Annales de l'I. H. P., section C

PHILIPPE DELANOË

Équations de Monge-Ampère invariantes sur les variétés Riemanniennes compactes

Annales de l'I. H. P., section C, tome 1, nº 3 (1984), p. 147-178 http://www.numdam.org/item?id=AIHPC 1984 1 3 147 0>

© Gauthier-Villars, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Echanges Annale

Équations de Monge-Ampère invariantes sur les variétés Riemanniennes compactes

par

Philippe DELANOË (*)

Département de Mathématiques de l'Université Pierre-et-Marie-Curie, Paris, France

Résumé. — Soit (V_n, g) une variété Riemannienne de classe C^{∞} compacte de dimension n (sans bord). Soit g' une application qui associe au deuxième jet covariant (dans la métrique g) de toute fonction φ de classe C^k sur V_n , $k \geq 2$, un champ g'_{φ} deux fois covariant symétrique. On prend g' telle qu'il existe $\varphi \in C^k(V_n)$, $k \geq 2$, admissible i. e. pour lequel Trace $\left[(g'_{\varphi})^{-1} \cdot \frac{\partial g'_{\varphi}}{\partial (\nabla^2 \varphi)}\right]$ soit une nouvelle métrique (partout définie positive)

(voir ci-après et e. g. [3] [4] [5] [6]). Dès lors, pour F de classe C^{∞} donnée, on peut considérer le problème non linéaire elliptique du type Monge-Ampère suivant : trouver $\varphi \in C^{\infty}(V_n)$ admissible, solution de l'équation

$$M(\varphi) \equiv (|g'_{\varphi}| \cdot |g|^{-1}) = \exp [F(P, \nabla \varphi; \varphi)]$$

où P désigne un point générique de V_n (l'admissibilité de φ signifie simplement que le symbole de la différentielle $d[\log M(\varphi)]$ est défini positif, d'où l'ellipticité en φ). Dans le présent article nous donnons des résultats d'existence et d'unicité pour un tel problème de Monge-Ampère, non pas dans toute sa généralité, mais en imposant à $\varphi \to g'_{\varphi}$ d'être d'une forme suffisamment générale pour être invariante par changements de fonction inconnue du type $\varphi \to \psi$, où $\forall P \in V_n$, $\psi(P) = \gamma[P, \varphi(P)], \gamma(P, t)$ étant une fonction de $C^{\infty}(V_n \times \mathbb{R})$ telle que $\frac{\partial \gamma}{\partial t} > 0$.

ABSTRACT. — Let (V_n, g) be a smooth *n*-dimensional compact Riemannian manifold (without boundary). Let g' be a mapping which assigns to the

^(*) Chargé de Recherches au C. N. R. S. (Laboratoire Associé, L. A. 213).

second covariant jet (in the metric g) of any C^k function φ on V_n , $k \ge 2$, a field g'_{φ} twice covariant and symmetric. We take g' such that there exists $\varphi \in C^k(V_n)$, $k \ge 2$, admissible i. e. for which Trace $\left[(g'_{\varphi})^{-1} \cdot \frac{\partial g'_{\varphi}}{\partial (\nabla^2 \varphi)} \right]$ is a new *metric* (everywhere positive definite) (see below and e.g. [31][41][51][61)

new *metric* (everywhere positive definite) (see below and e. g. [3] [4] [5] [6]). Then, given F smooth, one may consider the following non-linear elliptic problem of *Monge-Ampère* type: find $\varphi \in C^{\infty}(V_n)$ admissible, solution of the equation,

$$\mathbf{M}(\varphi) \equiv (|g'_{\varphi}| \cdot |g|^{-1}) = \exp \left[\mathbf{F}(\mathbf{P}, \nabla \varphi; \varphi) \right],$$

where P denotes a generic point of V_n (the admissibility of φ simply means that the symbol of the differential map $d[\text{Log M}(\varphi)]$ is positive definite, hence the ellipticity at φ). In the present article we give existence and uniqueness results for such a Monge-Ampère problem, not in its full generality, but when prescribing on $\varphi \to g'_{\varphi}$ to be of a form general enough to be invariant by changes of unknown function of the type $\varphi \to \psi$, where: $\forall P \in V_n, \ \psi(P) \equiv \gamma[P, \varphi(P)], \ \gamma(P, t)$ being a function of $C^{\infty}(V_n \times \mathbb{R})$ such that $\frac{\partial \gamma}{\partial t} > 0$.

I. INTRODUCTION

Soit (V_n, g) une variété Riemannienne compacte connexe C^{∞} de dimension n, sans bord. Cet article a pour objet d'étudier des équations de Monge-Ampère de forme suffisamment générale pour être invariante par changements de fonction inconnue : $\varphi \to \psi$, où $\varphi = \tilde{\gamma}(P, \psi)$ dépend non seulement de « la nouvelle fonction inconnue ψ », mais aussi du point générique $P \in V_n$. Les articles [3] à [6] ont progressivement ouvert la voie de cette étude, suggérée de façon décisive au cours de conversations avec le Professeur Eugenio Calabi.

Le semi-groupe \mathscr{G} .

Soit \mathscr{G} l'ensemble des fonctions $\gamma(P, t) \in C^{\infty}(V_n \times \mathbb{R})$ qui vérifient :

$$\forall (\mathbf{P}, t) \in \mathbf{V}_{\mathbf{n}} \times \mathbb{R}, \frac{\partial \gamma}{\partial t}(\mathbf{P}, t) > 0$$

g muni de la loi de composition interne;

$$(\gamma \circ \delta)(\mathbf{P}, t) \equiv \gamma [\mathbf{P}, \delta(\mathbf{P}, t)]$$

possède une structure de semi-groupe unitaire, l'unité ou élément neutre de \mathcal{G} , v, étant donné par $v(P, t) \equiv t$.

Existence d'un pseudo-inverse.

Soit $\gamma \in \mathcal{G}$. γ est une application ouverte et il existe une unique surjection sur \mathbb{R} , $\widetilde{\gamma} \in C^{\infty}(V_n \times \text{Im } \gamma)$, telle que

$$s = \gamma(\mathbf{P}, t) \Leftrightarrow t = \widetilde{\gamma}(\mathbf{P}, s),$$

et que,

$$\frac{\partial \widetilde{\gamma}}{\partial s} > 0$$
.

Ce résultat est en effet assuré par la condition $\frac{\partial \gamma}{\partial t} > 0$ qui permet d'appliquer le théorème des fonctions implicites à l'application Γ suivante,

$$(P, s, t) \in V_n \times Im \ \gamma \times \mathbb{R} \rightarrow \Gamma(P, s, t) \equiv \gamma(P, t) - s$$

au voisinage d'un triplet (P, s, t) où $\Gamma(P, s, t) = 0$ (voir e. g. [1], p. 115). En dérivant par rapport à s l'identité,

$$\Gamma[P, s, \tilde{\gamma}(P, s)] \equiv 0$$

on obtient:

$$\frac{\partial \widetilde{\gamma}}{\partial s}(\mathbf{P},\,s) = \left\{ \frac{\partial \gamma}{\partial t} \left[\mathbf{P},\,\widetilde{\gamma}(\mathbf{P},\,s) \right] \right\}^{-1} > 0 \,.$$

Nous appellerons l'application $\tilde{\gamma}$ ainsi définie, le *pseudo-inverse* de γ , et nous noterons \mathscr{G}^{-1} l'ensemble $\{\tilde{\gamma}; \gamma \in \mathscr{G}\}$. Pour que $\gamma \in \mathscr{G}$ soit *inversible dans* \mathscr{G} , il faut et il suffit que γ soit *surjective* sur \mathbb{R} : on peut alors noter $\tilde{\gamma} = \gamma^{-1}$. L'ensemble des éléments inversibles dans \mathscr{G} constitue un groupe, sous-semi-groupe de \mathscr{G} .

Équations modulo l'action de G.

Pour $m \in \mathbb{N}$, notons $J^m \varphi$ le jet d'ordre m d'une fonction φ sur V_n . Une équation d'ordre m sur V_n s'écrit : $\mathscr{F}(J^m \varphi) = 0$. Le groupe \mathscr{G} agit de façon naturelle sur l'espace vectoriel des équations d'ordre m, au moyen de changements de fonction inconnue : $\varphi \to \psi$, où : $\varphi = \widetilde{\gamma}(P, \psi)$, avec $\gamma \in \mathscr{G}$. Soulignons qu'un tel changement de fonctions possède bien un sens grâce à la propriété de *surjectivité* sur \mathbb{R} des éléments de \mathscr{G}^{-1} . Cette action permet de définir une relation d'équivalence entre équations d'ordre m, \mathscr{F}_1 et \mathscr{F}_2 , par $\mathscr{F}_1 \sim \mathscr{F}_2$ si $\exists \gamma \in \mathscr{G}, \mathscr{F}_1(J^m \varphi) = 0 \Leftrightarrow \mathscr{F}_2(J^m \psi) = 0$ où $\varphi = \gamma(P, \psi)$ ou $\psi = \gamma(P, \varphi)$. Moins qu'une écriture particulière : $\mathscr{F}(J^m \varphi) = 0$, nous considérerons une « équation », comme la classe d'équivalence d'une telle écriture modulo la relation \sim .

Équations du type de Monge-Ampère.

Pour étudier une équation du type de Monge-Ampère au sens de la relation d'équivalence précédente, nous sommes conduits à envisager une écriture, représentant cette équation, dont la forme soit *invariante* par l'action du semi-groupe G. Commençons par rechercher des changements de métrique respectant cette invariance.

 $S^2(T^*V_n)$ désigne l'espace vectoriel des champs deux fois covariants symétriques sur V_n ; Λ^1V_n , celui des 1-formes sur V_n . Soient h et ξ des applications de classe C^{∞} définies sur $V_n \times \mathbb{R}$, respectivement à valeurs dans $T^*V_n \oplus T^*V_n$ (somme de Whitney) et dans T^*V_n , h à valeurs forme bilinéaire symétrique, et telles que les diagrammes suivants commutent :



p, projection canonique sur V_n . Soient ω et σ des fonctions de $C^{\infty}(V_n \times \mathbb{R})$, $\sigma > 0$. Soit $\mathscr V$ l'ouvert parcouru par (h, ξ, ω, σ) avec $\sigma > 0$. Nous considérons $(h, \xi, \omega, \sigma) \in \mathscr V$ comme une application qui, à $\varphi \in C^k(V_n)$, $k \ge 2$, associe le champ $(h, \xi, \omega, \sigma)(\varphi)$ de $S^2(T^*V_n)$ défini par :

(1)
$$\forall P \in V_n, (h, \xi, \omega, \sigma)(\varphi)(P) = h[P, \varphi(P)] + \frac{1}{2} \xi[P, \varphi(P)] \otimes \nabla \varphi$$

 $+ \frac{1}{2} \nabla \varphi \otimes \xi[P, \varphi(P)] + \omega[P, \varphi(P)](\nabla \varphi \otimes \nabla \varphi)$
 $+ \sigma[P, \varphi(P)] \nabla^2 \varphi.$

Le semi-groupe \mathscr{G} agit sur \mathscr{V} au moyen des changements de fonction inconnue : $\varphi = \widetilde{\gamma}(P, \psi)$, $\gamma \in \mathscr{G}$. En effet, un calcul élémentaire fournit les formules :

(2)
$$\nabla \varphi \equiv \nabla_{\!\mathbf{P}} \widetilde{\gamma} + \frac{\partial \widetilde{\gamma}}{\partial \psi} \nabla \psi$$

$$(3) \quad \nabla^{2} \varphi \equiv \nabla_{P}^{2} \widetilde{\gamma} + \nabla_{P} \left(\frac{\partial \widetilde{\gamma}}{\partial \psi} \right) \otimes \nabla \psi + \nabla \psi \otimes \nabla_{P} \left(\frac{\partial \widetilde{\gamma}}{\partial \psi} \right) + \frac{\partial^{2} \widetilde{\gamma}}{\partial \psi^{2}} (\nabla \psi \otimes \nabla \psi) + \frac{\partial \widetilde{\gamma}}{\partial \psi} \nabla^{2} \psi,$$

grâce auxquelles on s'assure que la transformée de (h, ξ, ω, σ) par $\gamma \in \mathcal{G}$, à savoir l'application : $\psi \in C^k$, $k \ge 2$, \to (h, ξ, ω, σ) $[\tilde{\gamma}(P, \psi)]$, est de la forme $(h^{\gamma}, \xi^{\gamma}, \omega^{\gamma}, \sigma^{\gamma}) \in \mathcal{V}$, avec en particulier :

(4)
$$\sigma^{\gamma}(\mathbf{P}, \psi) \equiv \sigma[\mathbf{P}, \, \tilde{\gamma}(\mathbf{P}, \psi)] \frac{\partial \tilde{\gamma}}{\partial \psi}(\mathbf{P}, \psi) > 0.$$

L'écriture (1) est donc invariante par l'action de $\mathscr{G}: \mathscr{GV} \subset \mathscr{V}$. Comme nous devrons considérer des changements de *métrique*, donnons la

Définition. — Une fonction φ est dite admissible pour $(h, \xi, \omega, \sigma) \in \mathscr{V}$, si $\varphi \in C^k(V_n)$ avec $k \ge 2$, et si le champ $(h, \xi, \omega, \sigma)(\varphi)$ est défini positif en tout point de V_n .

L'admissibilité est une propriété \mathscr{G} -invariante. Plus explicitement, s'il existe φ admissible pour $(h, \xi, \omega, \sigma) \in \mathscr{V}$, cette propriété ne dépend que de la \mathscr{G} -orbite, $\{(h^{\gamma}, \xi^{\gamma}, \omega^{\gamma}, \sigma^{\gamma}), \gamma \in \mathscr{G}\}$, de (h, ξ, ω, σ) . Soit en effet $\gamma \in \mathscr{G}$, $\varphi = \widetilde{\gamma}(P, \psi)$; l'identité : $(h, \xi, \omega, \sigma)(\varphi) \equiv (h^{\gamma}, \xi^{\gamma}, \omega^{\gamma}, \sigma^{\gamma})(\psi)$, montre à l'évidence que :

 $\{ \varphi \text{ admissible pour } (h, \xi, \omega, \sigma) \} \Leftrightarrow \{ \psi \text{ admissible pour } (h^{\gamma}, \xi^{\gamma}, \omega^{\gamma}, \sigma^{\gamma}) \}.$

Notons que \mathscr{G} agit *librement* sur \mathscr{V} . Soit en effet $(h, \xi, \omega, \sigma) \in \mathscr{V}$, et soit $\gamma \in \mathscr{G}$ tel que : $(h^{\gamma}, \xi^{\gamma}, \omega^{\gamma}, \sigma^{\gamma}) \equiv (h, \xi, \omega, \sigma)$. Alors, d'après (4) :

$$\forall (\mathbf{P}, s) \in \mathbf{V}_{\mathbf{n}} \times \mathbb{R}, \int_{0}^{s} \sigma(\mathbf{P}, t) dt = \int_{0}^{s} \sigma[\mathbf{P}, \widetilde{\gamma}(\mathbf{P}, t)] \frac{\partial \widetilde{\gamma}}{\partial t}(\mathbf{P}, t) dt.$$

Effectuant le changement de variable : $u = \tilde{\gamma}(P, t)$, dans l'intégrale de droite, nous obtenons :

$$\forall (\mathbf{P}, s) \in \mathbf{V}_n \times \mathbb{R}, \int_0^s \sigma(\mathbf{P}, t) dt = \int_0^{\widetilde{\gamma}(\mathbf{P}, s)} \sigma(\mathbf{P}, u) du.$$

Comme $\sigma > 0$, nous concluons : $\forall s \in \mathbb{R}$, $s = \tilde{\gamma}(\mathbf{P}, s)$, et γ n'est autre que l'élément neutre du groupe \mathscr{G} .

PROPOSITION 1. — Soit $(h, \xi, \omega, \sigma) \in \mathcal{V}$. Il existe un représentant canonique, de la forme $(\overline{h}, \overline{\xi}, \overline{\omega}, 1)$, de la G-orbite de (h, ξ, ω, σ) .

