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ABSTRACT. — This paper is a study of the relations that must exist
between a multivalued dynamical system with memory and constraints
depending on the past, in order to have the existence of solutions of the
dynamical system satisfying the constraints.

Such solutions are called viable solutions.

REsuMmE. — Ce papier est une étude des relations devant exister entre
un systéme dynamique multivoque avec mémoire et des contraintes d’état
dépendant du passé, afin d’assurer pour le systéme dynamique I’existence
de solutions vérifiant les contraintes.

De telles solutions sont appelées des solutions viables.

INTRODUCTION

The viability problem for differential inclusions with memory is for-
mulated as follows.

The past history up to time ¢t will be described by the map T(t) from
the set of continuous mappings %(]— oo, t ]; R") into the set of continuous
mappings %, = €(]— o0, 0]; R") defined by

[Tt)x)(z)=x(t+z) forall z<0 andall xe%(]—oo,t];R"

A differential inclusion with memory is then defined through a set-
valued map F from R x %, into R" which associates to the past history
up to time ¢ of a trajectory x, the subset F [t, T(t)x] = R" of feasible velocities.
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180 G. HADDAD

We say that xe €(]—oo,to + A]; R"), A > 0, is a solution under the

initial condition (to, ¢o) € R X %, of the differential inclusion with memory
defined by F if

T(to)x = @o
. (t, T(t)x) e Dom F for all te [to,to + A]
x is absolutely continuous on [t4, to + A]
x'(t)eF(t, T(t)x]  foralmostall  te [to,to + A]

where DomF = {(t, p)e R x %,; F(t,0) #O}.

We say that the solution is defined on [tq, + oo[ if it verifies () for
any A > 0.

A simple viability problem associated to a differential inclusion with
memory is formulated as follows: a nonempty subset K = R” being given
is it possible to give conditions relating F and K for the existence of solu-
tions which verify x(t)e K for all ¢ > t,, under every initial condition
(to, @o) such that ¢y(0) e K.

A solution which satisfies such properties is called viable since the set K
(called viability set) represents generally a family of constraints that the
solutions should verify from initial time ¢, in order to be viable. An answer
to this viability problem has been given in a previous paper [6].

In the present paper, we consider the more specific case where the via-
bility condition depends at each time ¢ on the past history of the trajectory.

We shall particularly consider the case where the solutions are asked
to verify

x(t)e D[, x(t+0Y), ..., x(t+0)] forall t=>t,,

with 69, .. ., 0® given strictly negative real functions and D a given set-
valued map from R x (R")? into R".

In this particular case the viability appears to be directly related to
decisions taking in account at each time ¢ the knowledge of test values
considered at past times t+0%), ..., t+0. The fact that 00, ..., 0w
are time dependent, means that we take in consideration a possible varia-
tion of information delays because of technical factors.

We shall also consider the case where the solutions are asked to verify

t+0, t+6,

x(t)= [x,(t), . . ., x,(t)] eE[t,j

— 0

x(2)p4(2)dz, .. .,Jv

—

x..(Z)Pn(Z)dZ]
forall t > t,.

with 0, a given strictly negative real function, p,, ..., p, given real func-
tions and E a set-valued map from R x R" into R".
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FUNCTIONAL VIABILITY 181

In that case the viability appears to be related to decisions taking in
account the cumulated values

t+ 0, t+0,
J‘ X1(Z)P1(Z)dza . "J xn(Z)pn(z)dZ
— 00 e o}

of the trajectory up to time t + 0, < t.

As before the fact that 6 ) depends on time, means that we take in consi-
deration a possible variation of information delays because of technical
factors. These two problems appear as particular cases of the viability
problem asking solutions of the differential inclusion with memory to verify:

T(t)x e A () for all t>=tg,

where the viability sets #(t) = %, are defined for each time t € R.

We shall denote by

M) { x'(t)eF[t, T(t)x]
T(t)x e A(t)
such a viability problem.

We give in this paper necessary and sufficient conditions relating the
dynamical system described by F and the viability constraints described
by (A (¢)).er, for the existence of viable solutions under any initial condi-
tion (t,, @o) such that ¢y € A (t,).

Such a viability problem (M) is a very general one. For example if the
viability constraints or if the differential inclusion with memory take in
account only a part of the history, it is always possible to set the problem
as (M).

Indeed such a case can for example be described by

{ xX'(t)e G[t, (T(t)x),]
Mav U Ty, e 40)

where for any ¢ € %,, @, and ¢, respectively denote the restrictions of ¢
on [—a,0] and [— b,0] with a and b strictly positive, and where G()
'is a set-valued map from R x %([—a,0];R" into R" and (‘) a set-
valued map from R into €([—b,0]; R").

It suffices then to define

F(t7 (P) = G(ta (pa) for any (t’ (D) eR x (gO .
and
H(t)={peb; @yeAyt)}.

Historically the viability problem has been introduced by Nagumo [/1]
in the case of ordinary differential equations and when the set of constraints
is a nonempty compact of R".

Viability problems have then been studied in different situations. We
refer for example to Brezis [2], Crandall [4], Larrieu [9] and Yorke [/3]
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182 G. HADDAD

for differential equations, to Castaing [3], Gautier [5] and Methlouthi [/]]

for differential inclusions and to Leela-Moauro [10], Seifert [/2] for diffe-
rential equations with memory.

General results on differential equations with memory can be found
in [7] and on differential inclusions in [/].

I. ABSTRACT VIABILITY THEOREMS

In this part we consider the abstract viability problem
x'(t)eF[t, T(t)x]
M) {
T(t)xe A(t)

described at the end of the introduction.
We begin by some useful definitions for the following of the paper.

0. Definitions.

The norm on the finite dimensional vector space R” will be denoted by
I 1.
The closed unit ball of R" is defined by
B={xeR"; ||x||<1}.
If ¢ is a nonempty subset of R", then
de(x) =inf {||x — ¢||; ceC} for all xeR".

