g3,84)| <M sup (| g1 — &3l,1 82 — &4 )
TON+ 1,7 +ON.r

sup | g;| < 1. Then F induces a mapping
O~ -
from B, (from B, x B,) into B,..

for arguments g; satisfying
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Proof. — Suppose ge B,,. Let g1 be the sequence of approximations
of Proposition 13.1. Then for v <r” <r

r'l -n
Sup | g&D — g < (1 _T> exp — ¢*(N — 1) + N + ¢.

This implies that

,up | F(g*") - F(g®)| < <1 - r—) exp — ¢*(N — 1) + N + ¢/
TON+ 1, r

’”

, N\
and |F(g®)| < (1 - —> exp ¢’. Hence by the converse part of Pro-
-

position 13.1 the restrictions of F(g%}") to = > 0 converge to functions f,
satisfying the estimates of || ||, , where

G =(L+NP*N =D +N+)PF=1A+8pl+1)+cil+ec,.

We define F(g) to be f. for + z > 0. The case of the binary mapping is
similar.

Parts (a)-(e) of Proposition 7.7 follow easily from this. To establish
part (f) suppose g€ B, 4 and choose r” < ' < r. Let g% be the approxi-
mations to g given by Proposition 13.1. Then finding (ug)* is equivalent
to finding ph where h is the solution of g(w + ph(w)) + h(w) = 0. For p
sufficiently small (depending only on the common upper bound for the

gD |) the approximating problems g™(w+h(w))+h(w)=0 have solu-
tions h}’ holomorphic in Qy, satisfyi