Preuve. — Soit $(h, \xi, \omega, \sigma) \in \mathcal{V}$. Associons à $\sigma > 0$ l'élément $\alpha \in \mathcal{G}$ défini par :

(5)
$$u = \alpha(\mathbf{P}, \, \varphi) = \int_0^{\varphi} \sigma(\mathbf{P}, \, t) dt \, .$$

Nous avons les relations :

$$\varphi \equiv \tilde{\alpha}(P, u), \frac{\partial \tilde{\alpha}}{\partial u}(P, u) \equiv \frac{1}{\sigma(P, \omega)}.$$

Il découle de la seconde d'entre elles, et de (4), que : $\sigma^{\alpha}(P, u) \equiv 1$. Ainsi pouvons-nous noter : $(\overline{h}, \overline{\xi}, \overline{\omega}, 1) = (h^{\alpha}, \xi^{\alpha}, \underline{\omega}^{\alpha}, \underline{\sigma}^{\alpha})$.

Nous devons maintenant prouver que $(\overline{h}, \overline{\xi}, \overline{\omega}, 1)$ ne dépend que de la \mathscr{G} -orbite de (h, ξ, ω, σ) . Soit donc $\gamma \in \mathscr{G}, \varphi = \widetilde{\gamma}(P, \psi)$, et $(h^{\gamma}, \xi^{\gamma}, \omega^{\gamma}, \sigma^{\gamma})$ l'élément de l'orbite correspondant. Appliquons à cet élément la même procédure canonique (5), en définissant la variable :

$$v = \delta(\mathbf{P}, \psi) = \int_0^{\psi} \sigma^{\gamma}(\mathbf{P}, t) dt$$
.

Effectuant dans cette intégrale le changement de variable $s = \tilde{\gamma}(\mathbf{P}, t)$, Vol. 1, n° 3-1984.

on trouve que $v = \int_0^{\varphi} \sigma(\mathbf{P}, s) ds \equiv u$, n'est autre que la variable u définie en (5). On en tire $\alpha \equiv \delta \circ \gamma$, d'où :

$$(\overline{h}, \overline{\xi}, \overline{\omega}, 1) = (h^{\alpha}, \xi^{\alpha}, \omega^{\alpha}, \sigma^{\alpha}) \equiv [(h^{\gamma})^{\delta}, (\xi^{\gamma})^{\delta}, (\omega^{\gamma})^{\delta}, (\sigma^{\gamma})^{\delta}].$$

Ainsi aboutissons-nous, à partir de tout élément de la \mathscr{G} -orbite de (h, ξ, ω, σ) , au moyen de la procédure canonique (5), à la *même* variable u et au *même* représentant canonique $(\overline{h}, \overline{\xi}, \overline{\omega}, 1)$. Q. E. D.

Nous sommes désormais en mesure de poser un problème du type de Monge-Ampère elliptique qui soit \mathscr{G} -invariant. Soit $(h, \xi, \omega, 1) \in \mathscr{V}$, donné, le représentant canonique d'une \mathscr{G} -orbite de \mathscr{V} . A toute fonction F de $C^{\infty}(T^*V_n \times \mathbb{R})$, nous associons le problème de trouver une solution $\varphi \in C^{\infty}(V_n)$, admissible pour $(h, \xi, \omega, 1)$, de l'équation :

$$\frac{1}{|g|}|(h, \xi, \omega, 1)(\varphi)| = \exp\left\{ F[P, \nabla \varphi(P); \varphi(P)] \right\}.$$

 $(h, \xi, \omega, 1)$ étant choisi, notons simplement g'_{φ} le champ $(h, \xi, \omega, 1)(\varphi)$, et notons $M(\varphi)$ le quotient des deux déterminants $(|g'_{\varphi}||g|^{-1})$. L'équation de Monge-Ampère s'écrit encore :

(6)
$$\operatorname{Log} M(\varphi) = \operatorname{F}(P, \nabla \varphi; \varphi).$$

$$\frac{1}{|g|} |(e^{-F_1/n}h, e^{-F_1/n}\xi, e^{-F_1/n}\omega, e^{-F_1/n}\sigma)(\varphi)| = \exp [F_2(P, \nabla \varphi; \varphi)],$$

ce qui suggère de normaliser les seconds membres F intervenant dans l'équation (6). En fait l'écriture (6) est consistante telle quelle, car nous devrons distinguer deux ensembles d'hypothèses : celui portant sur $(h, \xi, \omega, 1)$, et celui portant sur F. Inclure la partie F_1 de F dans l'opérateur différentiel, conduirait à des hypothèses inutiles sur le second membre F.

Nous pourrons résoudre l'équation générale (6) par une méthode de *Point Fixe*, après avoir résolu par une *Méthode de Continuité* l'équation particulière :

(7)
$$\operatorname{Log} M(\varphi) = f, \quad f \in C^{\infty}(V_n) \text{ donn\'ee}.$$

Hypothèses sur le représentant canonique $(h, \xi, \omega, 1)$.

Outre l'hypothèse de régularité déjà faite : $(h, \xi, \omega, 1) \in \mathcal{V}$, nous sommes amenés à poser les hypothèses suivantes.

i) Une hypothèse qui assure *l'inversibilité locale* de l'équation (7), et *l'unicité* de sa solution :

$$\forall (\mathbf{P}, s) \in \mathbf{V_n} \times \mathbb{R} : \frac{\partial \omega}{\partial \varphi}(\mathbf{P}, s) < 0, \quad \text{et,} \quad \left[\frac{\partial h}{\partial \varphi} - \frac{1}{4 \frac{\partial \omega}{\partial \varphi}} \left(\frac{\partial \xi}{\partial \varphi} \otimes \frac{\partial \xi}{\partial \varphi} \right) \right] (\mathbf{P}, s)$$

est défini négatif, ou, $\frac{\partial \omega}{\partial \varphi}(\mathbf{P}, s) = \left| \frac{\partial \xi}{\partial \varphi} \right|(\mathbf{P}, s) = 0$, et $\frac{\partial h}{\partial \varphi}(\mathbf{P}, s)$ est défini négatif.

ii) Une hypothèse de décroissance uniforme qui assure la minoration a priori C⁰:

$$\forall \mathbf{K} \in \mathbb{R}, \exists \varepsilon > 0, \forall (\mathbf{P}, s) \in \mathbf{V}_n \times] - \infty, \mathbf{K} [, \left\lceil \frac{\partial h}{\partial \varphi} + \varepsilon \mathbf{g} \right\rceil (\mathbf{P}, s) \text{ est défini négatif.}$$

iii) Désignons par $\lambda_{\nu}(P, s)$, $\nu \in \{1, \ldots, n\}$, les valeurs propres de h(P, s). Il suit aisément de (ii) que : $\forall P \in V_n, \forall \nu \in \{1, \ldots, n\}$, $\lim_{s \to -\infty} \lambda_{\nu}(P, s) = +\infty$. Pour éviter des obstructions immédiates du type indiqué dans l'introduction de l'article [6], nous devons imposer que les $\lambda_{\nu}(P, s)$ soient à valeurs dans $[0, +\infty[$ tout entier, l'estimation a priori \mathbb{C}^2 réclamant toutefois qu'elles ne puissent s'annuler (voir ci-après, « lemme fondamental »). D'où la condition :

$$\forall P \in V_n, \ \forall v \in \{1, \ldots, n\}, \ \lim_{s \to +\infty} \lambda_v(P, s) = 0.$$

II. RÉSOLUTION DE L'ÉQUATION PARTICULIÈRE (7)

Choisissons $H \in C^{\infty}(\mathbb{R})$ vérifiant :

(8)
$$\forall s \in \mathbb{R}, \ H'(s) < 0; \ \forall K \in \mathbb{R}, \exists \varepsilon > 0, \ \forall s < K, \ H'(s) < -\varepsilon; \lim_{s \to +\infty} H(s) = 0.$$

Il suit en particulier que : $\lim_{s \to -\infty} H(s) = +\infty$. Pour $t \in [0, 1]$, posons :

$$G_t(\varphi) = tg'_{\varphi} + (1-t)[H(\varphi)g + \nabla^2 \varphi]$$

et : $M(t, \varphi) = |G_t(\varphi)| |g|^{-1}$. Considérons l'équation de continuité :

(9)
$$\operatorname{Log} M(t, \varphi_t) = f.$$

Soit $\alpha \in]0, 1[$ fixé. L'application M, composée d'applications continues, est elle-même *continue* de $[0, 1] \times C^{2,\alpha}$ dans $C^{0,\alpha}$. Notons $0^{2,\alpha}$ l'ouvert de $[0, 1] \times C^{2,\alpha}$, image réciproque par M de l'ouvert des fonctions de $C^{0,\alpha}$ à valeurs *strictement positives*. $0^{2,\alpha}$ est non vide. En effet, il suit des hypothèses faites sur $(h, \xi, \omega, 1)$ et sur H, que : $[0, 1] \times \mathbb{R} \subset 0^{2,\alpha}$ (en identifiant \mathbb{R} avec les fonctions *constantes* de $C^{2,\alpha}$).

Dans une carte locale, la différentielle de M, en $(t, \varphi) \in 0^{2,\alpha}$, admet pour expression : $\forall (\tau, \psi) \in \mathbb{R} \times \mathbb{C}^{2,\alpha} = T_{(t,\varphi)}(0^{2,\alpha})$,

(10)
$$d\mathbf{M}(t,\varphi)(\tau,\psi) \equiv d_{\varphi}\mathbf{M}(t,\varphi)(\psi) + d_{t}\mathbf{M}(t,\varphi)(\tau)$$

$$= \mathbf{M}(t,\varphi)\mathbf{G}_{t}(\varphi)^{\mu\nu} \left\{ \nabla_{\mu\nu}\psi + t\nabla_{\mu}\psi \left[\xi_{\nu}(\mathbf{P},\varphi) + 2\omega(\mathbf{P},\varphi)\nabla_{\nu}\varphi \right] \right.$$

$$\left. + \psi \left[t \frac{\partial h_{\mu\nu}}{\partial \varphi} + t \frac{\partial \xi_{\mu}}{\partial \varphi} \nabla_{\nu}\varphi + t \frac{\partial \omega}{\partial \varphi} \nabla_{\mu}\varphi\nabla_{\nu}\varphi + (1-t)\mathbf{H}'(\varphi)g_{\mu\nu} \right] \right.$$

$$\left. + \tau \left[a_{\mu\nu}(\mathbf{J}^{1}\varphi) - \mathbf{H}(\varphi)g_{\mu\nu} \right] \right\},$$

en notant pour abréger :

(11)
$$a(\mathbf{J}^1\varphi) \equiv h(\mathbf{P}, \varphi) + \frac{1}{2} \left[\xi(\mathbf{P}, \varphi) \otimes \nabla \varphi + \nabla \varphi \otimes \xi(\mathbf{P}, \varphi) \right] + \omega(\mathbf{P}, \varphi) (\nabla \varphi \otimes \nabla \varphi),$$

et en désignant par $[G_t(\varphi)^{\mu\nu}]$ la matrice *inverse* de celle de $G_t(\varphi)$ au point P considéré. Il faut souligner que pour $(t, \varphi) \in 0^{2,\alpha}$, les valeurs propres de $G_t(\varphi)$ ne sauraient s'annuler en aucun point de V_n , puisque $|G_t(\varphi)| > 0$; $G_t(\varphi)$ est donc partout inversible.

On vérifie que M est une application continûment différentiable de $0^{2,\alpha}$ dans $C^{0,\alpha}$. Appelons alors $N:0^{2,\alpha}\to [0,1]\times C^{0,\alpha}$, l'application continûment différentiable définie par : $N(t,\varphi)\equiv [t,M(t,\varphi)]$. Si $\varphi\in C^{2,\alpha}$ est admissible pour G_t (c'est-à-dire telle que $G_t(\varphi)$ soit partout définie positive), alors $(t,\varphi)\in 0^{2,\alpha}$, et N est localement inversible en (t,φ) . En effet, l'équation : $dN(t,\varphi)(\tau,\psi)=(s,u)$, pour $(s,u)\in \mathbb{R}\times C^{0,\alpha}$ donné, admet une solution et une seule $(\tau,\psi)\in \mathbb{R}\times C^{2,\alpha}$. On trouve d'abord : $\tau=s$; puis ψ est déterminée par l'équation linéaire elliptique du second ordre, à coefficients de classe $C^{0,\alpha}$:

$$d_{\varphi}\mathbf{M}(t,\,\varphi)(\psi)=\,\left[u\,-\,d_{t}\mathbf{M}(t,\,\varphi)(s)\right]\in\mathbf{C}^{0,\alpha}\,.$$

On traite de *l'existence* de $\psi \in \mathbb{C}^{2,x}$ de façon classique, comme au théorème 3 de [3]. L'unicité de ψ découle du Principe du Maximum [10], le coefficient de ψ dans cette équation étant strictement négatif d'après les hypothèses faites sur $(h, \xi, \omega, 1)$ et sur H, comme nous le vérifions à présent : en un point générique $P \in V_n$, prenons une carte normale pour g et qui diagonalise la matrice (symétrique) de $\frac{\partial a}{\partial \omega}$, où $a(J^1 \varphi)$ est défini

en (11). Si
$$\frac{\partial \omega}{\partial \varphi}(\mathbf{P}, \varphi) = \left| \frac{\partial \xi}{\partial \varphi}(\mathbf{P}, \varphi) \right| = 0$$
, il est clair que : $\left[t \frac{\partial h}{\partial \varphi} + (1 - t)\mathbf{H}'(\varphi)g \right]$

est défini négatif. Si $\frac{\partial \omega}{\partial \varphi}(P, \varphi) < 0$, nous avons la majoration, indépendante de $\nabla \varphi$:

$$\forall \mu = 1, \ldots, n, \left[t \frac{\partial a_{\mu\mu}}{\partial \varphi} + (1-t)H'(\varphi) \right] \leq t \left[\frac{\partial h_{\mu\mu}}{\partial \varphi} - \frac{1}{4 \frac{\partial \omega}{\partial \varphi}} \left(\frac{\partial \xi_{\mu}}{\partial \varphi} \right)^{2} \right] + (1-t)H'(\varphi),$$

et les membres de droite de ces inégalités sont tous strictement négatifs, par hypothèse. Dans tous les cas : $G_t^{\mu\nu} \left[t \frac{\partial}{\partial \varphi} a_{\mu\nu} + (1-t) H'(\varphi) g_{\mu\nu} \right] < 0$, ce qu'il fallait vérifier.

PROPOSITION 2. — Soit $\mathscr{C} = \{t \in [0, 1], \exists \varphi_t \in C^{2,\alpha} \text{ solution admissible de } (9)\}$. Si l'ensemble $\{\varphi_t, t \in \mathscr{C}\}$ est borné dans $C^{2,\alpha}$ indépendamment de $t \in [0, 1]$, alors : $\mathscr{C} = [0, 1]$. φ_1 est l'unique solution C^{∞} admissible de l'équation (7).

Preuve. — On prouve que $\mathscr{E} = [0, 1]$ par un argument de connexité. \mathscr{E} est non vide. En effet, d'après les hypothèses (8) faites sur H, le théorème qui fait l'objet de l'article [6] montre que pour t = 0 il existe une unique solution admissible $\varphi_0 \in \mathbb{C}^{\infty}$ de l'équation (9). Donc $0 \in \mathscr{E}$.

