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ABSTRACT. — Vapnik—Chervonenkis bounds on rates of uniform convergence of empirical
means to their expectations have been continuously improved over the years since the precursc
work in [26]. The result obtained by Talagrand in 1994 [21] seems to provide the final word
as far as universal bounds are concerned. However, in the case where there are some additio
assumptions on the underlying probability distribution, the exponential rate of convergence cat
be fairly improved. Alexander [1] and Massart [15] have found better exponential rates (similar
to those in Bennett—Bernstein inequalities) under the assumption of a control on the varianc
of the empirical process. In this paper, the case of a particular distribution is considered for the
empirical process indexed by a family of sets, and we provide the exact exponential rate base
on large deviations theorems, as predicted by Azencott [2].
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RESUME. — Les bornes de Vapnik—Chervonenkis sur les vitesses de convergence uniform
des moyennes empiriques vers leurs espérances ont fait I'objet de nombreuses amélioratio
depuis leur travail précurseur [26]. Le résultat obtenu par Talagrand en 1994 [21] semble
mettre un point final a la question des bornes universelles. Cependant, dans le cas d’hypothés
supplémentaires sur la loi de probabilité sous-jacente, le taux exponentiel de la convergence pe
étre amélioré. Alexander [1] et Massart [15] ont trouvé de meilleures vitesses exponentielle:
(similaires a celles des inégalités de type Bennett—Bernstein) sous I'hypothése d’'un contréle ¢
la variance du processus empirique. Dans cet article, nous étudions le cas d’une loi particulié
pour le processus empirique indexé par une famille d’ensembles et nous démontrons un résult:
annoncé par Azencott [2], avec une borne présentant un taux exponentiel exact, conforméme
aux théorémes de grandes déviations.
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1. Introduction and motivations

Let {X;};cn be a sequence of independent random variables with distribution a
Polish spacéX’, B) whereB is the Borelo-algebra. We denote by, = G-F_,8x,)/n
the corresponding empirical measure. We consider a countable and totally bounded (fc
the symmetric difference metric) family of measurable sets &f, with finite Vapnik—
Chervonenkis (VC) dimensioW.

We recall that a seT” in a metric spacel is totally boundedif, for every A, there
exists a finite number of closed balls of radiugovering B (a A-coveringof B). The
VC dimensiorof a family of setdl" is defined as the largest integesuch that for some
setE of k points, any subset af is obtained as the intersection betwderand some
setC of T'.

In the present paper, we shall examine the uniform deviation Bvarthe empirical
measurey, from its expectationw. Our main object of interest will be the following
probability tail

p(F,u,n,e)zPr{gugun(C)—M(C)! > e} 1)

Such a probability tail is known to tend to zero as the samplerseggproaches infinity
under the assumption that the familyis reasonably small (this is the Glivenko—Cantelli
problem, see e.g. [7]). But a challenging issue is also the computation of the rates &
which this uniform convergence is achieved. We insist on the fact that finding sharp
rates is not mere sophistication and it has a tremendous impact on the application
in the field of machine learning. Indeed, VC bounds are closely related to the error
bounds on generalization of learning algorithms like neural networks. Such theoretica
results actually provide an important tool in the design of learning structures and the
prediction of their performance (see [25]). Pioneering work on is due to Vapnik and
Chervonenkis [26,27] who extended classical results of Kiefer [12], and Dvoretzsky,
Kiefer and Wolfowitz [8] (see also [15] for a consistent review). Since then, many
techniques have been developped in empirical process theory in order to improve the:s
Vapnik—Chervonenkis (VC) inequalities. The general structure for VC bounds is the
following: there is anM such that, fome? > M, we have

(T, w,n,e) < K(n£2)rexp{—n¢(8)}, 2)

where K is a multiplicative constanty is the power of the polynomial term which
reflects thecapacityof the family I (in some way, it is related to a complexity index,
e.g. the VC dimension of the family), and¢ (¢) is the exponential rate of convergence.
In order to discuss previous results and find out what the “bEstt and¢(¢) are,
we have to point out that there are various assumptions that can be madeaquritire
knowledge that we have on the underlying distribution
(1) Universal (or distribution-free) case (HVT) — it is assumed thatan beany
probability distribution onM(X).
(2) Control-of-the-variance assumption (ALMA) — there exists a constdnguch
that

1
supu(C) (1 — u(C)) < 0% < 7 ©)
Cerl’
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(3) Distribution-dependent case (DD) — we assume that we know exactly the

particular distributionu that underlies the data.