For any interval I < R, the topology on the set of continuous mappings

%(1; R™) will always be the (metrizable) topology of uniform convergence
on compact subsets of L.

For any compact interval [a,b] = R, a < b, we define

1% Ny = S[ulzlllx(t)ll forany xe®([a,b]; R").
tela,

The graph of a set-valued map F from X into Y is defined as
Graph F = {(x,))e X x Y; yeF(x) }.

Let X and Y be two metric spaces, a set-valued map F from X into Y
is said to be upper-semicontinuous (u. s. ¢.) at x, € X if to any neighborhood
Q of F(x,) in Y, we can associate a neighborhood U of x, in X such that
F(x) = Q for all xe U.

We say that F is u.s.c. on a subset of X if F is u. s. c. at every point of
this subset.
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FUNCTIONAL VIABILITY 183
At least let F be a set-valued map from X into R”", we say that F is bounded
on X if there exists a constant k > O such that:
lyll <k, forany xeX andany yeF(x).
We call k an upper-bound of F.

1. The autonomous viability case.

In this section we consider the autonomous case

M {x’(t)eF[T(t)x]
Mo) T(t)xe A

where the differential inclusion with memory is autonomous and the
viability sets (#'(t)),g are invariant upon time.

For conveniency we only consider here initial time ¢, = 0 and this
with no loss of generality.

DEFINITION 1.1. — For any ¢ € A", we define D (p) = R" by ve Do)
if and only if, for any ¢ > 0, there exist he 10,¢] and x, € €(]— o0, h]; R")

such that
TO)x, = ¢
) T(h)x,e A
xu(h) — x,(0
Ah( ) = )ev +¢eB.
h
Then we have the following result.
THEOREM 1.1. — Let us suppose that A" is a closed subset of €, and that

all element of A" is Lipschitz with a same constant.
Let F from 6, into R" be u. s. c. with nonempty convex compact values on A,
Then condition

(Co) F(¢) N () # D  forall ¢e X,

is necessary and sufficient for the existence under any initial value @y € A’
of an associated viable solution of (M) defined on [0, + oo .

Necessity of (C,).

Let us suppose that for the initial value ¢, € £ there exists a solution
xeB(]— oo, + oo [; R") of M,).
Then since x is absolutely continuous on any compact interval [0, A],
A > 0, we have ,
x(h) — x(0) 1 (*
——— = X'(2)dz forall h>0
h h Jo

Vol. 1, n° 3-1984.



184 G. HADDAD

The set-valued map F being u. s. c. at ¢, for any ¢ > 0 there exists a
neighborhood V of ¢, in %, such that

F(¢p) = F(go) + ¢B forall ¢eV.

Furthermore from the topology defined on %, and from the very defi-
nition of the map T(t), we easily deduce the existence of # > 0 such that

T(t)xeV forall te[0,n].
This implies that

F(T(t)x) = F(@,) + ¢B forall te[0,n].
But since x’(t) e F[T(t)x] for almost all ¢ > 0 we have

x'(t)e F(py) + ¢B for almost all te [0,4].
We deduce that

x(h) — x(0)

; e F(po) + ¢B forall he0,n]

since F(¢o) + ¢B is convex compact, F(¢,) and B being convex compact.

h) —
Let us denote by w the set of limit points of x()_x(()) as h —» 0%,

From the remarks made above and since we are in a finite dimensional
space R", we deduce that w is nonempty and verifies

o < F(p,) + €B.

This being satisfied for any ¢ > 0 and since F(¢,) is compact we have
o < F(¢o).

We claim that v = Z(@,).

Indeed let any vew be given. By the very definition of a limit point
we know that for any ¢ > 0 there exists h € ]0, ] such that

x(h) — x(©) _

v+ ¢eB.
h

Since T(0)x = ¢, and T(h)xe A" for all h > 0, we easily deduce that

v E Dy(@o)-
Thus @ = F(@g) N Dy(®o)- Q.E.D.

Sufficiency of (Cy).

Let us denote by 4 > 0, the common Lipschitz constant to all elements
of A.

Annales de I’ Institut Henri Poincaré-Analyse non linéaire



FUNCTIONAL VIABILITY 185
Let ¢, € be given, we define for any a > 0 the set
Hago =100 A, || 00) — po0)|| < a}.

This set is compact, which is a direct consequence of Ascoli’s compactness
theorem.

To prove the existence of a viable solution of (M,) associated to the
initial value ¢, we shall build a family of approximated solutions. For
this we need the following lemma.

LemMA I.1. — For any & > 0, there exists a finite sequence h,, ..., h
p

a
such all 0 < h;<¢ for all i=1,...,p and Zhi>'/{—+—’ to which is
e

p

i=1
associated (v;, y;) € R* x €(1—o0, h;1;R"), i =1, ..., p such that for all i:

TO)y;e #,  T(h)yie A,  v,e F[TO)y;]
2 yi(hi)l: yi{0) cv, + ¢B

I T(hi—1)yi—1 — TO)y; lli- 17600 < hi-e

where hy = 0 and yo = @ .

Proof.— From (C,), to any ¢ € A, ,, Wwe can associate v, € F(¢), h, € 10, ¢]
and y,€%é(]— o, h,]; R") such that

TO)y, = ¢

T(h,)y,€ X

yqo(hqo) - y(p(o)
h

(1)
€ev, +¢B
(]

We notice that y, is A-Lipschitz on ]—o0, h,].
Let us define

V(p) = {'ﬁe(go; Iy — §0|l[—1/a,0] <h<p‘3}-

Such a set is an open neighborhood of ¢ in %,. Since X, ,,
there exists I finite such that

Ky =\ V(@)

iel

is compact,

Then there exists i; € I such that ¢, € V(¢;,). We denote h; = hois V1=V¢,,
vy = v,,, . Then hy, vy, y; obviously verify (2).

Vol. 1, n® 3-1984.



186 G. HADDAD
Let us consider T(h,)y,, we have:

[1(T(h1)y1)(0) = @o(0) || < 1l y1(hy)—=y1O) || + 1 y1(0) = @o(0) |l
< Jhy + ehy = (A + &)h, .