 \mathscr{C} est $ferm\acute{e}$. Rappelons d'abord que, d'après le théorème de régularité de Giraud [8, p. 222] et Hopf [9] pour les équations elliptiques du second ordre, si pour $t \in [0, 1]$, $\exists \varepsilon \in]0, 1[$ tel que $\varphi_t \in \mathbb{C}^{2,\varepsilon}$ soit solution admissible de l'équation (9), alors : $f \in \mathbb{C}^{\infty} \Rightarrow \varphi_t \in \mathbb{C}^{\infty}$. Nous aurons à utiliser ce résultat à quelques reprises. Considérons maintenant une suite $(t_i)_{i \in \mathbb{N}}$ de \mathscr{C} ; posons : $t = (\lim_{t \to \infty} t_i) \in [0, 1]$. Par hypothèse l'ensemble $\{\varphi_{t_i}\}_{i \in \mathbb{N}}$ est un borné de $\mathbb{C}^{2,\alpha}$. Pour $\beta \in]0, \alpha[$, d'après le théorème d'Ascoli, on peut extraire une sous-suite (t_j) telle que la suite (φ_{t_j}) converge dans $\mathbb{C}^{2,\beta}$, vers $\varphi_t \in \mathbb{C}^{2,\beta}$. Par continuité de l'application \mathbb{M} , φ_t vérifie l'équation (9) pour la valeur t du paramètre. Toujours par continuité, les φ_{t_j} étant admissibles, il en résulte en passant à la limite que $\mathbb{C}_t(\varphi_t)$ est partout non négatif; φ_t vérifiant (9), $|\mathbb{G}_t(\varphi_t)| > 0$, et $\mathbb{G}_t(\varphi_t)$ s'en trouve nécessairement partout défini positif : $\varphi_t \in \mathbb{C}^{2,\beta}$ est donc admissible, et $\varphi_t \in \mathbb{C}^{\infty}$ d'après le théorème de régularité de \mathbb{G} iraud-Hopf [8] [9]. Donc $t \in \mathscr{E}$.

 \mathscr{C} est ouvert dans [0,1]. Soit $t\in\mathscr{C}$, nous avons vu que l'application N est localement inversible en $(t,\varphi_t)\in 0^{2,\alpha}$. D'après le théorème d'inversion locale, il existe U, voisinage ouvert de (t,φ_t) dans $0^{2,\alpha}$, et il existe W, voisinage ouvert de (t,e^f) dans $[0,1]\times C^{0,\alpha}$, tels que N soit un C^1 -difféomorphisme de U sur W. En particulier : $\exists \varepsilon>0, \forall t'\in]t-\varepsilon, t+\varepsilon[\cap [0,1], (t',e^f)\in W$, et $\exists (t',\varphi_{t'})\in 0^{2,\alpha}$ unique vérifiant : Log $M(t',\varphi_{t'})=f$. Bien plus, pour $\forall (t',\varphi_{t'})\in U, \varphi_{t'}$ est admissible pour $G_{t'}$: en effet, d'après l'hypothèse (iii) sur les valeurs propres du champ h, et d'après l'hypothèse (8) sur H, il est clair qu'au point où $\varphi_{t'}$ atteint son minimum, les valeurs propres de $G_{t'}(\varphi_{t'})$ sont toutes strictement positives. Comme partout sur V_n : $|G_{t'}(\varphi_{t'})|>0$, par continuité $G_{t'}(\varphi_{t'})$ est nécessairement défini positif en tout point de V_n . En conclusion : $\exists \varepsilon>0, \ |t-\varepsilon,t+\varepsilon[\cap [0,1]\subset\mathscr{E}$.

Prouvons maintenant que φ_1 , solution C^{∞} admissible de l'équation (7), si elle existe, est *unique*.

Unicité de la solution de (7).

Soient φ_1 et φ_2 deux solutions C^{∞} admissibles de l'équation (7), $\varphi = (\varphi_2 - \varphi_1)$ leur différence. Nous avons, avec des notations évidentes :

$$|g_2'| |g_1'|^{-1} = 1$$
.

Au point P où φ atteint son maximum, dans un repère orthonormé pour g'_1 et qui diagonalise la matrice symétrique de (g'_2) , les valeurs propres de $g'_2(P)$ s'écrivent

$$\begin{split} (g'_{2\mu\mu}(\mathbf{P}) &= (g'_1)_{\mu\mu}(\mathbf{P}) + a_{\mu\mu}(\mathbf{J}^1\varphi_2) - a_{\mu\mu}(\mathbf{J}^1\varphi_1) + \partial_{\mu\mu}\varphi \\ &= 1 + \varphi \frac{\partial}{\partial \varphi} a_{\mu\mu}(\mathbf{P}, \nabla \varphi_1; \theta_\mu) + \partial_{\mu\mu}\varphi \end{split}$$

où $a(J^1\varphi)$ a été défini en (11), et où θ_μ désigne, pour chaque $\mu \in \{1, \ldots, n\}$, une valeur comprise entre $\varphi_1(P)$ et $\varphi_2(P)$, et donnée par le théorème des accroissements finis. Il s'ensuit qu'en P:

$$\prod_{\mu=1}^{n} \left[1 + \varphi \frac{\partial}{\partial \varphi} a_{\mu\mu}(\mathbf{P}, \nabla \varphi_{1}; \theta_{\mu}) + \partial_{\mu\mu} \varphi \right] = 1.$$

D'où, en vertu de l'inégalité entre moyennes arithmétique et géométrique de *n* nombres positifs :

$$1 \leqslant 1 + \frac{1}{n} \left(\sum_{\mu} \partial_{\mu\mu} \varphi \right) + \frac{1}{n} \varphi(\mathbf{P}) \left[\sum_{\mu} \frac{\partial}{\partial \varphi} a_{\mu\mu} (\mathbf{P}, \nabla \varphi_1; \theta_{\mu}) \right].$$

 φ atteignant son maximum en $P: \forall \mu, \ \partial_{\mu\mu}\varphi(P) \leq 0$. D'autre part, d'après l'hypothèse (i) faite sur $(h, \ \xi, \ \omega, \ 1)$, le coefficient de φ est *strictement négatif*. Par conséquent : $\varphi(P) = \sup_{v} \varphi \leq 0$.

En intervertissant les indices 1 et 2, on montrerait de même que : $\inf_V \varphi \geqslant 0$. Donc $\varphi = (\varphi_2 - \varphi_1) \equiv 0$, et l'unicité de φ_1 est acquise.

D'après la proposition 2, pour prouver l'existence de φ_1 il suffit de bâtir une estimation *a priori* dans $C^{2,\alpha}$, indépendante de $t \in [0, 1]$, sur les solutions admissibles φ_t de l'équation (9). Nous allons en fait construire une estimation *a priori* dans C^3 sur ces solutions.

L'estimation C⁰.

Soit φ_t une solution admissible de l'équation (9). Au point P où φ_t atteint son *maximum*, dans une carte normale pour g, et qui diagonalise la matrice (symétrique) de $G_t(\varphi_t)$, l'équation (9) s'écrit :

$$e^{f(\mathbf{P})} = \prod_{\mu=1}^{n} \left[t h_{\mu\mu}(\mathbf{P}, \, \varphi_t) + (1 - t) \mathbf{H}(\varphi_t) + \, \hat{\sigma}_{\mu\mu} \varphi_t(\mathbf{P}) \right].$$

Rappelons que : $\forall \mu, \ \partial_{\mu\mu} \varphi_t(P) \leq 0$. Utilisons alors l'inégalité arithmétique-géométrique pour trouver :

$$\exp\left[\frac{1}{n}f(\mathbf{P})\right] \leq \frac{t}{n}\left[\sum_{\mu}h_{\mu\mu}(\mathbf{P},\varphi_t)\right] + (1-t)H(\varphi_t) \leq \frac{1}{n}g^{\mu\nu}h_{\mu\nu}(\mathbf{P},\varphi_t) + H(\varphi_t)(\mathbf{P}),$$

car, d'après l'hypothèse (iii) sur $h: \forall \mu, \ h_{\mu\mu}(P, \varphi_t) > 0$, et d'après l'hypothèse (8) sur $H: H(\varphi_t)(P) > 0$. Notons $S(P, \tau)$ la fonction de $C^{\infty}(V_n \times \mathbb{R})$ définie par

$$S(P, \tau) = \frac{1}{n} g^{\mu\nu} h_{\mu\nu}(P, \tau) + H(\tau).$$

Il suit des hypothèses (i) faites sur $(h, \xi, \omega, 1)$ et (8) sur H, que :

$$\forall (P, \tau) \in V_n \times \mathbb{R}, \frac{\partial S}{\partial \tau}(P, \tau) < 0.$$

D'après le théorème des fonctions implicites, il existe une fonction T de classe C^{∞} telle que :

$$s = S(P, \tau) \Leftrightarrow \tau = T(P, s), \text{ et } \frac{\partial T}{\partial s} < 0.$$

Les hypothèses faites sur h et sur H montrent en outre que : $\forall P \in V_n$, $S(P, \mathbb{R}) =]0, +\infty[$. Donc $V_n \times]0, +\infty[$ est inclus dans le domaine de définition de T, et nous obtenons la majoration uniforme suivante :

$$\sup_{\mathbf{V}_n} \varphi_t = \varphi_t(\mathbf{P}) \leqslant \sup_{\mathbf{Q} \in \mathbf{V}_n} \mathbf{T} \left[\mathbf{Q}, \exp \left(-\frac{1}{n} \| f \|_0 \right) \right] = \mathbf{C}_0^+,$$

puisque d'après l'inégalité obtenue ci-avant :

$$\exp\left(-\frac{1}{n}\|f\|_{0}\right) \leqslant S[P, \varphi_{t}(P)].$$

D'après les hypothèses (ii) faite sur h et (8) sur H, C_0^+ étant maintenant fixé, il existe $\varepsilon_0 > 0$ tel que :

$$\forall (\mathbf{P}, s) \in \mathbf{V_n} \times \left] - \infty, \mathbf{C}_0^+ \left[, \left[\frac{\partial h}{\partial \varphi}(\mathbf{P}, s) + \varepsilon_0 g(\mathbf{P}) \right] \right] \text{ est défini négatif, } \mathbf{H}'(s) < -\varepsilon_0 \text{ .}$$

Pour bâtir une *minoration* uniforme de φ_t , plaçons-nous dans une carte du même type que précédemment, au point Q où φ_t atteint son *minimum*. En vertu du théorème des accroissements finis, il existe des réels θ_μ , $\mu \in \{1, \ldots, n\}$, et θ , compris dans l'intervalle $\varphi_t(Q)$, C_0^+ , tels que :

$$\forall \mu, h_{\mu\mu}(\mathbf{Q}, \varphi_t) = h_{\mu\mu}(\mathbf{Q}, \mathbf{C}_0^+) + \left[\varphi_t(\mathbf{Q}) - \mathbf{C}_0^+\right] \frac{\partial}{\partial \varphi} h_{\mu\mu}(\mathbf{Q}, \theta_\mu),$$

et,

$$H[\varphi_t(Q)] = H(C_0^+) + [\varphi_t(Q) - C_0^+]H'(\theta).$$

D'après les hypothèses faites sur h et sur H, $\forall \mu, h_{\mu\mu}(Q, C_+^0) > 0$, et $H(C_0^+) > 0$. D'autre part en $Q: \forall \mu, \ \partial_{\mu\mu}\varphi_t(Q) \geqslant 0$. Par définition de ε_0 , on en déduit : $\forall \mu, \ h_{\mu\mu}(Q, \varphi_t) > \varepsilon_0[C_0^+ - \varphi_t(Q)]$, et, $H[\varphi_t(Q)] > \varepsilon_0[C_0^+ - \varphi_t(Q)]$. Ainsi, au point Q:

$$\varepsilon_0[C_0^+ - \varphi_t(Q)] < \exp\left[\frac{1}{n}f(Q)\right] \leq \exp\left(\frac{1}{n} \|f\|_0\right).$$

D'où la minoration uniforme :

$$\inf_{\mathbf{V}_n} \varphi_t = \varphi_t(\mathbf{Q}) > \mathbf{C}_0^+ - \frac{1}{\varepsilon_0} \exp\left(\frac{1}{n} \| f \|_0\right) = \mathbf{C}_0^-.$$

L'estimation C1.

Posons:

$$\mathbf{K} = \max \left\{ \sup \left[1 + g^{\mu\nu}(\mathbf{P}) h_{\mu\nu}(\mathbf{P}, s) + \mathbf{H}(s) \right], \sup \left[\frac{1}{4} |\xi|^2 (\mathbf{P}, s) + |\omega(\mathbf{P}, s)| \right] \right\},$$

les bornes supérieures étant prises sur le compact $(P, s) \in V_n \times [C_0^-, C_0^+]$. Considérons la fonctionnelle :

$$A(\varphi) = Log (1 + |\nabla \varphi|^2) + 2K\varphi.$$

Soit φ_t , solution admissible de l'équation (9). Au maximum de $A(\varphi_t)$ en un point P, dans une carte normale pour la métrique g et qui diagonalise la matrice de $\nabla^2 \varphi_t(P)$, $|\nabla A(\varphi_t)|(P) = 0$ s'exprime par les n relations :

$$\forall \mu = 1, \ldots, n, \partial_{\mu} \varphi_{t}(\mathbf{P}) \left[\mathbf{K} + \frac{1}{1 + |\nabla \varphi_{t}|^{2}} \partial_{\mu\mu} \varphi_{t}(\mathbf{P}) \right] = 0.$$

Si $|\nabla \varphi_t|(\mathbf{P}) \neq 0$, il existe $\mu \in \{1, \ldots, n\}$ tel que : $\partial_{\mu\mu} \varphi_t(\mathbf{P}) = -\mathbf{K} [1 + |\nabla \varphi_t|^2]$. Mais alors :

$$\begin{split} \mathbf{G}_{t}(\varphi_{t})_{\mu\mu} &= \left[1 + th_{\mu\mu}(\mathbf{P}, \, \varphi_{t}) + (1 - t)\mathbf{H}(\varphi_{t}) - \mathbf{K} \, \right] \\ &+ \left[t\xi_{\mu}(\mathbf{P}, \, \varphi_{t})\partial_{\mu}\varphi_{t} + t\omega(\mathbf{P}, \, \varphi_{t})(\partial_{\mu}\varphi_{t})^{2} - \mathbf{K} \, |\, \nabla\varphi_{t}\,|^{2} - 1 \, \right] \\ &\leq \left\{ 1 + g^{\mu\nu}(\mathbf{P})h_{\mu\nu}(\mathbf{P}, \, \varphi_{t}) + \mathbf{H}(\varphi_{t}) - \mathbf{K} \, \right\} \\ &+ \left\{ \left[|\, \omega(\mathbf{P}, \, \varphi_{t})| - \mathbf{K} \, \right] |\, \nabla\varphi_{t}\,|^{2} + |\, \xi(\mathbf{P}, \, \varphi_{t})| \, |\, \nabla\varphi_{t}\,| - 1 \, \right\}, \end{split}$$

et d'après le choix de K, et l'estimée C^0 , on s'assure aisément que chaque terme entre accolades est non positif. φ_t étant *admissible*, il est exclu qu'un élément diagonal de la matrice de $G_t(\varphi_t)(P)$ soit non positif [2, p. 388]. Nécessairement donc : $|\nabla \varphi_t|(P) = 0$. On en déduit qu'en *tout* point de V_m φ_t vérifie :

$$\operatorname{Log}\left(1+|\nabla\varphi_{t}|^{2}\right)\leqslant2K\underset{V_{n}}{\operatorname{osc}}\left(\varphi_{t}\right)\leqslant2K\left(C_{0}^{+}-C_{0}^{-}\right).$$

D'où l'estimation uniforme sur le gradient :

$$\sup_{\mathbf{V}_n} (|\nabla \varphi_t|) \leqslant \{ \exp \left[2K(C_0^+ - C_0^-) \right] - 1 \}^{1/2} = C_1.$$

L'estimation C^2 .

Dans les calculs intermédiaires, nous omettrons l'indice t et emploierons des abréviations lorsqu'il n'y aura pas de confusion possible, en notant par exemple G au lieu de $G_t(\varphi_t)$.

LEMME FONDAMENTAL. — Soit φ_t , solution admissible de l'équation (9). Il existe u_t , fonction C^{∞} de φ_t , et des constantes positives ω_0 et η_0 , indépendantes de $t \in [0, 1]$, qui vérifient identiquement l'inégalité :

(12)
$$-G_t^{\mu\nu}\nabla_{\mu\nu}u_t \ge -n\omega_0 \exp(-\omega_0C_0^-) + \omega_0\eta_0 \exp(-\omega_0C_0^+)(G_t^{\mu\nu}g_{\mu\nu}),$$

où $(G_t^{\mu\nu})$ désigne l'expression locale de la matrice inverse de celle de $G_t(\varphi_t)$.