Note that these three types of assumptions correspond to different exponential rate
like in the classical case of the deviation of the empirical mean from its expected value
Assumption HVT? leads to Hoeffding’s exponential rate, Assumption ALMAives
Bennett—Bernstein rates, and Assumption DD corresponds to the exact rate of Chernoff
bound (as confirmed by large deviations theory). We insist on the facthtbassue of
providing sharp exponential rates is prior to the question of getting a “good” polynomial
factor.

The Assumption HVT has been considered by Vapnik and Chervonenkis [26], Vapnik
[23], Devroye [5], Pollard [18], Parrondo and van den Broek [17], Lugosi [14], Talagrand
[21]. The best exponential rate in that case corresponds to Hoeffding’s inequality where
¢(e) = 2¢? (first obtained by Devroye in [5]), and the best polynomial power of
T =V —1/2 was obtained, at the cost of significant breakthroughs in empirical processe:
theory, by Talagrand in [21].

The case of Assumption ALMA has been mainly carried out by Alexander [1] and
Massart [15]. Massart establishes a bound with

82

2(0%+ (30 +£4/n)) “)

¢(e) =

andt = 3V. Alexander proves a similar result with general exponential rate involving
the variance of the empirical process but with a huge capacity teem2*2V!). There

are some hints and proof sketches on how to improve these results regarding to tt
polynomial factor which have been provided by Talagrand in [21].

The purpose of this paper is to investigate the case where Assumption DD is adoptec
As pointed out by Azencott [2], the exponential rate which is expected is the one of
Sanov’s theorem (see e.g. [4]) involving the Kullback information. Indeed, this result
has been proved in a large deviations setting (asymptotically on a logarithmic scale) b
Wu in [30] for the functional case. We propose to make an accurate statement of th
bound in the case of empirical processes indexed by sets and to prove a non-asympto
result reflecting the general structure of VC bounds.

Indeed, this investigation was motivated by our empirical study on VC bounds
and VC dimension in [29]. In this experimental work, our goal was to test the very
structure of VC bounds for particular distributions through computer simulations. Our
idea (following the general, but incomplete, approach of [28]) was basically to estimate
the probability tailo (T, u, 1, £), and then fit the results with the explicit formula given in
the bound (2). It is worth noticing that if one has a precise knowledge of the exponential
rate¢ (¢) (this indeed is the most crucial issue for the success of these experiments!), i
is then possible to estimate precisely both the complexity indamd the multiplicative
constantk (see [29] for details and examples). This methodology provides an interesting
machinery for testing conjectures about the quantities involved in VC bounds.

2HVT stands for Hoeffding—Vapnik—Talagrand.
3 ALMA stands for ALexander—MAssart.
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Remark1.1. — The distribution-dependent VC bounds which are presented in statis-
tical learning literature, in [24] and [25] for instance, refer to different complexity con-
cepts (VC entropy or annealed entropy), but not to the exponential rate.

Remark1.2. — Except in some very particular cases (see [16]), the multiplicative
constants in such bounds are very difficult to control. In this work, we are not concernec
about these constants. However, we have proposed in [29] a simulation protocol whicl
leads to sharp empirical estimations of the consfant

Notations. We need to introduce thkullback information functiorfor Bernoulli
distributions which we denote b¥ .

1-—
Yo.pe@D. Hig.p=gin(2)+a-gin(;=2). ©)
We recall the standar@hernoff bouncbn large deviations.
VCeTl, Pr{u,(C)—u(C)>e}<exp{—nHu(C)+e¢, u(C))}, (6)
VCel, PH{u(C)—u,(C)>e}<exp{—nHu(C)—e, u(C)}. (7)

As we consider the two-sided probability tail, we will have to consider the “worst”
of these two exponential rates, as being éiact exponential ratéNe shall denote it
by A, (e).