Thus if (A + g)h; > a, we stop.

Otherwise T(h,)y, € A, ,,, then there exists ¢, such that T(h)y, e V(¢,,).
We then define h, =hy,,» V2 = Uy, and y, =y, and easily verify that
they satisfy (2).

Moreover we have:

I (T(h2)2)0) — @o(0) |
< H(T(h2)y2)0) — (T(hy)y)O) | + 1 (T(h1)y1)O) — @o(0) ||

< [1y2(h2) = 200 [ + 1l y2(0) — (T(hy)y)O) | + (A+e)hy
< Ahy + ehy + (A + e)hy = (A + &)(hy + hy).

2

a
We stop if h; + h, >
P 27 ) +e

Otherwise we continue. Since we have a finite number of h, , iel, all
strictly positive, we are sure that after a finite number of operations we

p—1 P
a
et a first h h that h € —< h;.
£ p S0 Z ite Z
i=1 i=1

Q.E.D.
Construction of the approximated solutions.

We first define the mapping y, from }—oo, 2 hi] into R" such that
TO)y, = yo = @o.

And for any ke {0,...,p — 1}

K K
Velt) = Yies 1<t - 2’%) + z(yi(hi) - ¥i+1(0))
=)

i=0

k k+1
SN
i=0 i=0

p

To each y, we associate x, from ]— 0, z h,-] into R" such that

i=0

T(O)xe = T(O)ye = @o.

Annales de I'Institut Henri Poincaré-Analyse non linéaire



FUNCTIONAL VIABILITY 187

Andforanyke{O,...,p—l}

k k+1
for any te [Z h;, Z hi].
i=0 i=0

Then X, appears to be the piecewise linear mappmg whlch interpolates

() () o [ 5'0)

Furthermore it is obv1ous that y, and x, are /I-Llpschltz since each y;,
i=0,...,p, is A-Lipschitzz. We have also || x,(t) — y(t)|| < A-¢ for all

14
te} — o0, ZhJ This is obvious if ¢ < 0 since x,(t) = y,(t).

k+1

If te z Z :l we easily verify that:

lxt) = YOI S A hyeyy < A-e.

Moreover for any ke {0, ...,p — 1} we deduce from (2) that

k+1 k k+1 k
()] (2m) (D n)
i= i=0 i= i=0
heyt byt s
_ Vier 1l 1) — Yk+1(0)€l7k+1 1B
byt 1

with vy 41 € F[T(0)ys4, ]
At last we claim that for any ke {0, ...,p — 1}

k+1 k+1

” T<Z hi)-xg — T+ DY+ 1 < <l + Z hi)3
£ [—1/¢,0] ‘

i= i=

Vol. 1, n° 3-1984.



188 G. HADDAD

Since || x,(t) — y(t) |l < Ae for any ¢, it suffices to prove that

k+1
” T<z h,'>ye — T(his )Yi+1
i=0

This is done by induction on ke {0, ...,p —1}.

For k=0, if ze [— h{,0] then
[T(hy)y.)2) — [T(hy)y, Mz) = ydz + hy) = yi(z + hy)
= yi(z + hy) + yo(0) — y1(0) — y4(z + hy)

= y0(0) — y4(0).

If ze [— 1/e, — hy] then y(z+hy)—yi(z+hy)=ye(z+h)—yi(z+hy).
But by (2) we know that || T(0)y, —T(0)y, |l;-1/c,07 < by - & Thus is true that
| T(hy)y, — T(hy)y, lt=1/e,01 < by €.

Let us suppose that for k:

k

H T<Z hi>ys = T(hy)ye < (Z hi) €.
Py [~ 1/¢,0]

k+1

)
[—1/e,0] <

Then if ze [— hiy4,0] we have

K+ 1

HZ h->y£](2) — [TOhs )yies 1 1)
= )’k+1<z + zh - Z > Z [ith)) =i+ 10) ] = yies 1(z+ Py 1)
= Z [yih:) — yi+1(0)].

i=0
Ifze [— 1/e, — hyy ] then

k+1
[T<z hi) y8:|(z) — [T(hes ) Y+ 11(2)
i=0 5
= [T<z hi>y£](z + heyt) = [Th)yi )z + i)
i=0

+ [Ty )z + b 1) — Vi a(z + hyeiy).
Then from (2) and the hypothesis for k we easily deduce that

k+1
H <z ) Ve — T(hes 1) Vi+1 < <z hi)' &.
[~ 1/¢,0] .
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FUNCTIONAL VIABILITY 189

4
Thus we have built a A-Lipschitz mapping x, from ]— 0, z hi] into R",

k k+1 i=

linear on each interval Zhi, Zhi], such that T(0)x, = ¢, and for
Ti=0 i=0

each ke{0,...,p—1}:

€ Uy 41 +€B, Uk+1 €F[TO)yp4]
M1

k+1
H T(Z)xs — T(hes+ 1)Yi+1

L i=0 =

k+1

< </1 + Zhi) €.
[-1/2,0] :

where { h;, y;, v;; i =0, ...,p} verifies all the properties of the preceding
lemma. 4 4

Then for any ¢ small enough we are sure that 77 < Z h;. Thus using
i=1

Ascoli’s theorem there exists a sequence x, ,&, — 0%, which converges

a
(uniformly on compact subsets) to a mapping x defined on ]— 0, ﬁ]
which is A-Lipschitz and verifies T(0)x=T(0)x,, = ¢,.
We claim that x is a viable solution of (M,). All the techniques of this
proof being exactly identical to those used in [6]. a
The result being true not only for initial time zero and since — does

not depend on ¢,, it is obvious that the viable solution can be extended
on [0, +ool. Q.E. D.

2. The nonautonomous viability case.

In this section we consider the nonautonomous viability case
x'(t)e F[t, T(t)x]
M) {
T(t)xe A(t)

described at the end of the introduction.
Here F is a set-valued map from R x %, into R" and %" a set-valued
map from R into %, which graph is supposed to be nonempty.