Preuve. — Prenons u_t défini par : $\varphi_t = -(\omega_0)^{-1}$ Log $(-u_t)$, ω_0 désignant un réel positif à préciser ultérieurement. φ_t étant $d\acute{e}j\grave{a}$ estimée dans C^1 , il en est de même de u_t . En particulier : $-\exp(-\omega_0C_0^-)\leqslant u_t\leqslant -\exp(-\omega_0C_0^+)$. Un simple calcul dans une carte locale fournit :

$$\begin{split} \mathbf{G}_{\mu\nu} &= \left\{ th_{\mu\nu} + \frac{t}{2(-u)\omega_0} (\xi_\mu \nabla_\mu u + \xi_\nu \nabla_\mu u) + \frac{1}{\omega_0 u^2} \nabla_\mu u \nabla_\nu u \left(1 + t \frac{\omega}{\omega_0} \right) \right. \\ &+ (1-t)\mathbf{H}(\varphi_t) g_{\mu\nu} \left. \right\} + \frac{1}{\omega_0 (-u)} \nabla_{\mu\nu} u \,. \end{split}$$

Si α et β sont deux champs de $S^2(T^*V_n)$, il est commode de noter : $\alpha \geqslant \beta$, si pour tout champ de vecteurs X sur V_n , on a : $\alpha_{\mu\nu}X^{\mu}X^{\nu} \geqslant \beta_{\mu\nu}X^{\mu}X^{\nu}$. $|\omega(P, \varphi_t)|$ étant borné indépendamment de $t \in [0, 1]$, nous pouvons choisir ω_0 tel que :

$$\omega_0 - |\omega| > 0$$
.

Par le choix d'une carte convenable en un point générique de V_n , on met alors en évidence l'inégalité (au sens précédent), indépendante de ∇u :

$$\left[th + \frac{t}{2(-u)\omega_{0}} (\xi \otimes \nabla u + \nabla u \otimes \xi) + \frac{1}{\omega_{0}u^{2}} (\nabla u \otimes \nabla u) \left(1 + t \frac{\omega}{\omega_{0}} \right) \right]$$

$$\geqslant t \left[h - \frac{1}{4(\omega_{0} - |\omega|)} \xi \otimes \xi \right].$$

En outre, d'après les hypothèses faites sur $(h, \xi, \omega, 1)$ et sur $H: h(P, \varphi_t) \ge h(P, C_0^+)$, avec $h(P, C_0^+)$ défini positif; et, $H(\varphi_t) \ge H(C_0^+) > 0$. Par conséquent, quitte à prendre ω_0 suffisamment grand:

$$\exists \eta_0 > 0, \exists \omega_0 > 0, \{ \ldots \} \geqslant \eta_0 g,$$

160 p. delanoë

en désignant par $\{\ldots\}$, le champ entre accolades dans l'expression de $G_{\mu\nu}$ ci-avant. η_0 et ω_0 sont désormais fixés; ils sont indépendants de t. Et nous avons :

$$G \geqslant \eta_0 g + \frac{1}{\omega_0(-u)} \nabla^2 u \,.$$

L'inégalité (12) du lemme en découle, compte tenu de l'encadrement indiqué ci-avant pour u_t , en saturant cette inégalité avec la matrice *inverse* $(G^{\mu\nu})$ de G_t . Q. E. D.

Considérons alors l'expression :

$$B(\varphi_t) = \text{Log } [g^{\mu\nu}G_t(\varphi_t)_{\mu\nu}] - ku_t,$$

où k désigne un réel positif à préciser ultérieurement, et où u_t est la fonction introduite dans la preuve du lemme fondamental. Notons pour abréger : $Q = g^{\mu\nu}G_{\mu\nu}$, et, $Q' = g_{\mu\nu}G^{\mu\nu}$. Alors, dans une forme concise : B = Log(Q) - ku. Au point P où $B(\varphi_t)$ atteint son $maximum : G^{\mu\nu}\nabla_{\mu\nu}B \le 0$; ceci s'écrit dans une carte locale en P :

$$(13) \quad 0 \geqslant \frac{1}{\mathcal{O}} g^{\alpha\beta} \mathbf{G}^{\mu\nu} \nabla_{\mu\nu} \mathbf{G}_{\alpha\beta} - \frac{1}{\mathcal{O}^2} g^{\alpha\beta} g^{ij} \mathbf{G}^{\mu\nu} (\nabla_{\mu} \mathbf{G}_{ij}) (\nabla_{\nu} \mathbf{G}_{\alpha\beta}) - k \mathbf{G}^{\mu\nu} \nabla_{\mu\nu} u .$$

En outre au point P:

(14)
$$\forall \mu = 1, \ldots, n, \frac{1}{O} g^{\alpha\beta} \nabla_{\mu} G_{\alpha\beta} - k \nabla_{\mu} u = 0 = \nabla_{\mu} B.$$

Par ailleurs, dérivant deux fois l'équation (9), nous obtenons successivement les relations, valables en tout point de V_n :

$$\mathbf{G}^{\alpha\beta}\nabla_{\mu}\mathbf{G}_{\alpha\beta}=\nabla_{\mu}f$$

(16)
$$G^{\alpha i}G^{\beta j}g^{\mu\nu}(\nabla_{\mu}G_{ij})(\nabla_{\nu}G_{\alpha\beta}) - g^{\alpha\beta}G^{\mu\nu}\nabla_{\alpha\beta}G_{\mu\nu} = \Delta f.$$

Développons alors le carré:

Nous en tirons l'inégalité :

$$\begin{split} &-(\mathbf{Q})^{-2})g^{\alpha\beta}g^{ij}\mathbf{G}^{\mu\nu}(\nabla_{\!\mu}\mathbf{G}_{ij})(\nabla_{\!\nu}\mathbf{G}_{\alpha\beta})\\ \geqslant &-\frac{1}{\mathbf{Q}}\mathbf{G}^{\alpha i}\mathbf{G}^{\beta j}g^{\mu\nu}(\nabla_{\!\mu}\mathbf{G}_{ij})(\nabla_{\!\nu}\mathbf{G}_{\alpha\beta}) \\ -2(\mathbf{Q})^{-2}g^{\alpha\beta}\mathcal{D}_{\alpha\beta\gamma}\mathbf{G}^{\gamma c}(g^{\mu\nu}\nabla_{\!c}\mathbf{G}_{\mu\nu})\,, \end{split}$$

en posant : $\mathscr{D}_{\alpha\beta\gamma} \equiv \nabla_{\gamma}G_{\alpha\beta} - \nabla_{\alpha}G_{\gamma\beta}$. Compte tenu de (14), le dernier terme du membre de droite de cette inégalité vaut encore, au point P :

$$-\frac{2}{\mathrm{Q}}kg^{lphaeta}\mathscr{D}_{lphaeta\gamma}\mathrm{G}^{\gamma c}\nabla_{\!c}u\,.$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Notons : $\mathcal{H}_{\alpha\beta\mu\nu} \equiv \nabla_{\mu\nu}G_{\alpha\beta} - \nabla_{\alpha\beta}G_{\mu\nu}$, l'inégalité (13) devient :

$$0 \geqslant -\frac{1}{Q} \Delta f + \frac{1}{Q} g^{\alpha\beta} G^{\mu\nu} \mathcal{H}_{\alpha\beta\mu\nu} - \frac{2}{Q} k g^{\alpha\beta} \mathcal{D}_{\alpha\beta\gamma} G^{\gamma c} \nabla_{c} u - k G^{\mu\nu} \nabla_{\mu\nu} u.$$

Développant les termes \mathcal{D} et \mathcal{H} de cette expression, et utilisant (14) et (15), on s'assure qu'il existe des constantes positives c_1 et c_2 , indépendantes de $t \in [0, 1]$ et de k, et une 1-forme ζ dont la norme est estimée indépendamment de $t \in [0, 1]$ et de k, telles que l'on aboutisse à l'inégalité (voir annexe en fin d'article) :

$$\begin{split} (17) \quad \frac{\Delta f}{\mathbf{Q}} \geqslant & - \mathbf{Q}' \bigg(c_1 + \frac{1}{\mathbf{Q}} \, c_2 \bigg) \\ & + \frac{t}{\mathbf{Q}} \, g^{\alpha\beta} \mathbf{G}^{\mu\nu} \bigg(\frac{\partial^2 a_{\alpha\beta}}{\partial \pi_\rho \partial \pi_\tau} \nabla_{\mu\rho} \varphi \nabla_{\nu\tau} \varphi \, - \frac{\partial^2 a_{\mu\nu}}{\partial \pi_\rho \partial \pi_\tau} \nabla_{\alpha\rho} \varphi \nabla_{\beta\tau} \varphi \bigg) \\ & - kt \mathbf{G}^{\mu\nu} \, \frac{\partial a_{\mu\nu}}{\partial \pi_\rho} \, \nabla_\rho u \, - \frac{2}{\mathbf{Q}} \, k \mathbf{G}^{\gamma c} \zeta_\gamma \nabla_c u \\ & - \frac{2}{\mathbf{Q}} \, kt \mathbf{G}^{\gamma c} (\nabla_c u) g^{\alpha\beta} \bigg(\frac{\partial a_{\alpha\beta}}{\partial \pi_\rho} \, \nabla_{\gamma\rho} \varphi \, - \frac{\partial a_{\beta\gamma}}{\partial \pi_\rho} \, \nabla_{\alpha\rho} \varphi \bigg) - k \mathbf{G}^{\mu\nu} \nabla_{\mu\nu} u \, , \end{split}$$

 (π_{ρ}) désignant les coordonnées dans la fibre de T*V_n. D'après l'expression (11) de $a(J^1\varphi_t)$, nous avons :

$$\begin{split} \frac{\partial a_{\mu\nu}}{\partial \pi_{\tau}} &= \delta^{\tau}_{\mu} \bigg(\frac{1}{2} \, \xi_{\nu} \, + \, \omega \nabla_{\!\nu} \varphi \bigg) + \delta^{\tau}_{\nu} \bigg(\frac{1}{2} \, \xi_{\mu} \, + \, \omega \nabla_{\!\mu} \varphi \bigg) \\ \frac{\partial^{2} a_{\mu\nu}}{\partial \pi_{\rho} \partial \pi_{\tau}} &= \, \omega \big(\delta^{\tau}_{\mu} \delta^{\rho}_{\nu} \, + \, \delta^{\rho}_{\mu} \delta^{\tau}_{\nu} \big) \, . \end{split}$$

$$\begin{split} & \text{Ainsi}: \left(\frac{\partial^2 a_{\alpha\beta}}{\partial \pi_\rho \partial \pi_\tau} \nabla_{\mu\rho} \phi \nabla_{\nu\tau} \phi - \frac{\partial^2 a_{\mu\nu}}{\partial \pi_\rho \partial \pi_\tau} \nabla_{\alpha\rho} \phi \nabla_{\beta\tau} \phi\right) \equiv 0. \text{ En outre, d'après la définition de } G_t(\phi_t): G^{\rho c} \nabla_{\alpha\rho} \phi = \delta^c_\alpha - G^{\rho c} a^t_{\alpha\rho} (J^1 \phi). \text{ Et } : \frac{1}{Q} g^{\alpha\rho} \nabla_{\alpha\rho} \phi = 1 - \frac{1}{Q} g^{\alpha\rho} a^t_{\alpha\rho}, \\ & \text{où } : a^t (J^1 \phi) \equiv t a (J^1 \phi) + (1 - t) H(\phi) g. \text{ D'où } : \end{split}$$

$$\frac{2}{Q} kt g^{\alpha\beta} G^{\gamma c}(\nabla_{c} u) \frac{\partial a_{\beta\gamma}}{\partial \pi_{\rho}} \nabla_{\alpha\rho} \varphi = 2kt \left(1 - \frac{1}{Q} g^{\alpha\rho} a_{\alpha\rho}^{t}\right) G^{\gamma c}(\nabla_{c} u) \left(\frac{1}{2} \xi_{\gamma} + \omega \nabla_{\gamma} \varphi\right) + \frac{2}{Q} kt \left(\delta_{\alpha}^{c} - G^{\rho c} a_{\alpha\rho}^{t}\right) (\nabla_{c} u) \left(\frac{1}{2} \xi^{\alpha} + \omega \nabla^{\alpha} \varphi\right)$$

Mais on a aussi:

$$-kt\mathbf{G}^{\mu\nu}\frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}}\nabla_{\rho}u = -2kt\mathbf{G}^{\nu\mathbf{c}}(\nabla_{\mathbf{c}}u)\left(\frac{1}{2}\xi_{\gamma} + \omega\nabla_{\gamma}\varphi\right).$$

162 p. delanoë

Ce terme, particulièrement embarrassant, qui figure au membre de droite des deux égalités précédentes, peut donc être éliminé. Enfin :

$$-\frac{2}{Q}kt\left(g^{\alpha\beta}\frac{\partial a_{\alpha\beta}}{\partial \pi_{\rho}}\right)(\nabla_{c}u)(G^{\gamma c}\nabla_{\gamma\rho}\varphi) = -\frac{2}{Q}kt(\xi^{\rho} + 2\omega\nabla^{\rho}\varphi)(\nabla_{c}u)(\delta^{c}_{\rho} - G^{\gamma c}a^{t}_{\gamma\rho}).$$

En résumé, nous trouvons qu'il existe des constantes positives c_3 et c_4 , indépendantes de t et de k, telles que l'inégalité (17) implique :

$$\frac{\Delta f}{Q} \geqslant - Q' \left(c_1 + \frac{1}{Q} c_2 \right) - \frac{2k}{Q} (c_3 + c_4 Q') - k G^{\mu\nu} \nabla_{\mu\nu} u .$$

Compte tenu de l'importante inégalité (12), nous obtenons :

$$(18) \quad \frac{\Delta f}{Q} + \frac{2}{Q}kc_3 + kn\omega_0 \exp(-\omega_0 C_0^-) \geqslant Q' \left[k \left(\pi_0 - \frac{2}{Q} c_4 \right) - \left(c_1 + \frac{1}{Q} c_2 \right) \right],$$

en posant : $\pi_0 = \omega_0 \eta_0 \exp(-\omega_0 C_0^+)$. Comme nous cherchons à majorer Q, nous pouvons supposer sans restreindre la généralité que :

$$\left(\pi_0 - \frac{2}{\mathcal{O}} c_4\right) \geqslant \frac{1}{2} \pi_0.$$

Nous pouvons alors choisir k, indépendant de $t \in [0, 1]$, tel que :

$$\frac{1}{2}k\pi_0 - \left(c_1 + \frac{1}{Q}c_2\right) \geqslant 1.$$

Ainsi, au point P:

$$Q'(P) \leqslant \|\Delta f\|_0 + 2kC_3 + kn\omega_0 \exp(-\omega_0 C_0^-) = K,$$

en supposant Q(P) > 1. Prenons en P une carte normale pour g et qui diagonalise la matrice (symétrique) de $G_I(\varphi_I)$. L'inégalité précédente s'écrit :

$$\sum G^{\mu\mu} \leqslant K$$
. On en déduit :

$$\forall \mu, G^{\mu\mu}(P) < K \Rightarrow \forall \mu, G_{\mu\mu}(P) = e^f \prod_{\nu \neq \mu} G^{\nu\nu} < K^{n-1} \exp\left(\parallel f \parallel_0 \right)$$
$$\Rightarrow Q(P) < nK^{n-1} \exp\left(\parallel f \parallel_0 \right).$$

D'où, partout sur V_n puisque $B(\varphi_t)$ atteint son maximum au point P:

(19)
$$Q < nK^{n-1} \exp(||f||_0 + k \underset{V_n}{\text{osc }} u_t) \leqslant K',$$

où K' désigne une constante estimée indépendamment de $t \in [0, 1]$.

On tire de (19) l'estimation a priori C^2 , ainsi que l'équivalence uniforme des métriques $G_t(\varphi_t)$ avec la métrique g. Pour cela, on se place en un point générique R de V_n dans une carte du type utilisé ci-avant. Il suit de (19) que :

 $\forall \mu = 1, ..., n, \quad 0 < ta_{\mu\mu}(J^1\varphi_t) + (1-t)H(\varphi_t) + \partial_{\mu\mu}\varphi_t(R) < K'$. Compte tenu de l'estimation *a priori* C¹, on en déduit :

$$\sum_{\mu} \left[\partial_{\mu\mu} \varphi_t(\mathbf{R}) \right]^2 = \nabla^{\nu}_{\mu} \varphi_t \nabla^{\mu}_{\nu} \varphi_t < \text{constante estimée} \,.$$

Puis on écrit, en R : $\forall \mu$, $G^{\mu\mu} = e^{-f} \prod_{\mu \neq \nu} G_{\nu\nu} < (K')^{n-1} \exp{(||f||_0)}$, d'où :

$$\forall \mu = 1, \ldots, n, \exp(- || f ||_0) (K')^{1-n} g_{\mu\mu}(R) < G_t(\varphi_t)_{\mu\mu}(R) < K' g_{\mu\mu}(R)$$
.