Vge(e,1—¢), Ay(e)=H(g+¢e,9)NH(g—¢.q). (8)

Another important concept is the one@itical value of the family I". We introduce
the rangeJ of values of the mass of the elemends of I" with respect to the
distribution .

J={q=n(C): CeT}. 9)

DerFINITION 1.3.— We define thecritical values p. of T' with respect to the
distribution . as the values which minimize the functipr> A, (¢) over the sev.

The reader should be warned that the conskaigt used repeatedly, but, for notational
convenience, its value is not fixed. This constant depends inde&d(thmough its VC
dimensionV) but we have not captured, in the present work, the type of dependency
which is involved?

2. Main results

In this work, we have investigated the two general proof methods which have beer
developed in proving rates of convergence for empirical processes (cf. [18,6], for
methodological inventories). The purpose of both methods is to make the supremun
tractable. Theapproximation methodallows to reduce the familyi" to a finite
approximating family. Theombinatorial methods based on symmetrization argument
allowing to consider the trace ®f on a fixed sample.

4 However, our empirical study in [29] provides some insights on this issue.
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Our main theorem follows the line of proof of the original Vapnik—Chervonenkis paper
[26] and the improved version provided by Devroye [5]. This result indicates the exact
exponential rate for empirical processes indexed by classes of sets. In order to kee
track of this correct rate, some sophistications were needed and we used abusively sor
techniques from the work of Talagrand in [21].

THEOREM 2.1. — Givene > O, let p be a critical value ofl" with respect to the
distribution .. We have

p = p(e) =argminA,(e).
qelJ

There exists some constakitsuch that, for any:, ande small enough,

Pr{sup,(C) — u(C)| > e} < Kn®* " exp{—nA,(e)}. (10)
Cel
Remark?2.2. — In this result, the polynomial factor is im™instead of the typical
“ne?” (we recall thatM = ¢./n is the “natural” variable in the study of such probability
tails). This means actually that the bound is trivial in the case lbéing of the order
1/./n. The VC bound obtained in the theorem becomes active &ireast of the order
J/(dogn)/n, and, in particular, for fixed.

Remark2.3. — By slightly modifying the end of the proof, we can get a polynomial
factor inne?, but we come up with a condition likes® large enough which seems to be
a weaker result. We thus have, with the same assumptions as in the theorem, that the
exists some constanfs and M such that, foe small enough, and fore® > M,

Pr{supi1e, (€) = w(C)| > ¢} < K (ne?)* " exp{—nA (&)} (11)

Remark2.4. — A similar result holds for the one-sided probability tail
p+(F,u,n,8)=Pr{guE(un(C) —u(0)) > ¢}, (12)
€

except that, in this case, one shall simply havge) = H(p + ¢, p).

We then formulate a simple characterization of the critical valuds @f is based on
a detailed study of the exponential ratg(e) presented in Section 3).

PrROPOSITION 2.5. — Let J be the range of the values of the masé&C) of the
elements of". We assume that there is a neighborhaddf % such thaty N J = @.
Then, there is amg such that fore < gq, thecritical valuesp, of I with respect to the
distribution u are the closest value tb/2 from the set/. In other words, we have, i
is small enough,

1
pei=argminA,(e) = arg mir{q — —‘. (13)
qgelJ qgelJ 2

Remark2.6. — Note that the assumption stated in the proposition can be rephrased b
saying that the rangé does not contain the val@ If we drop this assumption, then
we have thap, € (1 —¢)/2,1/2) U (1/2, (1+¢)/2).
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Remark2.7. —In any case, because of the symmetry of the funajien A, (e)
with respect to the position/2, there are at most two critical values fBrgiven the
distribution . Indeed, ifp is a critical value, then % p is the other possible critical
value.

The following sections are dedicated to the proofs of these results. In Section 3
we provide the analysis of the function— A,(e). The approximation method is
investigated through Section 4. We establish a partial result (cf. Proposition 4.1) whick
turns out to be useful in the sequel. The proof of Theorem 2.1, based on the combinatori
method, is eventually presented in Section 5.