Vol. 1, n°® 3-1984.



190 G. HADDAD

DEFINITION 1.2. — For any (t, ), ¢ € A'(t) we define Dy (@) = R
by v e Dyw(p) if and only if, for any & > 0, there exist he 10,¢] and
x,€€(]— oo,t + h]; R") such that

T(t)x, = @
3) T(t + h)x,e A (t + h)

ev + ¢B.
; v

Then we have the following result.

THEOREM 1.2. — Let us suppose that A4 '(-) has a closed graph and that
all elements of A '(t) are Lipschitz with a constant independent from t.
Let F be u. s. c. with nonempty convex compact values on the graph of ().
Then condition
© F(t, @) N Dyo@p) # O forall (¢, p)e Graph A

is necessary and sufficient for the existence under any initial condition

(to, @o) € Graph X of an associated viable solution of (M) defined on
[tg, +00].

Proof. — The proof of the necessity of (C) is similar to the one given in
the autonomous case.

Let us now suppose that (C) is verified.
We denote . = €(]—0,0]; R x R") and define

L = {(2(), p) € bs; 9 € H 0, 2(°)is 1-Lipschitz } .
as well as the set-valued map G from %. into R"*! such that
Gl) gl = {1} x F=0),¢) forall (zp)e%..

There is no difficulty to verify that & is nonempty closed in %., that all
elements of ¥ are Lipschitz with a same constant and that G is u. s. ¢. with
nonempty convex compact values on .Z.

Let now (z, p)e £ be given. Then by (C) we know the existence of
ve F[z(0), @] such that for any & > 0 there exist
hel0,e] and  x,e%(]— oo, z(0) + h]; R
which verify
T[20)]x, = ¢

\ T{0) + hxse H(2(0) + h)
©) 2(z(0) + h) — x,(2(0)
A ev + ¢B

Annales de I’Institut Henri Poincaré-Analyse non linéaire



FUNCTIONAL VIABILITY 191
We can then define z, on ]— oo, h] by
%’ zy(t) = z(t) for all te] — o0,0]
zy(t) = z(0) + ¢t for all te [0, h].

z,(+) is obviously 1-Lipschitz since z(+) is 1-Lipschitz.
Let us then consider (z,, y,) € €(]1—o0,h]; R x R") such that

yu(t) = x,(2(0) + t) for all te]—oo,h].

Then
. T(O) [z, yu] = [T(0)z,,, T(0)y,] = [T(0)z, T(2(0))x,,] = (2, @)
an
) T(h) [zy, yu] = [T(h)zy, T(2(0) + h)x,]e £
since

T(z(0) + h)x, e A (z(0) + h) and 2(0) + h = (T(h)z,)0).
Moreover,
zy(h) — z,(0)
h

yilh) — yi(0)  x,(2(0) + h) — x,(2(0))
h - h
Thus the autonomous system defined by G and ¥ verifies all the hypo-
thesis of Theorem I.1. Then for any initial value (z,, @) € ¥ and any
initial time ¢, there exists an associated viable solution defined on [t,, + oo [.
Let now ¢, € A(t,) be given. We define z, to be the constant function ¢,
on |—o0,0].
Then (z,,, ¢o) € & and there exists under the initial condition ¢y, (z,,, ®o)
a viable solution (u, x) which verifies:

T(tou = z,,, T(te)x = @o
(u, x) is Lipschitz

and

ev + ¢B.

u'(t) =1 for almostall >t
x'(t)e Flu(t), T(t)x] for almost all t > ¢,
T(t)u,x)e L for all t=t,.
It is then obvious that u(t) = t for all t > t, and that T(t)(u, x) € & implies
T(t)x € A [(T(t)u)0)] = A (ut)) = A (t) forall t>=t,.
Thus x is a viable solution of (M) under the initial condition (¢y, ¢,). Q.E.D.

II. APPLICATIONS

In this part we show that we can deduce from the preceding theorems,
the specific viability problems presented in the introduction.

Vol. 1, n° 3-1984.



192 G. HADDAD

1. Viability depending on test values.

Let F be a given set-valued map from R x %, into R" and D a given
set-valued map from R x (R™? into R" whose graph is supposed to be
nonempty.

At last 09, ... 0P be given strictly negative continuous functions
from R into ]—oo, 0, we suppose 0P < 8P~V < . < 0 for all teR.
We can now define for each t € R:

Holt) = { 9€bo; p(0)e DL, (61, ... @(6”)]} .

We easily verify that the set-valued map ' has a nonempty graph
in R x €, since Graph D is nonempty and since we can always build a
continuous mapping ¢ knowing ¢(6"), . .., ¢(6{”) and ¢(0). Moreover
we easily verify that the viability condition T(t)x e A#p(t) is equivalent
to the relation x(t)e D(t, x(r + 0"), ..., x(t + 6{P)).

Thus the problem of the existence of solutions for the system

(M3) { x'(t) e F(t, T(t)x)

Pl xe)e DI x(t + 6Y), ..., x(t + 0P)]

is equivalent to the existence of viable solutions for

x'(t) € F(t, T(t)x)
(M) { T(t)x € Hp(t).

Thus we have the following result.

THEOREM 11.1. — Let us suppose that F is bounded, u. s. c. with nonempty
convex compact values on Graph H'p(-) and that D has a closed graph.
Then condition

(Cp) F(t, ) 0 Dypo(@) #9  forall (¢, ¢) € Graph A7,
is equivalent to the existence under any initial condition (t,, ¢o)€ Graph A
of an associated viable solution of (Mp) or (M}) defined on [to, + oo [.

Remark. — This result is not only a direct consequence of Theorem I.2
since elements of () are only continuous and no more Lipschitz.

The necessity of (Cp) is deduced identically as in Theorem I.1.

To prove the existence of solutions under condition (Cp) we shall need
the following preliminary lemma.