C'est l'équivalence annoncée.

L'estimation C^3 .

Grâce à l'équivalence uniforme des métriques $G_t(\varphi_t)$ avec la métrique g, il suffit ici de majorer, pour φ_t solution de l'équation (9), la quantité :

$$\varphi_t = (\mathbf{G}^{ai} \mathbf{G}^{bj} \mathbf{G}^{ck} \nabla_{abc} \varphi_t \nabla_{ijk} \varphi_t)^{1/2} ,$$

en notant $G = G_t(\varphi_t)$. Pour cela on établit d'abord une inégalité analogue à celle du lemme 3 de [3]: il s'agit de minorer $[G^{\mu\nu}\nabla_{\mu\nu}(\psi_t^2)]$ par un polynôme du *troisième* degré en ψ_t , à coefficients négatifs estimés indépendamment de $t \in [0, 1]$. Procédant à un calcul formellement semblable à celui de [3, p. 375] (expression de $\nabla_{\mu\nu}\psi^2$), on examine les termes ici nouvellement venus, et l'on procède aux équivalents de l'ordre de ψ_t^p près, pour p entier au plus égal à 3.

Notons \simeq l'équivalence modulo de tels termes en ψ_t^p , affectés de coefficients estimés; et notons \sim l'équivalence modulo des termes formellement déjà pris en compte dans le calcul de $\nabla_{\mu\nu}\psi^2$ [3, p. 375]. Le terme en $(\partial^4\varphi)^2$ est formellement inchangé. Puis, dans l'expression de :

$$2 G^{ai} G^{bj} G^{ck} G^{\mu\nu} \nabla_{abc} \varphi \nabla_{\mu\nu ijk} \varphi ,$$

il faut retenir comme termes nouveaux :

$$\begin{split} \mathbf{G}^{\mu\nu} \nabla_{\mu\nu ijk} \varphi \\ &\simeq \mathbf{G}^{\mu\nu} \nabla_{jki\mu\nu} \varphi \\ &\simeq \nabla_{jk} (\mathbf{G}^{\mu\nu} \nabla_{i\mu\nu} \varphi) + \mathbf{G}^{\mu\alpha} \mathbf{G}^{\nu\beta} (\nabla_{j} \mathbf{G}_{\mu\nu} \nabla_{ki\alpha\beta} \varphi + \nabla_{k} \mathbf{G}_{\mu\nu} \nabla_{ji\alpha\beta} \varphi) + \text{termes} \sim 0 \\ &\simeq - t \mathbf{G}^{\mu\nu} (\xi_{\mu} + 2\omega \nabla_{\mu} \varphi) \nabla_{jki\nu} \varphi \\ &\quad + \mathbf{G}^{\mu\alpha} \mathbf{G}^{\nu\beta} \nabla_{jk\alpha\beta} \varphi \left[t(\xi_{\mu} + 2\omega \nabla_{\mu} \varphi) \nabla_{i\nu} \varphi + t \nabla_{\mathbf{P}_{i}} (a_{\mu\nu}) \right. \\ &\quad + t \frac{\partial a_{\mu\nu}}{\partial \varphi} \nabla_{i} \varphi + (1 - t) \mathbf{H}'(\varphi) g_{\mu\nu} \nabla_{i} \varphi \right] \\ &\quad + 2 \mathbf{G}^{\mu\alpha} \mathbf{G}^{\nu\beta} \nabla_{ki\alpha\beta} \varphi \left[t(\xi_{\mu} + 2\omega \nabla_{\mu} \varphi) \nabla_{j\nu} \varphi + t \nabla_{\mathbf{P}_{j}} (a_{\mu\nu}) \right. \\ &\quad + t \frac{\partial a_{\mu\nu}}{\partial \varphi} \nabla_{j} \varphi + (1 - t) \mathbf{H}'(\varphi) g_{\mu\nu} \nabla_{j} \varphi \right] \end{split}$$

où l'on tire l'expression de $(G^{\mu\nu}\nabla_{i\mu\nu}\varphi)$ de (15), et où le coefficient 2, à la dernière ligne, tient déjà compte abusivement de la symétrie entre les indices j et k correspondant à celle entre les indices b et c de $\nabla_{abc}\varphi$.

Ensuite, les termes en $(\partial^3 \varphi)^4$, [3, p. 375], sont formellement inchangés. Enfin, parmi les termes en $[(\partial^3 \varphi)^2(\partial^4 \varphi)]$, celui en $[G^{\mu\nu}\nabla_{\mu\nu\alpha\beta}\varphi(\partial^3\varphi)^2]$ est formellement inchangé, puisque $(\nabla_{\mu\nu\alpha\beta}\varphi)$ est la *seule* partie à conserver ici de $(\nabla_{\mu\nu}G_{\alpha\beta})$, à ψ_t^p près (p=0,1,2,3); il ne faut donc retenir comme nouveaux termes que :

Houveaux termes que:
$$-4G^{\mu\nu}(G^{a\alpha}G^{i\beta}G^{bj}G^{ck} + 2G^{ai}G^{bj}G^{c\alpha}G^{k\beta})\nabla_{abc}\,\phi\nabla_{\nu ijk}\phi\Bigg[t\bigg(\frac{1}{2}\,\xi_{\alpha} + \omega\nabla_{\alpha}\phi\bigg)\nabla_{\mu\beta}\phi + t\bigg(\frac{1}{2}\,\xi_{\beta} + \omega\nabla_{\beta}\phi\bigg)\nabla_{\mu\alpha}\phi + t\nabla_{\mathbf{P}\mu}(a_{\alpha\beta}) + t\,\frac{\partial a_{\alpha\beta}}{\partial\phi}\nabla_{\mu}\phi + (1-t)\mathbf{H}'(\phi)g_{\alpha\beta}\nabla_{\mu}\phi\Bigg].$$

Tous les termes nouvellement pris en compte ci-avant sont absorbés dans des *carrés* grâce à des carrés de dérivées quatrièmes, $\varepsilon^2(\partial^4 \varphi)^2$, dont

nous disposons pour : $0 < |\varepsilon| \le \frac{1}{\sqrt{20}}$. Pour un tel ε , on trouve (en omettant l'indice t) :

$$\begin{split} &G^{\mu\nu}\nabla_{\mu\nu}\psi\\ &\simeq \left\{ \left(\frac{1}{5} - 4\varepsilon^2\right) \nabla_{\mu abc} \varphi \nabla_{\nu ijk} \varphi \right. \\ &+ \left[\frac{3}{\sqrt{5}} \nabla_{\mu abc} \varphi - \frac{1}{2} (\sqrt{5} - 1) G^{\alpha\beta} \nabla_{\mu b\alpha} \nabla_{ac\beta} \varphi - \frac{1}{2} (\sqrt{5} + 1) G^{\alpha\beta} \nabla_{\mu c\alpha} \varphi \nabla_{ab\beta} \varphi \right] \\ &\times \text{ expression conjuguée} + \left[\varepsilon \nabla_{\mu abc} \varphi + \frac{1}{\varepsilon} G^{\alpha\beta} R^{\rho}_{b\alpha a} \nabla_{\rho} \varphi \nabla_{\mu \beta c} \varphi \right. \\ &+ \frac{1}{\varepsilon} G^{\alpha\beta} R^{\tau}_{c\beta\mu} \nabla_{\tau} \varphi \nabla_{ab\alpha} \varphi + \frac{1}{\varepsilon} G^{\alpha\beta} R^{\rho}_{b\alpha a} R^{\tau}_{c\beta\mu} \nabla_{\rho} \varphi \nabla_{\tau} \varphi \right] \\ &\times \text{ expression conjuguée} + \left[\varepsilon \nabla_{\mu abc} \varphi - \frac{t}{\varepsilon} \left(\frac{1}{2} \xi_{\mu} + \omega \nabla_{\mu} \varphi \right) \nabla_{abc} \varphi \right] \\ &\times \text{ expression conjuguée} + \left\{ \varepsilon \nabla_{\mu abc} \varphi + \frac{1}{\varepsilon} G^{\alpha\beta} \left(\nabla_{a\mu\alpha} \varphi + \frac{1}{2} \nabla_{\alpha\mu a} \varphi \right) \right. \\ &\left. \left[t \nabla_{\beta c} \varphi (\xi_b + 2\omega \nabla_b \varphi) + t \nabla_{P_\beta} (a_{bc}) + t \frac{\partial a_{bc}}{\partial \varphi} \nabla_{\beta} \varphi + (1 - t) H'(\varphi) g_{bc} \nabla_{\beta} \varphi \right] \right\} \\ &\times \text{ expression conjuguée} + \left\{ \varepsilon \nabla_{\mu abc} \varphi - \frac{2}{\varepsilon} G^{\alpha\beta} (\nabla_{\alpha bc} \varphi + 2 \nabla_{cb\alpha} \varphi) \left[t \nabla_{P_\mu} (a_{\beta a}) + t \nabla_{\mu a} \varphi \left(\frac{1}{2} \xi_{\beta} + \omega \nabla_{\beta} \varphi \right) + t \nabla_{\mu \beta} \varphi \left(\frac{1}{2} \xi_a + \omega \nabla_a \varphi \right) \right. \\ &+ t \frac{\partial a_{\beta a}}{\partial \varphi} \nabla_{\mu} \varphi + (1 - t) H'(\varphi) g_{\beta a} \nabla_{\mu} \varphi \right] \right\} \\ &\times \text{ expression conjuguée} \right\} G^{ai} G^{bj} G^{ck} G^{\mu\nu} \,. \end{split}$$

L'estimation C³ peut dès lors se poursuivre en raisonnant comme dans [3, prop. 8], en utilisant notamment la relation (16) qui fournit compte tenu des estimations déjà établies, l'inégalité :

$$- G^{\mu\nu} \nabla_{\mu\nu} \Delta \varphi \geqslant \alpha \psi_t^2 + \beta \varphi_t + \gamma,$$

où α , β , γ , sont des constantes estimées indépendamment de $t \in [0, 1]$, $\alpha > 0$.

Ainsi, d'après la proposition 2, avons-nous résolu l'équation (7), étape préalable à la résolution de l'équation avec un second membre plus général.

III. RÉSOLUTION DE L'ÉQUATION GÉNÉRALE (6)

Hypothèses sur le second membre $F(J^1\varphi)$.

Soit \widetilde{F} une fonction de $C^{\infty}(T^*V_n \times \mathbb{R})$, et soit $(\widetilde{h}, \widetilde{\xi}, \widetilde{\omega}, \widetilde{\sigma})$ un élément de \mathscr{V} pour lequel il existe au moins une fonction admissible (voir introduction). L'équation de Monge-Ampère associée à ces données s'écrit :

$$|(\widetilde{h}, \widetilde{\xi}, \widetilde{\omega}, \widetilde{\sigma})(\psi)| \cdot |g|^{-1} = \exp[\widetilde{F}(J^1\psi)].$$

Nous devons distinguer les hypothèses portant sur l'opérateur différentiel du type de Monge-Ampère—ce sont les hypothèses faites dans l'introduction sur le représentant canonique $(h, \xi, \omega, 1)$ de la \mathscr{G} -orbite de $(\tilde{h}, \tilde{\xi}, \tilde{\omega}, \tilde{\sigma})$ —, des hypothèses portant sur le second membre $\tilde{F} \in \mathbb{C}^{\infty}(T^*V_n \times \mathbb{R})$. Comme au paragraphe II, nous allons étudier l'équation précédente dans la « représentation canonique des φ », où la variable φ est donnée comme en (5) par :

(5')
$$\forall \mathbf{P} \in \mathbf{V}_n, \qquad \varphi(\mathbf{P}) = \int_0^{\psi} \widetilde{\sigma}(\mathbf{P}, t) dt,$$

représentation dans laquelle l'équation de Monge-Ampère s'écrit (voir introduction) :

(6)
$$\operatorname{Log} M(\varphi) = \operatorname{F}(\operatorname{J}^1 \varphi).$$

F est implicitement donné par (5') et par : $F(J^1\phi) \equiv \tilde{F}(J^1\psi)$. Soulignons que F est défini par \tilde{F} et par $\tilde{\sigma}$. C'est sur ce second membre F que nous ferons porter certaines hypothèses.

Si nous souhaitons assurer non seulement l'existence mais aussi *l'unicité* d'une solution C^{∞} admissible de l'équation (6), nous aurons à faire sur F l'hypothèse :

(20)
$$F(P, X; s) \in C^{\infty}(T^*V_n \times \mathbb{R}), \text{ et, } \forall s \in \mathbb{R}, \inf \left[\frac{\partial F}{\partial \varphi}(P, X; s)\right] \geqslant 0,$$

166 p. delanoë

la borne inférieure étant prise sur le tube compact :

$$\left\{ \ [P,\,X(P)\,]\in T^*V_n,\,|\,X(P)\leqslant C_1\,\right\},$$

où C_1 désigne une constante précisée lors de l'estimation a priori C^1 ciaprès. Conjointement nous poserons sur $(h, \xi, \omega, 1)$ les mêmes hypothèses que celles énoncées dans l'introduction. Nous désignons cet ensemble d'hypothèses par (H).

Si nous ne nous préoccupons que de l'existence d'une solution C^{∞} admissible de l'équation (6), il suffira d'hypothèses plus faibles. Sur F nous supposerons seulement :

(20')
$$F(P, X; s) \in C^{\infty}(T^*V_n \times \mathbb{R}), \text{ et, } \forall s \in \mathbb{R}, \inf_{P \in V_n} \left[\frac{\partial F}{\partial \varphi}(P, 0; s) \right] \ge 0.$$

Et nous supprimerons l'hypothèse (i) portant sur $(h, \xi, \omega, 1)$ (voir l'introduction), nous affranchissant ainsi de toute hypothèse sur ξ et sur ω . Cet ensemble d'hypothèses affaiblies sera désigné par (H').

Moyennant les hypothèses (H') nous prouverons d'abord *l'existence* d'une solution C^{∞} admissible de l'équation (6). Puis, en fin de paragraphe, supposant (H), nous prouverons en outre *l'unicité* de cette solution.

Mise en place d'une méthode de point fixe.

Choisissons, comme au paragraphe II, une fonction H vérifiant (8), et pour simplifier telle que : $H^{-1}(1) = 0$. Par exemple : $H(\varphi) = e^{-\varphi}$, convient. Soit $\alpha \in]0, 1[$ fixé ; pour $\psi \in C^{4,\alpha}(V_n)$ et pour $t \in [0, 1]$, posons :

$$\begin{split} \forall \mathbf{P} \in \mathbf{V}_{n}, \ \mathbf{G}_{(t,\psi)}(\varphi)(\mathbf{P}) &= (1-t)g(\mathbf{P})\mathbf{H}(\varphi) + t \left\{ h(\mathbf{P}, \, \varphi) + \frac{1}{2} \left[\xi(\mathbf{P}, \, \psi) \otimes \nabla \varphi \right. \right. \\ &\left. + \nabla \varphi \otimes \xi(\mathbf{P}, \, \psi) \right] + \omega(\mathbf{P}, \, \psi)(\nabla \varphi \otimes \nabla \varphi) \right\} + \nabla^2 \varphi \\ \text{et} : \\ \mathbf{M}_{(t,\psi)}(\varphi) &= \left| \mathbf{G}_{(t,\psi)}(\varphi) \right| \cdot \left| g \right|^{-1}. \end{split}$$

Clairement, avec des notations déjà utilisées : $G_{(t,\varphi)}(\varphi) \equiv G_t(\varphi)$, $M_{(t,\varphi)}(\varphi) \equiv M(t,\varphi)$. Soit K l'application qui, à $(t,\psi) \in [0,1] \times C^{4,\alpha}$, associe *la* solution $\varphi_t \in C^{4,\alpha}$ admissible, de l'équation :

$$\text{Log } \mathbf{M}_{(t,\psi)}(\varphi_t) = t\mathbf{F}(\mathbf{P}, \nabla \psi; \psi).$$

L'existence et l'unicité de φ_t sont acquises d'après les résultats du paragraphe II précédent; on s'assure en effet que

$$[(1-t)Hg + th, t\xi(P, \psi), t\omega(P, \psi), 1],$$

moyennant les hypothèses affaiblies (H'), est un élément de \mathscr{V} qui vérifie (vis-à-vis de φ) les hypothèses (fortes) posées dans l'introduction. φ_t est même de classe $C^{5,\alpha}$, d'après le théorème de régularité de Giraud-Hopf

[8, p. 222; 9] qui permet de gagner deux points sur l'ordre des dérivations : en effet F(P, $\nabla \psi$; ψ) est de classe $C^{3,\alpha}$, et φ_t est estimé a priori dans C^3 donc dans $C^{2,\alpha}$. Ceci, joint au théorème d'Ascoli qui assure la compacité de l'inclusion $C^{5,\alpha} \subset C^{4,\alpha}$, montre d'ailleurs que pour t fixé, l'opérateur : $\psi \to K(t, \psi) = \varphi_t$, est un opérateur compact de $C^{4,\alpha}$.