LemMmA II.1. — To any @ €6, and tye R, we can associate a sequence
of Lipschitz functions oy € 6y, N € N, which convergesto ¢ in%,as N — + o0
and such that

Px0) = 90),  n(0:,)) = @(61)). - ... on(0:)) = @(61])
for all N (large enough).
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Proof. — The proof is easy considering that ¢ is uniformly continuous
on every compact subset of ]—o0,0]. Indeed let Ne N be large enough
so that — N < 6{?. There exists then #y > 0 such that:

Ny 1
s,s"e [— N,0], |s — | <y implies | o(s) — @(s) || < N’

We can then define a partition of [— N,0];
Sp=—N<s8, | <Sp_2<...<85;<5=0

such that |s; — 8;+1 | <y for any i=0,...,m—1 and 69€{s; };=;
forallj=1,...,p

Thus we can build ¢y the piecewise linear mapping on [— N, 0] which
interpolates ¢(s;+1), ¢(s;) on each interval [s;,, s;].

We then extend this mapping on ]— oo, —N|[ by setting

ont) = on(— N) = o(— N) forall t< — N.

Then ¢y is obviously Lipschitz and we easily verify that

1
lon — @ lli-n0 < N
Furthermore by construction we have @y(0)=¢(0) and @n(62) = ¢(6)
foralli=1,...,p. Q.E. D.

Let now @, € #p(ty) be given, then from the preceding lemma there
exists a sequence (¢R)ney, all Lipschitz such that ¢ converges to @, in %,
as N - +co, and 930)=g(0) ¢2OL)=o(6L). - . .. o) = @67
for all Ne N.

Thus @ e A p(to) for all Ne N, by definition of H#p(t,).

We shall now prove the existence of a viable solution of (M) under
each initial condition (t,, ¢R), NeN. And then by now standard tech-
niques we shall deduce the existence of a viable solution under the initial
condition (t,, @g)-

Proof. — Let us fix @ e Ap(t,) as defined above. By construction it
is An-Lipschitz. Since F is bounded on Graph X%, let us denote by k > 0
an upper-bound of F on Graph /7,

We define py > 0 such that for example puy > Max { Ay, k + 1}. Let
us then define the set-valued map Y from R into %, such that for all t € R:

HR(t) = { e Ap(t); Vis ux-Lipschitz } .

Then @ e #(t,). Furthermore since Graph D is closed and since each
0, i=1,...,p is continuous, we easily verify using the uniform conver-
gence on compact subsets defining the topology on %,, that Graph /7,
and Graph #{ are closed in R x %,.
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Furthermore condition (Cp) implies that for any ye A R(t) = Ap(t)
there exists ve F(t, Y) such that for any ¢ > 0 there exist he 10,¢] and
x,€6(]—o0,t + h]; R which verify

T(t)x, = ¥
3) T(t + h)x,€ A p(t + h)
xut + h) — xh(t)e
) h
From T(t + h)x,€ Ap(t + h) we have

v+ ¢B

Xt + B eD(t + h, xyt + h+ 68,), ..., x(t + h + 62),)

t+h

But using the continuity of 6*) at point ¢, since 8{") < 0, choosing a such that
6" < « < 0 we are sure that there exists 7 > 0 such that | /| < n implies

0{9) < o. Thus taking ¢ < Min{ — a7} we have h + 69, <0 since
0 <h<e<n. Since 6P < g?~1 <« | < 6D we also have h+0%), < 0
foralli=1,...,p.

Thus x,(t +h+6{ )= [T(t)x,)(h+ 6!, ) =y(h+06i.,) for all i=1, .

Thus x,(t + h)eD(t + h, Y(h + 6Y,), .. .. Y(h + OE)).

Let us now define y, e €(]—o0,t + h]; R") such that T(t)y, = ¥, y, is
the linear mapping which interpolates x,(t) = W(0)and x,(t + h)on [t,t+h].

Thus obviously y, verifies T(t+h)y,e At + h) and if ¢ <1 then

yi(*) is un-Lipschitz on ]— oo, t + h] since ¥ is un-Lipschitz and

Vit + h) — y(t)
h

s D

Xt + h) — x(t)
h

<loll+e < k+1 < py.

Thus T(t + h)y,e ALt + h).
So for any y e A R(t) there exists ve F(t, ) such that for any & > 0
there exist he ]0,¢] and y,e4(]—oo,t + h]; R") which verify
Ty, =y
T(t + h)y,e A%t + h)
3.
Vit + h) — y(t)
——————€v + ¢B.
h
Thus all the hypothesis of Theorem I .2 being satisfied by the viability system

(M) { x'(t) e F(t, T(t)x)
N T(t)x € A 2(t)

there exists a viable solution xy € 4(R ; R") of (MR) under the initial condi-
tion (to, @R).
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Such a viable solution by definition verifies

T(to)xn = @Rk

T(t)xne AR(t) = Ap(t) forall >t
Xy 18 pn-Lipschitz on R

xn(t) e F(t, T(t)xy) for almost all ¢ > ¢,.

In fact since F is bounded by k on Graph #p(), it is obvious that xy is
k-Lipschitz on [ty, +oo[.

Thus this being done for any ¢%, N e N, since p% converges to ¢, as
N — +o0 and since each xy, NeN, is k-Lipschitz on [t,, + oo [ with k
independent from N, using Ascoli’s theorem there exists a subsequence
(again denoted xy) which converges (uniformly on compact subsets) to
xeB(R; R".

Furthermore x is k-Lipschitz on [ty, +oo[ and verifies T(to)x = @,
as well as T(t)x e Ap(t) for all t > ¢, since Graph A'(-) is closed and
T(t)xy converges to T(t)x in €, as N — +oo0.

At last x'(t) e F(t, T(¢)x) for almost all ¢t > t,, which is proved by the
same standard arguments given in [6]. The existence of a viable solution
under the initial condition (t,, @) is then proved. Q.E.D.

To finish this section we give an equivalent definition of P, (@) in
that example of viability problem.

ProrpositioN II.1. — For any

peHpt)={ Y eb; YO)eD[t, Y(0), .., h(6P)1} vE Dyp(®)
if and only if

Remark. — We recall that ¢ being given, since 61V, . . ., 0P are continuous
and verify 0P < ... < 6" <0, for h small enough we have
h+ 0P, < ... <h+ 6%, <0

which is necessary since ¢ is only defined on ]~00,0].

Proof. — 1f ve Dy (@), then by definition, for any ¢ > 0 there exist
he ]0,¢] and x,eé(]—oo,t + h]; R") such that

T@E)x, = o
T(t + h)x,e Hp(t + h)

Xt + h) — x,(t)
h

A3)
ev + ¢B
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But we have already seen that if ¢ is chosen small enough, then
T(t + h)x, e Apt + h)

means that x,(t + h)e D(t + h, o(h + 6{%,), ..., o(h + 6:2))).
Thus since

Xt +h) — xt) ) “ <
h
and since x,(t) = @(0) we deduce that
1

Thus (i) is verified.

Conversely if (i) is verified, then for any ¢ > 0 there exists h € ]0, ¢] such
that

1

ZdD[t+h,(p(h+9[(3r)h) ..... on+on[@O0) + hv] < ¢

This implies that there exists

weD(t + h, p(h + 02, ..., o(h + 6%),))

t+h

— (0
such that K~h—(p(—2—vu <e.

Thus taking & small enough, it suffices now to build x,, € (] — oo, t + h]; R")
such that T(t)x, = ¢ and x, is linear interpolating ¢(0) and w on [z, t+h].
Indeed from this construction we have

w = 9(0) _ xft + h) — x,r)
h h
and T(t + h)x, e ALt + h) since
[T(t+m)x, J0)=x,(t +h)=we D[t+h, o(h+6L,),. .., o(h+02,)]
and since foralli = 1, ..., p we have
[T(t + W, )(082) = o(h + 62,).
Thus v e Dy @). Q.E.D.

v+ ¢eB

2) Viability depending on cumulated values.

Let F be a given set-valued mapping from R x %, into R" and E a given

set-valued mapping from R* x R" into R" whose graph is supposed to
be nonempty.
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Let 6, be a continuous function from R* int ]— o, 0[ which we sup-
pose is bounded from below.

Let py, ..., p, be a finite sequence of locally integrable functions from R
into R, all of which supposed not to be almost everywhere null on ]— o0, a]

where a = Inf 6,.
teR*

Moreover for any o = (oty, ...,a,)eR" and B = (B4, ...,B8,)eR" we
define o o0 f = (2B, %P5, - - -, 0, B,) € R™
Atlast wedenotebyp = (p4, . . ., p,) the mapping from Rinto R" such that

p() = (p1(2), ..., pu(z))  forall zeR.
Thus we can define for each t = 0

0

Hg(t) = {(pE%; ¢(0)6E<t,J

— 0

o(z) o p(z + t)dz)}.

In the definition of J#'x(t) we implicitely assume that the mapping
z — ¢(z) 0 p(z + t) belongs to L'(]—c0, 6,]; R") and thus equivalently
to L*(]—o0,0]; R") since ¢ is continuous on ]—o00,0] and p locally inte-
grable on R.

ProposITION I1.2.1. — The set-valued map A’y has a nonempty graph
inR" x €,.

Proof. — Since E has a nonempty graph in (R* x R") x R" then there
exist te R* and o = (a4, . .., a,) € R" such that E(t, ) # @.

Moreover since t > 0, from 6, > a and the assumptions made on
Pi»---» Dn» We are sure that the functions

z > pz+t), z o plz+t)...,z > plz+t)

cannot be almost everywhere null on ]— oo, 8, ], thus there exists u, ..., u
continuous with compact support in ]— oo, 6,] such that

n

0
f uz)piz + tydz = 1 for all i=1,...,n.

- oC

Thus considering the mapping ¢ = (ot u;, . . ., a,u,) from ]— o0, 6,] into R”
we have

0,
J ¢(z) o0 p(z + t)dz

0, 0,
= <“1 j u(z)py(z + tydz, . . ., oc,,J u(2)p(z + t)dz)

- —

=(°‘1a~--,0€,,)=0(.

Vol. 1, n® 3-1984.



198 G. HADDAD

Then choosing w = (wq, ..., w,) € E(t,a), it is possible to extend conti-
nuously on ]—o0,0] such that ¢(0) = w.

t

Thus ¢(0)e E(t, o(z) o p(z + t)dz). Q.E.D.

At last we easily verify that for any x = (x, .. ., x,) € (R ; R" the via-
bility condition T(t)x € A g(t), t = 0, is equivalent to

x(t) = [T(t)x)0) e E(tj

6

[T(t)x1(z) o p(z + t)d2>

- 0

ro.
= E(t, x(t + z) 0 p(z + t)dz)

(Ft+0,
= E(t, x(z) o p(Z)dz>

— 0

t+0¢

(ft+0,
= E<t, xl(z)pl(z)dzs R J‘

-0 o

xn(Z)Pn(Z)dZ>-
Thus the problem of the existence of solutions for the system
x'(t) e F(t, T(t)x)
M* t+6,
(M) x(t)eE(t,[ x(z) o p(z)dz)
is equivalent to the existence of viable solutions for
x'(t) e F(t, T(t)x
M) { (&, )
T(t)x e A k().

Then we have the following result.

THEOREM I1.2.— Let us suppose that F is bounded, u. s. c. with nonempty

convex compact values on Graph A'g(-) and that E has a closed graph.
Then condition

Cp) Ft,0) N Dy @) # O for all (t, ) e Graph Ay

is equivalent to the existence under any initial condition (t,, @) € Graph Ay
of an associated viable solution of (Mg) or (M}) defined on [to, + oo [.

Remark. — Initial time t, is necessarily positive since E and 2 are
only defined for t = 0.

The necessity of (Cg) is proved identically as in Theorem I.1. To prove
the existence of solutions under condition (Cg) we shall need the following
preliminary lemma.