Nous avons par construction : $\forall \psi \in \mathbb{C}^{4,\alpha}$, $K(0, \psi) \equiv 0 = H^{-1}(1)$.

Soit $\psi \in C^{4,\alpha}$ fixé, nous devons encore vérifier que l'application : $t \to K(t, \psi)$, est *continue* de [0, 1] dans $C^{4,\alpha}$. Cela découle du théorème d'inversion locale. En effet, les calculs du paragraphe II montrent que l'application :

$$(t, \varphi) \in 0^{4,\alpha}_{\psi} \to N(t, \varphi) = [t, M_{(t,\psi)}(\varphi)] \in [0, 1] \times \mathbb{C}^{2,\alpha},$$

où $0^{4,\alpha}_{\psi}$ désigne l'ouvert : $\{(t,\varphi)\in[0,1]\times C^{4,\alpha},M_{(t,\psi)}(\varphi)>0\}$, est continûment différentiable, et localement inversible en (t,φ) lorsque φ est admissible pour $G_{(t,\psi)}$. C'est en particulier le cas, pour tout $t\in[0,1]$, lorsque $\varphi=\varphi_t=K(t,\psi)$. Ainsi donc : $\forall t\in[0,1]$, $\exists \varepsilon>0, \ \forall t'\in]t-\varepsilon,t+\varepsilon[\cap[0,1]$, l'application composée : $t'\to[t',t'F(P,\nabla\psi;\psi)]\to\varphi_{t'}=K(t',\psi)$, est continue de [0,1] dans $C^{4,\alpha}$. C'est ce qu'il fallait démontrer.

D'après un théorème de Point Fixe dû à Leray et Schauder [1, p. 270; 7, p. 228] nous pourrons conclure à *l'existence* d'un point fixe φ_1 de l'opérateur $K(1,\cdot)$, si nous exhibons une constante C indépendante de $t \in [0, 1]$ telle que, pour tout φ_t vérifiant : $K(t, \varphi_t) \equiv \varphi_t$, c'est-à-dire solution admissible de l'équation :

(21)
$$\operatorname{Log} \left[\mathbf{M}(t, \varphi_t) \right] = t \mathbf{F}(\mathbf{P}, \nabla \varphi_t; \varphi_t),$$

nous ayions l'estimation uniforme : $\|\varphi_t\|_{C^{4,\alpha}} < C$. Pour cela, d'après le théorème de régularité de Giraud-Hopf [8, p. 222; 9], il suffit en définitive de bâtir une estimation a priori uniforme sur ces φ_t dans $C^3(V_n)$.

L'estimation C^1 .

Soit φ_t solution admissible de l'équation (21). Sans restreindre la généralité nous pouvons supposer qu'à son *maximum*, en un point P, $\varphi_t(P) > 0$. Posons :

 $k^- = \min [0, \inf_{R \in V_n} F(R, 0; 0)].$

Utilisant le théorème des accroissements finis et l'hypothèse (20') sur F, nous trouvons qu'au point P:

$$\exp\left[\frac{t}{n}F(P,0;\varphi_t)\right] \geqslant \exp\left(\frac{1}{n}k^-\right).$$

On en déduit, en procédant comme au paragraphe II (estimation C⁰), la majoration uniforme :

$$\sup_{\mathbf{V}_n} (\varphi_t) \leqslant \max \left\{ 0, \sup_{\mathbf{R} \in \mathbf{V}_n} \mathbf{T} \left[\mathbf{R}, \exp \left(\frac{1}{n} k^- \right) \right] \right\} = \mathbf{C}_0^+.$$

Fixons désormais un $\varepsilon_0 > 0$ issu, pour C_0^+ donné, de l'hypothèse (ii) faite sur h dans l'introduction. Posons :

$$k^{+} = \max \left[0, \sup_{\mathbf{R} \in \mathbf{V}_n} \mathbf{F}(\mathbf{R}, 0; \mathbf{C}_0^{+})\right],$$

et remarquons qu'au point Q où φ_t atteint son minimum :

$$\exp\left[\frac{t}{n}\operatorname{F}(\mathbf{Q},0;\varphi_{t})\right] \leqslant \exp\left(\frac{1}{n}k^{+}\right).$$

On en déduit, en procédant comme au paragraphe II, la minoration uniforme :

$$\inf_{\mathbf{V}_n} (\varphi_t) \geqslant \mathbf{C}_0^+ - \frac{1}{\varepsilon_0} \exp\left(\frac{1}{n}k^+\right) = \mathbf{C}_0^-.$$

Puis, procédant toujours comme au paragraphe II, on obtient l'estimation uniforme sur le gradient :

$$\sup_{\mathbf{V}_n} \left(\, | \, \nabla \varphi_t \, | \, \right) \leqslant \mathbf{C}_1 = \left\{ \exp \left[\frac{2\mathbf{K}}{\varepsilon_0} \exp \left(\frac{1}{n} \, k^+ \right) \right] - 1 \right\}^{1/2}.$$

Remarque. — Lorsque l'on travaille avec les hypothèses fortes (H), il n'est plus nécessaire d'introduire l'argument ψ dans les fonctions $\xi(P,\psi)$ et $\omega(P,\psi)$ du changement de métrique $G(\varphi)$, ni par conséquent d'introduire dans ce changement de métrique le paramètre t et la fonction H présents seulement pour assurer : $K(0,\psi)\equiv 0$ indépendamment de ψ . La méthode de Point Fixe utilisée prend la forme plus simple suivante. Soit φ_0 la solution admissible de l'équation homogène : Log $M(\varphi_0)=0$ (notation de (6)). Définissons : $K(t,\psi)=v_t\equiv \varphi_t-\varphi_0$, où φ_t est la solution $C^{4,\alpha}$ admissible de l'équation :

Log M(
$$\varphi_t$$
) = $tF[P, \nabla(\psi + \varphi_0); (\psi + \varphi_0)]$.

On est alors ramené à estimer dans C^3 les φ_t vérifiant :

$$Log M(\varphi_t) = tF(P, \nabla \varphi_t; \varphi_t).$$

L'estimation C^1 est bâtie comme ci-avant, en prenant $H \equiv 0$ et $G(\varphi) = g'_{\varphi}$. De sorte que l'on obtient des constantes C_0^+ , C_0^- et C_1 , ne dépendant que de F et de $(h, \xi, \omega, 1)$. C'est cette constante uniforme C_1 qui doit figurer dans l'hypothèse forte (20) portant sur le second membre F. Les estimations d'ordre supérieur se bâtissent comme celles relatives à l'équation (21), ainsi que le montre l'identité : $M(\varphi) = M(1, \varphi)$.

Les estimations
$$C^2$$
 et C^3 .

Nous allons bâtir dans cette section une estimation C² annoncée dans notre article [5] (erratum de la preuve du lemme 6 de [4]). Pour éviter

trop de répétitions, nous avons préféré attendre de mener les calculs dans le cadre des changements de métrique généraux du présent article; les cas particuliers des articles [4] [5] [6] peuvent dès lors être traités par la même méthode.

Soit φ_t solution admissible de l'équation (21). Les hypothèses (H') permettent d'encore bâtir la fonction u_t qui vérifie l'importante inégalité (12) du lemme fondamental. Sauf dans le cas particulier où le champ $\partial_{\pi}^2 \Gamma$ (π désigne la coordonnée de la *fibre* de T^*V_n) est partout *non négatif*, ce qui rendrait licite la preuve donnée au lemme 6 de [4], l'apparition de l'argument $\nabla \varphi$ au second membre de l'équation (21) nous conduit à considérer l'expression :

$$B(\varphi) = \text{Log }(Q) - ku + l |\nabla \varphi|^2,$$

où l'on omet l'indice t et où l'on reprend les notations utilisées au paragraphe II (estimation C^2). k et l sont des réels positifs à préciser ultérieurement. Posons pour abréger : $\Phi = ku - l |\nabla \varphi|^2$. Plaçons-nous au point P où $B(\varphi_t)$ atteint son *maximum*. Les calculs du paragraphe II, de l'inégalité (13) à celle qui précède (18), valent toujours, en remplaçant f(P) par $[tF(P, \nabla \varphi; \varphi)]$, et (ku) par Φ , et en tenant compte de la relation :

$$\mathbf{G}^{\gamma c} \nabla_{c} \Phi = k \mathbf{G}^{\gamma c} \nabla_{c} u - 2l \nabla^{i} \varphi (\delta_{i}^{\gamma} - \mathbf{G}^{\gamma c} a_{ci}^{t}).$$

Ainsi aboutissons-nous à une inégalité analogue de (18), qui s'écrit :

(22)
$$\frac{t}{Q} \Delta[F(P, \nabla \varphi; \varphi)] + c_1 \geqslant Q' \left(\frac{1}{2} k \pi_0 - c_2\right) + 2l G^{\mu \nu} g^{ij} \nabla_{\mu i} \varphi \nabla_{\nu j} \varphi + 2l \nabla^i \varphi (G^{\mu \nu} \nabla_{i \mu \nu} \varphi) + 2l \nabla^i \varphi G^{\mu \nu} R^{\rho}_{\nu \mu i} \nabla_{\rho} \varphi,$$

où π_0 , c_1 et c_2 , sont des constantes strictement positives uniformément estimées, et où il apparaît maintenant au membre de droite le développement du terme $G^{\mu\nu}\nabla_{\mu\nu}(l\,|\,\nabla\varphi\,|^2)$. On tire de (15), avec f=tF, et compte tenu de l'expression de $\frac{\partial a}{\partial \pi}$,

(23)
$$2l\nabla^{i}\varphi(G^{\mu\nu}\nabla_{i\mu\nu}\varphi) = 2lt\frac{\partial F}{\partial \pi_{\mu}}\nabla^{i}\varphi\nabla_{\mu i}\varphi + \left\{2lt\nabla^{i}\varphi\left(\nabla_{P_{i}}F + \frac{\partial F}{\partial \varphi}\nabla_{i}\varphi\right)\right.$$
$$\left. - 2lG^{\mu\nu}\nabla^{i}\varphi\left[t\nabla_{P_{i}}a_{\mu\nu} + t\nabla_{i}\varphi\frac{\partial a_{\mu\nu}}{\partial \varphi} + (1-t)H'(\varphi)g_{\mu\nu}\nabla_{i}\varphi\right]\right.$$
$$\left. - 2l\nabla^{i}\varphi(\delta_{i}^{\nu} - G^{\nu\rho}a_{i\rho}^{\nu})(\xi_{\nu} + 2\omega\nabla_{\nu}\varphi)\right\}$$

D'autre part :

$$\begin{split} t\Delta[\mathbf{F}(\mathbf{P},\nabla\varphi\,;\,\varphi)] &= t\left\{\Delta_{\mathbf{P}}\mathbf{F} - 2\nabla_{\mathbf{P}}^{\mathbf{v}}\!\!\left(\frac{\partial\mathbf{F}}{\partial\pi_{\mu}}\!\right)\!\!\nabla_{\mu\nu}\varphi - 2\nabla_{\mathbf{P}}^{\mu}\!\!\left(\frac{\partial\mathbf{F}}{\partial\varphi}\!\right)\!\!\nabla_{\mu}\varphi \right. \\ &\left. - \frac{\partial\mathbf{F}}{\partial\pi_{\mu}}\mathbf{R}_{\mu\nu}\nabla^{\nu}\varphi - 2\frac{\partial^{2}\mathbf{F}}{\partial\varphi\partial\pi_{\mu}}\nabla^{\nu}\varphi\nabla_{\mu\nu}\varphi + \frac{\partial\mathbf{F}}{\partial\varphi}\Delta\varphi - \frac{\partial^{2}\mathbf{F}}{\partial\varphi^{2}}|\nabla\varphi|^{2}\right\} \\ &\left. + t\frac{\partial\mathbf{F}}{\partial\pi_{\mu}}\nabla_{\mu}\Delta\varphi - t\frac{\partial^{2}\mathbf{F}}{\partial\pi_{\rho}\partial\pi_{\mu}}\nabla_{\rho}^{\nu}\varphi\nabla_{\mu\nu}\varphi\,, \end{split}$$

et l'on tire de (14), en remplaçant (ku) par Φ :

(24)
$$\frac{t}{Q} \frac{\partial F}{\partial \pi_{\mu}} \nabla_{\mu} \Delta \varphi = -t \frac{\partial F}{\partial \pi_{\mu}} \nabla_{\mu} \Phi + \frac{t}{Q} \frac{\partial F}{\partial \pi_{\mu}} g^{\alpha\beta} \nabla_{\mu} (a^{t}_{\alpha\beta})$$

$$= 2lt \frac{\partial F}{\partial \pi_{\mu}} \nabla^{i} \varphi \nabla_{\mu i} \varphi + t \frac{\partial F}{\partial \pi_{\mu}} \left\{ \frac{1}{Q} g^{\alpha\beta} \nabla_{\mu} (a^{t}_{\alpha\beta}) - k \nabla_{\mu} u \right\}.$$

Le premier terme du membre de droite de (23) s'élimine avec le premier terme du membre de droite de (24). Forts de l'estimée *a priori* C^1 , nous pouvons choisir l, indépendant de $t \in [0, 1]$, tel qu'on ait identiquement :

$$2l\mathbf{G}^{\mu\nu}g^{ij}\nabla_{\mu i}\varphi\nabla_{\nu j}\varphi + \frac{t}{\mathbf{Q}}\frac{\partial^{2}\mathbf{F}}{\partial\pi_{\rho}\partial\pi_{\mu}}\nabla_{\rho}^{\nu}\varphi\nabla_{\mu\nu}\varphi \geqslant 0.$$

En effet, prenons en P une carte normale pour g et qui diagonalise la matrice de $\nabla^2 \varphi(P)$; cette inégalité s'écrit en P :

$$\frac{1}{\mathbf{Q}} \sum_{\mu} \left[(\partial_{\mu\mu} \varphi)^2 \left(2l \mathbf{Q} \mathbf{G}^{\mu\mu} + t \frac{\partial^2 \mathbf{F}}{\partial \pi_{\mu}^2} \right) \right] \geqslant 0.$$

Pour qu'elle ait lieu, comme : $QG^{\mu\mu}(P) > 1$, il suffit de choisir l tel que :

$$\sup \left[\left(\frac{\partial^2 F}{\partial \pi_i \partial \pi_j} \right) \left(\frac{\partial^2 F}{\partial \pi_\mu \partial \pi_\nu} \right) g_{\mu i} g_{\nu j} \right]^{1/2} \leqslant 2l,$$

la borne supérieure étant prise sur le compact de $(T^*V_n \times \mathbb{R})$ déterminé par l'estimation a priori C^1 . Fixons ainsi une telle valeur de l.