LemMma 11.2. — Let q from R into R be locally integrable, not almost
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everywhere null on ]—o00,6,], 0, <0, and f€%(]—0,0];R) be such. that
q-feLY(]-,0,];R).
Then there exists a sequence fy, N € N, of Lipschitz functions from 1 — 00, 0]

into R, with compact support, converging to f (uniformly on compact subsets)
as N — + oo and verifying

0 0
NO) =£(0), J IN2)g(2)dz = J f(2)q(2)dz
for all N large enough. ” "

Proof. — Let N e N be large enough such that — N < 6,. Using the
uniform continuity of f on [— N, 0] we know that for any ¢ > 0 we can
build as in Lemma II.1, a piecewise linear function gy on [— N, 0] such
that gn(0)=/(0), gx(—N)=f(—N) and || gn—f ll{-n,0) < ¢ for all N.

Since g is locally integrable there exists 5> 0 such that

-N
j lg(z)|dz < e.
“Nem
We then extend gy on [— N — 7y, — N] by the linear function which
interpolates 0 and gn(— N). At last gy is extended by zero on | — 00, —N — ]
Thus gy is Lipschitz since piecewise linear, with compact support.
Let us take for example

. 1 1 1

8<Mm{ 2 ’ N[|f(—N>|+1]}<ﬁ'
N[J lq(z) | dz + I:I

Then N

0 -N
J gn(2)q(z)dz = f gn(2)q(2)dz + j

- o —nn—N -

0¢

gn(2)q(z)dz
N
with

< J | en@| 1a2)|dz

-N
{ j en(2)q(z)dz
-m—N -nmn—N
N .
<|f(—N)Ij |q(z)|dz<ﬁ

Moreover N

0, 0,
J—NgN(Z)q(Z)dZ - j f(2)q(z)dz
Thus obviously

0 0 0
Jhm J gn2)q(z)dz = lim f f(2)q(2)dz = J f(2)q(2)dz,
- *© J-N -
since f-g e LY(]— 0, 0,]; R).

0, 0
We can then write an(z)q(z)dz = J f(2)q(2)dz + oy With oy — O
as N - +oo. T e

But since g is not almost everywhere null on ]— oo, 6,] there necessarily

0, 1
< dz < —
ef_Nm(z)l <
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existsa C*® function u from ]— oo, 6,]into R, with compact support, such that
0:
J u(z)q(@) = 1.

We extend u on [6,,0] by interpolating linearily u(,) and 0 = u(0).
Thus considering fy =gy — ontt, for any N, we see that each fy is Lipschitz,
w1th compact support, that fi(0)=gn(0)—onu(0)=gn(0)=f(0) and that

fN(Z)q(Z)dZ = j f(2)q(z)dz.

At last since u has a compact support, since ay — 0 and gy converges
to fin ¥(]—o00,0]; R) as N — + o0, it is easy to verify that fy converges
to fin ¥(]1—o0,0]; R). Q.E.D.

Let now @, € Ag(to) be given. By the assumptions made on py, .. .,p,,
we know that for each i = 1, ..., n the mapping z — p{z + t,) is locally
integrable and not almost everywhere null on ]—o0,0, ] since t, = 0
and 0,, > a. Thus using the preceding lemma for each component of ¢,,
we can build a sequence of Lipschitz with compact support mappings

P € 6,, N eN, which converges to ¢, in 4, as N — + oo and verifies
for all Ne N;

[

PR(0) = @4(0), cpN(Z) op(z + to)dz —j @o(2) Op(z + to)dz

Thus obviously ¢ e Jf e(to) for all Ne N.

We shall, as in the preceding section, prove the existence of a viable
solution of (Mg) under each initial condition (to, @), NeN. And then
deduce the existence of a viable solution for (ty, @o)-

Proof. — Let us fix e A ((to) as defined above. We suppose that
Supp (¢R) = [— AN — o, 0] with Ay > 0.

By construction ¢ is An-Lipschitz. Since F is bounded on Graph H#(-),
we denote by k > 0 an upper-bound of F on Graph ().

We define uy > O such that for example py > max { Ax, kK + 1 }.

Let us then define the set-valued map A 5(-) from R* into %, such that
forallteR*;

HRt) = { e ALt);Supp () = [— Ay—1,0], ¥ is uy-Lipschitz } .
Then @ e A E(ty) = Hx(ty).

Furthermore condition (Cg) implies that for any e AE(t) = H'(t)
there exists v € F(z, y) such that for any ¢ > 0 there exist he ]0,¢] and
x,€€(1— o0, t + h]; R") which verify

T()x, = ¢
3 Tt + h)x,e At + h)
®) xy(t + h) — x,(t)

v+ eB
h
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We then define y,e €(]— oo, t + h]; R") such that T(t)y, = ¢ and y,
linear interpolates x,(t) and x,(t + h) on [t,t + h].

Since 6 is continuous and 6, < 0 we have already seen that if ¢ is small
enough then h + 0,,, < 0. Thus for all ze ]— o0, 0,,,] we have

[T(t + hx,l(z) = xit + h + 2) = [T(t)x,)(z + h).
Then
[T(t + h)x,1(z) = Y(z + h) for all ze]—00,0,.,].

For the same reasons
[T(t + h)y,)(z) = Y(h + 2) for all ze]—00,0,,,]
Thus T(t + h)x, = T(t + Ry, on ]—00,0,,4].
This implies that

Ot +n

J " [T(t+h)x,)(z) o pz+t+h)dz = J [T(t+h)ysl(2) 0 p(z+t+h)dz

—® ~

But since [T(t+ h)y,1(0)=x,(t+h)= [T(t+h)x,](0) we easily deduce from
the definition of 2/ 'g(t+h) and since

T(t + h)x,e A gt + h) that T(t + h)y,e At + h).

Furthermore since Supp (Y) = [— Ax—1t,0] it is obvious that
Supp [T(t + Wys] = [— Ax—t — h,0].

At last y, is un-Lipschitz since '

‘ Vit + h) — yilt) xit + h) — x)(t)

. p <|lvll+e < k+e< k+1,

when & < 1. Thus T(t + h)y, € A Kt + h).
To show that all the hypothesis of Theorem I.2 are satisfied by the via-

bility system:
(ME) { x'(t) e F(t, T(t)x)
Mool T(e)x e #E)
it remains to show that J#'%(-) has a closed graph. For this let
(tm> W) € Graph A%, meN,
converges to (t, ))e R x €, as m — + 0.
Then since V,, € A 5(t,) implies that v, is pyn-Lipschitz and

we easily deduce that  is py-Lipschitz and that Supp () = [—Ax—1,0].
0c

It remains to show that lﬁ(O)GE(t, Y(z) o p(z + t)dz). For this,

— o0
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]

— 0

since /,,(0) € E(tm, j " Vn(2) O p(z + tm)dz> for allm e N and since Graph E

is closed, it suffices to prove that

. 0,
J Y.(z) O p(z + t,)dz— j Y(z) op(z+t)dz as m —» +o0.
We easily deduce from the definition of the law o that

0ty
j Yn(2) 0 pz + tu)dz = j

0

" @) — ¥(2)] © plz + ty)dz

0, 0ty
+ J‘ V() o p(z + t,)dz + j Y(z) o p(z + t,)dz.
— o0 0

By the very properties of ¥ and (Y,,)mey it is immediate that they are
null outside a same compact interval of ] — oo, 0] and that (¥,,) ey COnverges
uniformly to ¥ on this compact interval. Now since t, and 6, , meN,

are uniformly bounded and since p is locally integrable, it becomes obvious
that

0t,,
j Wu(2) — Y(z)[a p(z + t,)dz - O as m — + co.

Ocm
We also verify that j Y(z) op(z + t,)dz - 0as m — 4+ oo, since Y
0.

is continuous, 6, — 6, as t,, — t and p is locally integrable.

At last Y being continuous with compact support and p locally inte-
grable it is easy (using convolution type results on each components of

0 0
j W(z) o p(z + s)dz) to show that the mappings — j Y(z) o p(z+s)dz

is continuous at any se R.

0t (
Thusitisthen true thatj Vn(z) O p(z + t,)dz — J Y(z) o p(z+t)dz

asm — +oo. Then e XE(t).

Now since all the hypothesis of Theorem 1.2 are satisfied by the via-
bility system (ME), there exists a viable solution xy € %(R; R") under the
initial condition (t,, @R), such a solution verifies:

T(to)xn = PR

T(t)xye A Et) = A k(t) for all t =t
Xy 1S un-Lipschitz

xn(t) e F(t, T(t)xy) for almost all t=t,

In fact since F is bounded by k on Graph # (") it is obvious that xy
is k-Lipschit2 on [to, + oo [. Thus this being done for any ¢%, NeN,
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we get a sequence xy, N e N, which for the same reasons as in the pre-
ceding section will admits a subsequence (again denoted xy) converging
(uniformly on compact subsets) to xe (R ;R".

Obviously x is k-Lipschitz on [ty, + o[ and verifies T(to)x = @o,
x'(¢) e F(t, T(¢)x) for almost all t > t,. To end the proof of the viability

of x it suffices now to verify that for all ¢t > ¢t,, T(t)x € A g(t) which is equi-
t+ 0

valent to x(t) € E[t, f x(z) o p(z)dz:|.

- 0

Let t > t, be given. We know that for all Ne N

t+0,
xN(t) € E[t,j xx(z) O p(z)dz].

e o)

As E(-) has a closed graph, it is then sufficient to show that

t+06, t+06
J xn(2) O p(2)dz — J x(z) o p(zYdz when N — + .
Since T(to)x =@, and since for all Ne N

010

0,0
J @o(z) O p(z + to)dz = j PX(2) O plz + to)dz

— -

we have
t+0, (fto+6;, t+6,
J xn(z) Op(2)dz = xn(z) op(z)dz+ J xn(2) op(z)dz
—® Jow to+0y,
("0t t+0,
= [T(to)xn1(2) O p(z+to)dz +J xn(z) o p(z)dz
Jv—o0 tot+0 °
(010 t+0; t
= PR(2) O pz+to)dz+ J xn(z) O p(z)dz
J-o to+0y,
(010 146,
= ®o(2) O p(z + to)dz+ J xn(2) O p(2)dz
J— to+60 o
(O10 t t+0,
= [T(to)x1(z) O p(z+to)dz+ J xn(z) O pl(z)dz
J— to+6 o
(Fto+0: 140, ‘
= x(z) 0 p(z)dz+ J xn(z) O p(2)dz.
J—© to+0s,

Then since xy converges uniformly to x on the compact interval
[to + 6,,t + 6,] and since p is integrable on [t, + 0,,,t + 0,] we have

t+0, t+6,
J xn(2) O p(2)dz — x(z) O p(z)dz as N - +o0.
to+0,0 to+ 0, .

t+ 0, t+0;

This proves that j xn(2) O p(z)dz — x(z) o p(z)dz as N — + oo.

—x —
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Thus x is actually viable. Q. E.D.

To finish we give now an equivalent definition of Py (@) in that example
of viability problem.

PROPOSITION 11.2.2. — For any

ot

Qe Agt) = { Yy eb,;v0)e E(t,J‘ Y(z) o p(z+t)d2> } s VE Dy @)

if and only if

1
(ii) li'rln OIPfﬁ d, [¢©0) + hv] = 0.

(z+h,jf;e”“ #(z) 0 p(z+t)dz))
Remark. — We recall that ¢ being given, since 0 is continuous and 6, <0,

h+0¢+n
for h small enough h+ 0,,, <0, which gives a sense to f o(z)op(z+t)dz
since ¢ is only defined on ] — 0, 0]. T

The proof presents no difficulty and is a pure adaptation of the proof
of Proposition I11.1.
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