Les termes entre accolades dans l'expression de ΔF sont en valeur absolue majorés par : constante (1 + Q); ceux du membre de droite de (23) le sont par : $l \times$ constante (1 + Q'); ceux du membre de droite de (24) le sont par : constante (1 + k), avec toutes ces constantes indépendantes de $t \in [0, 1]$. Aussi l'inégalité (22) devient-elle simplement :

$$Q'\left(\frac{1}{2}k\pi_0 - c_2 - lc_3\right) \le \text{constante estimée } (1+k).$$

Nous pouvons dès lors choisir convenablement k, indépendant de $t \in [0, 1]$,

pour achever l'estimation a priori C^2 comme on l'a fait au paragraphe II, et pour prouver l'équivalence uniforme des métriques $G_t(\varphi_t)$ avec la métrique g.

L'estimation C³ est immédiate en procédant comme au paragraphe II, et en absorbant le nouveau terme, issu de : $(\partial^3 \varphi_t)(\partial^3 F)$, comme au lemme 7

de [4], grâce à un carré :
$$\varepsilon^2(\partial^4 \varphi_t)^2$$
, dont nous disposons pour $0 < |\varepsilon| \le \frac{1}{\sqrt{25}}$.

Comme nous l'avons montré en mettant en place la méthode de Point Fixe, il existe donc $\varphi_1 \in C^{4,\alpha}$, point fixe de l'opérateur K(1, ·). En d'autres termes, φ_1 est solution $C^{4,\alpha}$ admissible de l'équation (6) :

Log
$$M(\varphi) = F(P, \nabla \varphi; \varphi)$$
.

D'après le théorème de régularité de Giraud-Hopf [8] [9], on en déduit par récurrence que φ_1 est de classe C^{∞} .

L'unicité sous les hypothèses (H).

Sous les hypothèses fortes (H), on aboutit à un point fixe φ_1 solution C^{∞} admissible de l'équation (6), et cette solution est unique. La démonstration est semblable à celle de l'unicité de la solution de l'équation particulière (7) (voir paragraphe II). On suppose que φ_1 et φ_2 sont deux solutions admissibles de l'équation (6); on exprime cela dans une carte convenable au point P où $\varphi = (\varphi_2 - \varphi_1)$ atteint son maximum, et le théorème des accroissements finis fournit, outre des réels θ_{μ} , un réel θ , compris entre $\varphi_1(P)$ et $\varphi_2(P)$, tels que l'on ait en P l'inégalité :

$$\exp\left[\frac{1}{n}\varphi(\mathbf{P})\frac{\partial \mathbf{F}}{\partial \varphi}(\mathbf{P}, \nabla \varphi_{1}; \theta)\right] \leq 1 + \frac{1}{n}\left(\sum_{\mu} \partial_{\mu\mu}\varphi\right) + \frac{1}{n}\varphi(\mathbf{P})\left[\sum_{\mu} \frac{\partial}{\partial \varphi} a_{\mu\mu}(\mathbf{P}, \nabla \varphi_{1}; \theta_{\mu})\right].$$

Mais on a aussi identiquement:

$$\exp\left[\frac{1}{n}\varphi(\mathbf{P})\frac{\partial \mathbf{F}}{\partial \varphi}(\mathbf{P}, \nabla \varphi_1; \theta)\right] \geqslant 1 + \frac{1}{n}\varphi(\mathbf{P})\frac{\partial \mathbf{F}}{\partial \varphi}(\mathbf{P}, \nabla \varphi_1; \theta).$$

Compte tenu des hypothèses (H), de l'estimation C^1 qui assure en particulier l'hypothèse (20) sur F, il s'ensuit que : $\sup_{V_n} (\varphi) = \varphi(P) \le 0$. On montrerait de même, en intervertissant les indices 1 et 2, que : $\inf_{V_n} (\varphi) \ge 0$. Donc : $\varphi_1 \equiv \varphi_2$, ce qu'il fallait démontrer.

Nous pouvons résumer les résultats acquis aux paragraphes II et III dans l'énoncé du

Théorème. — Soient $(h, \xi, \omega, 1) \in \mathscr{V}$ et $F \in C^{\infty}(T^*V_n \times \mathbb{R})$. Sous les hypothèses (H'), il existe une solution admissible de classe C^{∞} de l'équation de Monge-Ampère :

$$Log M(\varphi) = F(P, \nabla \varphi; \varphi).$$

Cette solution est unique si l'on adopte les hypothèses plus fortes (H).

Notons qu'on peut appliquer rétroactivement ce théorème au cas particulier de l'équation (7) en pesant seulement les hypothèses (H'), vérifiées par tout $f \in C^{\infty}(V_n)$, hypothèses *plus faibles* que celles prescrites au paragraphe II.

IV. UN COROLLAIRE

Le théorème précédent implique un résultat plus général dont la preuve fera l'objet de ce dernier paragraphe. Soit $]\alpha$, β [un intervalle ouvert de $\overline{\mathbb{R}}$, soit $F(P,X;s) \in C^{\infty}(T^*V_n \times]\alpha$, β [), et soit $(h,\xi,\omega,1)$ le représentant canonique d'une \mathscr{G} -orbite de \mathscr{V} , h satisfaisant aux hypothèses (ii), (iii) de l'introduction. Désignons par $\mathscr{D}_h(P,\varphi)$ la fonction de $C^{\infty}(V_n \times \mathbb{R})$ définie par :

$$\mathcal{D}_h(\mathbf{P},\,\varphi) \equiv |h(\mathbf{P},\,\varphi)| \cdot |g|^{-1}.$$

On vérifie que, $\forall P \in V_n$, $\frac{\partial}{\partial \varphi} [\mathcal{D}_h(P, \varphi)] < 0$, d'après l'hypothèse (ii).

Faisons seulement sur F l'hypothèse :

(25)
$$\exists (a, b) \in (\exists \alpha, \beta)^2, a \leq b, \forall P \in V_n, F(P, 0; a) \leq \text{Log } [\mathcal{D}_h(P, a)],$$

et, $F(P, 0; b) \geq \text{Log } [\mathcal{D}_h(P, b)].$

Appelons (H") l'ensemble des hypothèses (ii), (iii), sur h, et (25), sur F.

COROLLAIRE. — Sous les hypothèses (H"), il existe une solution C^∞ admissible de l'équation :

(26)
$$\operatorname{Log} M(\varphi) = \operatorname{F}(P, \nabla \varphi; \varphi).$$

On prouve ce corollaire par une méthode d'itération, utilisant b et a comme sur et sous solutions. Soit,

$$C_1 = \{ \exp [2K(b-a)] - 1 \}^{1/2},$$

K étant défini comme à l'estimation C^1 du paragraphe II (avec $H \equiv 0$), les sup étant pris ici sur $V_n \times [a, b]$. Posons,

$$\lambda = 1 + \max \left\{ 0, \sup \frac{\partial \mathbf{F}}{\partial s}(\mathbf{P}, \mathbf{X}; s) \right\},$$

le sup étant pris sur le compact de $T^*V_n \times [a, b]$ où $|X| \leq C_1$ (norme dans

la métrique g). Sous réserve de l'encadrement a priori C^0 ci-après, le théorème précédent permet de considérer une suite $(\varphi_i)_{i\in\mathbb{N}}$ de fonctions C^∞ admissibles, définie par (cette suite n'est pas a priori unique; $\forall i$, on choisit φ_i):

$$\varphi_0 = a$$
, Log $M(\varphi_i) = \lambda(\varphi_i - \varphi_{i-1}) + F(P, \nabla \varphi_i; \varphi_{i-1})$.

Un raisonnement déjà tenu [6, preuve du corollaire] montre qu'il suffit d'estimer uniformément φ_i dans C^3 pour établir la convergence d'une sous-suite de (φ_i) et le corollaire.

L'estimée C1.

Prouvons par récurrence que, $\forall i \in \mathbb{N}$, $a \leq \varphi_i \leq b$. C'est vrai pour i = 0. Tout d'abord, supposons que $a \leq \varphi_{i-1} \leq b$ et montrons que $a \leq \varphi_i$. Au point $P \in V_n$ où φ_i atteint son *minimum*, d'après (25) et le choix de λ :

$$\begin{split} \text{Log M}(\varphi_{i}) &= \lambda(\varphi_{i} - a) + [\text{F}(\text{P}, 0 \; ; \; \varphi_{i-1}) - \text{F}(\text{P}, 0 \; ; \; a) - \lambda(\varphi_{i-1} - a)] + \text{F}(\text{P}, 0 \; ; \; a) \\ &\leq \lambda(\varphi_{i} - a) + \text{Log } \left[\mathcal{D}_{h}\text{P}, \; a\right]. \end{split}$$

Et dans une carte normale pour g en P et qui diagonalise la matrice de $g'_{\varphi_i}(P)$:

$$\operatorname{Log} M(\varphi_{i}) = \operatorname{Log} \left\{ \prod_{\mu} \left[h_{\mu\mu}(P, \varphi_{i}) + \hat{\sigma}_{\mu\mu}\varphi_{i} \right] \right\} \\
\geqslant \operatorname{Log} \left[\prod_{\mu} h_{\mu\mu}(P, \varphi_{i}) \right] = \operatorname{Log} \left[\mathcal{D}_{h}(P, \varphi_{i}) \right].$$

Il s'ensuit qu'en $P: Log [\mathcal{D}_h(P, \varphi_i)] - Log [\mathcal{D}_h(P, a)] \leq \lambda [\varphi_i(P) - a]$. Comme \mathcal{D}_h est strictement décroissante en φ , nécessairement : $\varphi_i(P) \geq a$, ce qu'il fallait démontrer.

Prouvons maintenant par récurrence que : $\forall i \in \mathbb{N}, \ \varphi_i \leqslant b$. C'est vrai pour i=0. Supposons l'inégalité vraie jusqu'au rang (i-1), prouvons qu'alors elle est vérifiée au rang i. D'après le choix de λ , le théorème des accroissements finis, et l'hypothèse (25), au point Q où φ_i atteint son maximum:

Log M(
$$\varphi_i$$
) – $\lambda(\varphi_i - b)$ = F(P, 0; φ_{i-1}) – F(P, 0; b) – $\lambda(\varphi_{i-1} - b)$ + F(P, 0; b) \geq Log [$\mathcal{D}_b(P, b)$]

et par l'emploi d'une carte en Q comme celle utilisée ci-avant, on s'assure que, Log $M(\varphi_i)(Q) \leq Log [\mathcal{D}_h(Q, \varphi_i)]$. D'où en Q, l'inégalité :

$$\lambda(\varphi_i - b) \leq \text{Log } [\mathcal{D}_h(Q, \varphi_i)] - \text{Log } [\mathcal{D}_h(Q, b)],$$

qui entraı̂ne, \mathcal{D}_n étant strictement décroissante en $\varphi: \varphi_i(Q) = \sup_{V_n} \varphi_i \leqslant b$. Dès lors, l'estimée *a priori* uniforme C^1 , $\forall i \in \mathbb{N}$, $|\nabla \varphi_i| \leqslant C_1$, suit de Vol. 1, n° 3-1984.

l'encadrement a priori $a \le \varphi_i \le b$, en raisonnant comme au paragraphe II (avec : $H \equiv 0$, $G_t(\varphi) = g'_{\varphi}$).

Notons enfin que la suite (φ_i) est *croissante* (elle convergera alors *toute entière*) si l'on adjoint à (H") l'hypothèse (i) de l'introduction. En effet, on a déjà : $\varphi_0 = a \leqslant \varphi_1$. Supposons la suite croissante jusqu'au rang (i-1), et montrons que : $\varphi_{i-1} \leqslant \varphi_i$. Au point $R \in V_n$ où $(\varphi_i - \varphi_{i-1})$ atteint son *minimum* $\nabla \varphi_i = \nabla \varphi_{i-1}$ et d'après le choix de λ (et l'estimée acquise $|\nabla \varphi_i| \leqslant C_1$):

$$\begin{split} \text{Log } M(\phi_i) - \text{Log } M(\phi_{i-1}) - \lambda(\phi_i - \phi_{i-1}) \\ &= F(P, \nabla \phi_i; \phi_{i-1}) - F(P, \nabla \phi_i; \phi_{i-2}) - \lambda(\phi_{i-1} - \phi_{i-2}) \leq 0 \,. \end{split}$$

De plus, en R, dans un repère orthonormé pour $g'_{i-1} = g'_{\varphi_{i-1}}$ et qui diagonalise la matrice de $g'_i(R)$, le théorème des accroissements finis fournit n réels θ_u tels que :

$$\operatorname{Log} M(\varphi_{i}) - \operatorname{Log} M(\varphi_{i-1}) = \sum_{\mu} \operatorname{Log} \left[1 + (\varphi_{i} - \varphi_{i-1})(\mathbf{R}) \frac{\partial}{\partial \varphi} a_{\mu\mu}(\mathbf{R}, \nabla \varphi_{i}; \theta_{\mu}) + \partial_{\mu\mu}(\varphi_{i} - \varphi_{i-1})(\mathbf{R}) \right].$$

Par conséquent, en R:

$$\lambda(\varphi_{i} - \varphi_{i-1})(\mathbf{R}) \geqslant \sum_{\mu} \text{Log} \left[1 + (\varphi_{i} - \varphi_{i-1})(\mathbf{R}) \frac{\partial}{\partial \varphi} a_{\mu\mu}(\mathbf{R}, \nabla \varphi_{i}; \theta_{\mu}) \right].$$

Mais, : $\forall \mu$, $\frac{\partial}{\partial \varphi} a_{\mu\mu} < 0$, d'après l'hypothèse (forte) (i) faite sur $(h, \xi, \omega, 1)$. Nécessairement donc : $(\varphi_i - \varphi_{i-1})(R) \ge 0 \Leftrightarrow \varphi_i \ge \varphi_{i-1}$.

Les estimées C^2 et C^3 .

On procède à l'estimation C² comme dans la preuve du lemme 5 de [3], en considérant à son *maximum* en P_i l'expression :

$$\mathbf{B}_i = \operatorname{Log}(\mathbf{Q}_i) - ku_i + r\varphi_{i-1} + l |\nabla \varphi_i|^2.$$

On a posé : $Q_i = g^{\mu\nu}(g_i')_{\mu\nu}$, $g_i' = g_{\varphi_i}'$, et $u_i = -\exp(-\omega_0 \varphi_i)$, où la constante uniforme ω_0 est définie comme au paragraphe II (lemme fondamental). On parvient à une inégalité analogue de (18), de la forme :

$$\begin{split} \mathbf{Q}_{i}' & \left(\frac{1}{2} k \pi_{0} - d_{1} \right) + 2 l(g_{i}')^{\mu \nu} g^{\rho \tau} \nabla_{\mu \rho} \varphi_{i} \nabla_{\nu \tau} \varphi_{i} + 2 l \nabla^{\tau} \varphi_{i} [(g_{i}')^{\mu \nu} \nabla_{\mu \nu \tau} \varphi_{i}] \\ & \leq \frac{2}{\mathbf{Q}_{i}} k d_{2} + d_{3} + \frac{1}{\mathbf{Q}_{i}} \left[\frac{\partial \mathbf{F}}{\partial \varphi} (\mathbf{P}, \nabla \varphi_{i}; \varphi_{i-1}) - \lambda \right] \Delta \varphi_{i-1} - r(g_{i}')^{\mu \nu} \nabla_{\mu \nu} \varphi_{i-1} \\ & + \frac{1}{\mathbf{Q}_{i}} \frac{\partial \mathbf{F}}{\partial \pi_{\mu}} (\mathbf{P}, \nabla \varphi_{i}; \varphi_{i-1}) \nabla_{\mu} \Delta \varphi_{i} - \frac{1}{\mathbf{Q}_{i}} \frac{\partial^{2} \mathbf{F}}{\partial \pi_{\nu} \partial \pi_{\mu}} (\mathbf{P}, \nabla \varphi_{i}; \varphi_{i-1}) \nabla_{\rho}^{\nu} \varphi_{i} \nabla_{\mu \nu} \varphi_{i}, \end{split}$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

les d_i étant des constantes estimées, et $Q'_i = g_{\mu\nu}(g'_i)^{\mu\nu}$. On peut évidemment supposer sans restreindre la généralité que $Q_i(P_i) > 1$. Appliquant la méthode du paragraphe III (estimée C²), on choisit l, estimé, tel que :

$$2l(g_{i}^{\prime})^{\mu\nu}g^{\rho\tau}\nabla_{\mu\rho}\varphi_{i}\nabla_{\nu\tau}\varphi_{i} + \frac{1}{Q_{i}}\frac{\partial^{2}F}{\partial\pi_{\rho}\partial\pi_{\mu}}(P, \nabla\varphi_{i}; \varphi_{i-1})\nabla_{\rho}^{\nu}\varphi_{i}\nabla_{\mu\nu}\varphi_{i} \geqslant 0,$$

et l'on aboutit à une inégalité de la forme :

$$(27) \quad Q_{i}'\left(\frac{1}{2}k\pi_{0}-d_{1}-d_{1}'l\right)-\left[\frac{2}{Q_{i}}kd_{2}+(k+r+l)d_{2}'+d_{3}\right]$$

$$\leq \frac{1}{Q_{i}}\left[\frac{\partial F}{\partial \varphi}(\mathbf{P},\nabla\varphi_{i};\varphi_{i-1})-\lambda\right]\Delta\varphi_{i-1}-r(g_{i}')^{\mu\nu}\nabla_{\mu\nu}\varphi_{i-1},$$

 d'_1 et d'_2 étant des constantes estimées. Arrêtons-nous à trois remarques :

- $\begin{array}{ll} 1^{\rm o}) \ \Delta \varphi_{i-1} = g^{\mu\nu} a_{\mu\nu} (J^1 \varphi_{i-1}) g^{\mu\nu} (g'_{i-1})_{\mu\nu} \, ; \\ 2^{\rm o}) \ (g'_i)^{\mu\nu} \nabla_{\mu\nu} (\varphi_{i-1}) = (g'_i)^{\mu\nu} a_{\mu\nu} (J^1 \varphi_{i-1}) (g'_i)^{\mu\nu} (g'_{i-1})_{\mu\nu} \, ; \end{array}$
- 3°) $\forall \mu, (g'_i)_{\mu\mu} < Q_i \Rightarrow \forall \mu, Q_i (g'_i)^{\mu\mu} > 1$.

On peut alors montrer que le membre de droite de l'inégalité (27) est majoré par,

$$\frac{1}{Q_i} \left[\frac{\partial F}{\partial \varphi}(P, \nabla \varphi_i; \varphi_{i-1}) - \lambda \right] g^{\mu \nu} a_{\mu \nu} (J^1 \varphi_{i-1}) + r(g_i')^{\mu \nu} a_{\mu \nu} (J^1 \varphi_{i-1}),$$

pourvu que l'on choisisse : $r \ge \lambda - \inf \frac{\partial F}{\partial s}(P, X; s)$, l'inf étant pris sur le compact de $T^*V_n \times [a, b]$ où $|X| \leq C_1$. Naturellement il existe une constante uniforme $\rho > 0$ telle que : $\forall i \in \mathbb{N}, \ a(J^1 \varphi_i) \leq \rho g$, de sorte que l'expression ci-avant est elle-même majorée par $\left(\frac{1}{\Omega}d_4 + r\rho Q_i'\right)$, où d_4 est aussi une constante estimée. Dès lors on peut procéder au choix (indépendant de $i \in \mathbb{N}$) du paramètre k et achever l'estimation \mathbb{C}^2 comme on l'a fait au paragraphe II.

Enfin, l'estimation C³ s'établit en procédant comme au paragraphe II et en combinant les preuves des lemmes 6 de [3] et 7 de [4].

CONCLUSION

Le théorème et le corollaire de cet article traitent des cas où l'équation de Monge-Ampère elliptique admet toujours une solution C^{∞} admissible. Mais les calculs intrinsèques d'estimation a priori sur $|\nabla \varphi|$, $|\nabla^2 \varphi|$, $|\nabla^3 \varphi|$, restent valides dans des situations où certaines des hypothèses (H') ou (H") ne sont pas vérifiées.

176 p. delanoë

En effet, ces hypothèses sont émises typiquement pour garantir une estimation a priori C^0 ; elles n'interviennent pas dans les estimations sur $|\nabla \varphi|$ et sur $|\nabla^3 \varphi|$. Dans l'estimation sur $|\nabla^2 \varphi|$, (ii) et (iii) n'interviennent que pour garantir le lemme fondamental (voir paragraphe II) i. e. une condition a priori uniforme du type suivant :

(28) il existe un changement de variable $u = u(\varphi)$ de classe C^{∞} tel que pour toute fonction admissible φ , $|\varphi| + |\nabla \varphi| \le C_1 \Rightarrow \exists \alpha, \beta$, réels ne dépendant que de C_1 et de $(h, \xi, \omega, 1)$, $\alpha > 0$, tels que,

$$-g_{\varphi}^{\prime\mu\nu}\nabla_{\mu\nu}(u)\geqslant \alpha(g_{\varphi}^{\prime\mu\nu}g_{\mu\nu})-\beta.$$

Ainsi par exemple les équations de Monge-Ampère rencontrées dans les problèmes d'hypersurfaces convexes de \mathbb{R}^{n+1} à courbure de Gauss prescrite (voir e. g. [11] et sa bibliographie) ne rentrent-elles pas dans le cadre des hypothèses de [5] [6], ni de cet article; mais le contexte géométrique fournit d'autres hypothèses, suffisantes pour garantir inversion locale et estimation a priori \mathbb{C}^0 . Dès lors nos estimées a priori d'ordre 1, 2 et 3 sont directement applicables, car la condition (28) est en l'occurence trivialement remplie.

ANNEXE

Voici les détails intermédiaires pour l'établissement de l'inégalité (17), dans l'estimation C² du paragraphe II. On trouve pour D l'expression:

$$\begin{split} \mathscr{D}_{\alpha\beta\gamma} &= t \Bigg[(\nabla_{\!\!\!\!P_{\gamma}} a_{\alpha\beta} - \nabla_{\!\!\!\!P_{\alpha}} a_{\beta\gamma}) + \left(\frac{\partial a_{\alpha\beta}}{\partial \varphi} \nabla_{\!\!\!\!\gamma} \varphi - \frac{\partial a_{\beta\gamma}}{\partial \varphi} \nabla_{\!\!\!\alpha} \varphi \right) \Bigg] \\ &\quad + t \Bigg(\frac{\partial a_{\alpha\beta}}{\partial \pi_{\alpha}} \nabla_{\!\!\!\!\gamma\rho} \varphi - \frac{\partial a_{\beta\gamma}}{\partial \pi_{\rho}} \nabla_{\!\!\!\alpha\rho} \varphi \Bigg) + (1 - t) H'(\varphi) (g_{\alpha\beta} \nabla_{\!\!\!\!\gamma} \varphi - g_{\beta\gamma} \nabla_{\!\!\!\alpha} \varphi + R_{\beta\gamma\alpha}^{\rho} \nabla_{\!\!\!\rho} \varphi \,, \end{split}$$

et pour \mathcal{H} :

$$\begin{split} &\frac{1}{\mathbf{Q}} \mathbf{g}^{\mathbf{z}\beta} \mathbf{G}^{\mu\nu} \mathscr{H}_{\mathbf{z}\beta\mu\nu} = \frac{1}{\mathbf{Q}} \mathbf{g}^{\mathbf{z}\beta} \mathbf{G}^{\mu\nu} \left\{ t \Bigg[(\nabla_{\mathbf{P}_{\mu\nu}} a_{\mathbf{z}\beta} - \nabla_{\mathbf{P}_{\mathbf{z}\beta}} a_{\mu\nu}) + 2 \bigg(\nabla_{\mathbf{P}_{\mu}} \frac{\partial a_{\mathbf{z}\beta}}{\partial \varphi} \nabla_{\nu} \varphi - \nabla_{\mathbf{P}_{\mathbf{z}}} \frac{\partial a_{\mu\nu}}{\partial \varphi} \nabla_{\beta} \varphi \bigg) \right. \\ &\quad + \bigg(\frac{\partial^2 a_{\mathbf{z}\beta}}{\partial \varphi^2} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - \frac{\partial^2 a_{\mu\nu}}{\partial \varphi^2} \nabla_{\mathbf{z}} \varphi \nabla_{\beta} \varphi \bigg) \Bigg] + (1 - t) \mathbf{H}''(\varphi) (\mathbf{g}_{\mathbf{z}\beta} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - \mathbf{g}_{\mu\nu} \nabla_{\mathbf{z}} \varphi \nabla_{\beta} \varphi) \\ &\quad + 2t \Bigg[\nabla_{\nu\rho} \varphi \bigg(\nabla_{\mathbf{P}_{\mu}} \frac{\partial a_{\mathbf{z}\beta}}{\partial \pi_{\rho}} + \frac{\partial^2 a_{\mathbf{z}\beta}}{\partial \varphi \partial \pi_{\rho}} \nabla_{\mu} \varphi \bigg) - \nabla_{\beta\rho} \varphi \bigg(\nabla_{\mathbf{P}_{\mathbf{z}}} \frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}} + \frac{\partial^2 a_{\mu\nu}}{\partial \varphi \partial \pi_{\rho}} \nabla_{\mathbf{z}} \varphi \bigg) \Bigg] \\ &\quad + \nabla_{\mu\nu} \varphi \Bigg[t \frac{\partial a_{\mathbf{z}\beta}}{\partial \varphi} + (1 - t) \mathbf{H}'(\varphi) \mathbf{g}_{\mathbf{z}\beta} \Bigg] - \nabla_{\mathbf{z}\beta} \varphi \Bigg[t \frac{\partial a_{\mu\nu}}{\partial \varphi} + (1 - t) \mathbf{H}'(\varphi) \mathbf{g}_{\mu\nu} \Bigg] \\ &\quad + t \bigg(\frac{\partial^2 a_{\mathbf{z}\beta}}{\partial \pi_{\epsilon} \partial \pi_{\rho}} \nabla_{\mu\tau} \varphi \nabla_{\nu\rho} \varphi - \frac{\partial^2 a_{\mu\nu}}{\partial \pi_{\epsilon} \partial \pi_{\rho}} \nabla_{\mathbf{z}\tau} \varphi \nabla_{\beta\rho} \varphi \bigg) \\ &\quad + t \bigg(\frac{\partial a_{\mathbf{z}\beta}}{\partial \pi_{\epsilon} \partial \pi_{\rho}} \nabla_{\mu\nu\rho} \varphi - \frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}} \nabla_{\mathbf{z}\beta\rho} \varphi \bigg) + (\nabla_{\mu\nu\mathbf{z}\beta} \varphi - \nabla_{\mathbf{z}\beta\mu\nu} \varphi) \bigg\} \, . \end{split}$$

Posons:

$$\begin{split} \zeta_{\gamma} &= g^{\alpha\beta} \left\{ t \Bigg[\left(\nabla_{\mathbf{P}_{\gamma}} a_{\alpha\beta} - \nabla_{\mathbf{P}_{\alpha}} a_{\beta\gamma} \right) + \left(\frac{\partial a_{\alpha\beta}}{\partial \varphi} \nabla_{\gamma} \dot{\varphi} - \frac{\partial a_{\beta\gamma}}{\partial \varphi} \nabla_{\alpha} \varphi \right) \right] \\ &+ (1 - t) \mathbf{H}'(\varphi) (g_{\alpha\beta} \nabla_{\gamma} \varphi - g_{\beta\gamma} \nabla_{\alpha} \varphi) + \mathbf{R}_{\beta\gamma\alpha}^{\rho} \nabla_{\rho} \varphi \right\} \end{split}$$

 ζ est une 1-forme dont la norme est estimée indépendamment de $t \in [0, 1]$, et de k, en vertu de l'estimée C^1 déjà bâtie sur φ . Et nous avons :

$$-\frac{2}{Q}kg^{\alpha\beta}\mathcal{D}_{\alpha\beta\gamma}G^{\gamma\varsigma}\nabla_{\varsigma}u = -\frac{2}{Q}kG^{\gamma\varsigma}\zeta_{\gamma}\nabla_{\varsigma}u - \frac{2}{Q}ktG^{\gamma\varsigma}(\nabla_{\varsigma}u)g^{\alpha\beta}\left(\frac{\partial a_{\alpha\beta}}{\partial \pi}\nabla_{\gamma\rho}\phi - \frac{\partial a_{\beta\gamma}}{\partial \pi_{\rho}}\nabla_{\alpha\rho}\phi\right).$$

En ce qui concerne \mathcal{H} , le terme $\left(-\frac{t}{Q}g^{\alpha\beta}G^{\mu\nu}\frac{\partial a_{\mu\nu}}{\partial \pi_{\alpha}}\nabla_{\alpha\beta\rho}\varphi\right)$ vaut en P, compte tenu de (14) :

$$\begin{split} &-\frac{t}{Q}\,\mathbf{G}^{\mu\nu}\frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}}\,g^{\alpha\beta}(\nabla_{\rho\alpha\beta}\varphi\,+\,\mathbf{R}^{\mathfrak{r}}_{\beta\alpha\rho}\nabla_{\mathfrak{r}}\varphi) \\ &=\,-\frac{t}{Q}\,\mathbf{G}^{\mu\nu}\frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}}\,g^{\alpha\beta}\,\big\{\,\nabla_{\rho}\mathbf{G}_{\alpha\beta}\,-\,\nabla_{\rho}\,\big[ta_{\alpha\beta}\,+\,(1\,-\,t)\mathbf{H}(\varphi)g_{\alpha\beta}\,\big]\,+\,\mathbf{R}^{\mathfrak{r}}_{\beta\alpha\rho}\nabla_{\mathfrak{r}}\varphi\,\big\} \\ &=\,-\,kt\mathbf{G}^{\mu\nu}\,\frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}}\,\nabla_{\rho}u\,+\,\frac{t}{Q}\,\mathbf{G}^{\mu\nu}\,\frac{\partial a_{\mu\nu}}{\partial \pi_{\rho}}\,g^{\alpha\beta}\,\big\{\,\nabla_{\rho}\,\big[ta_{\alpha\beta}\,+\,(1\,-\,t)\mathbf{H}(\varphi)g_{\alpha\beta}\,\big]\,-\,\mathbf{R}^{\mathfrak{r}}_{\beta\alpha\rho}\nabla_{\mathfrak{r}}\varphi\,\big\}\,. \end{split}$$

Le terme $\left(\frac{t}{Q}g^{\alpha\beta}G^{\mu\nu}\frac{\partial a_{\alpha\beta}}{\partial \varphi}\nabla_{\mu\nu\rho}\varphi\right)$ se traite, lui, en utilisant la relation (15). Enfin, la différence entre dérivées quatrièmes possède une expression intrinsèque donnée dans [3, p. 369, eq. (III-2.9)], combinaison linéaire de dérivées premières et secondes de φ . On peut dès lors vérifier à la main sans difficulté la validité de l'inégalité (17).

BIBLIOGRAPHIE

- M. Berger, Nonlinearity and Functional Analysis, Pure and Applied Mathematics, vol. 74, Academic Press, New York, 1977.
- [2] BIRKHOFF, MACLANE, Algebra, MacMillan, 1967.
- [3] P. Delanoë, Équations du type de Monge-Ampère sur les variétés Riemanniennes compactes, I. J. Funct. Anal., t. 40, n° 3, Februar 1981, p. 358-386.
- [4] P. Delanoë, Équations du type de Monge-Ampère sur les variétés Riemanniennes compactes, II. J. Funct. Anal., t. 41, n° 3, May 1981, p. 341-353.
- [5] P. DELANOË, Équations du type de Monge-Ampère sur les variétés Riemanniennes compactes, III. J. Funct. Anal., t. 45, n° 3, 1982, p. 403-430.
- [6] P. Delanoë, Une généralisation de l'équation de Monge-Ampère sur les variétés Riemanniennes compactes. *Bull. Sc. math. 2e série*, t. **107**, 1983, p. 145-161.
- [7] D. GILBARG, N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, New York, 1977.
- [8] G. GIRAUD, Sur différentes questions relatives aux équations du type elliptique, Ann. Sci. École Norm. Sup., t. 47, 1930, p. 197-266.
- [9] E. HOPF, Über den funktionalen insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung. Math. Z., t. 34, n° 2, 1931, p. 194-233.
- [10] M. PROTTER, H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1967.
- [11] V. I. OLIKER, Hypersurfaces in \mathbb{R}^{n+1} with prescribed Gaussian curvature and related equations of Monge-Ampère type, (preprint 1982).