3. Proof of Proposition 2.5

We notice that the functions — H(x + ¢, x) andx — H(x — ¢, x) are symmetric
with respect toc = % We have indeed,

Vx, H(x+ex)=H1—x—¢,1—x).

Thus, it suffices to consider the variations g@fdefined byg,(x) = H(x + ¢, x) (see
Fig. 1). A quick study of this function shows that its second derivative is positive as soon
ase < +/3/2. Hence, this function is convex. We nate= inf J andb = supJ. We want
to derive the value of int; H(x + ¢, x).
e Case(l)a > 1/2.
We notice thafg (1/2) > 0 if ¢ € (0; 1/2), henceg, is increasing o/ (recall that
this function is convex), and we have

inEH(x+8,x) =H(a+¢,a).
xe
Similarly, we have
inf Hx —e,x)=H(a —¢,a).
xeJ
Hence,
im;{H(x+£,x) ANH(x—¢ex)}=H(a+¢e,a)ANH(a—z¢,a).
xe
e Case(2)b <1/2.
We notice thafg,((1 —¢)/2) <0 if ¢ > 0. Thusg, decreases ot if we consider
e <1—2b. We have
inf H(x +e,x) = H(b +e.b).
xXe
Thus,

irg];{H(x—I—e,x)/\H(x—s,x)}:H(b—l—s,b)/\H(b—s,b).
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Fig. 1. Plot of the functiony — A,(¢) for ¢ = 0.15. The branches (a) and (b) represent the
functiong — H(q + ¢, ¢), while (c) and (d) represent the functign~> H(q — ¢, g). The line
indexed by (e) corresponds to the universal case (HVT) where the exponential rete is 2

e Case(3)a <1/2<b.
We write J = J; U J5, where

J1=JN[0,1/2[, and J,=JN[1/21].

We noteu = supJ; and v = inf J,. Since we have assumed that there exists a
neighborhood of % such thaty N J =@, we havex < 1/2. Thus, we have, from
Case (2), that, if <1— 2u,

inf Hx+e,x)=Hu+¢,u),

xely

and, from Case (1)
inf Hx+e&e,x)=H(@+¢&,v)

xeJo

to obtain, eventually,
im;H(x—i—g,x) =Hu+e&u)ANH@W+e, ).
xXe

We also have
inf H(x—e,x)=Hw —¢&,u) AN H(—2¢,v).

xelJ
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Assume that is the closest value to/2. Then, since 22 <1 —u < v, we have
Hu—csu)=HQ—-u+e¢e,1—u)< H+e,v),
and, similarly,
Hu+ecu)=HQ—-u—¢e,1—u)<HWw—¢,v).
Thus, if we assume that=argmiry,. ,_, ¢, cer lg — 31, we then have
)icrEIB{H(x+8,x) ANH(x—¢ex)}=H@u+eu)NH@u—e¢,u).
The same argument in the case whereargmin,. ,_ ) cer 19 — %] leads to
)icren;{H(x—i—s,x) ANH(x—¢ex)}=H@Ww+¢ev)AH@-—2g,0).

Therefore, we have proved that, givénthen, fore small enough, we have

p:= argmin (H(g+¢9)AH(g—¢,q)= argmin
q: q=u(C), Cer q: q=p(C),CeT

2

1
q— =l
Remark 3.1. — Note that the closeris to 1/2, the smallee has to be.

4. Approximation method

The bound we have obtained through the approximation method (Proposition 4.1) i
simply a preliminary step since it involves a disturbing corrective term. However, this
step turns out to play a key role in the proof of our main theorem (Theorem 2.1).

PROPOSITION 4.1. — For every 8 > 0, there existM (8, p, V) and gqo(B, p, V) >0
such that ife < (B, p, V) andne? > M(B, p, V), we have

Pr{gug,un(C) — ()| > e} <exp{—n(L—B)A,(e)}. (14)

Remark4.2. — We mention that the constatis of the order(?(ﬂ—l4 expﬂ—lz).

We now turn to the proof of this proposition.
4.1. Proof of Proposition 4.1

We define ar-net T, which is a finite approximation df" such that, for anyC € T,
there is aC* € I'y, such thatu(CAC*) < A. The elementC* is called theprojection
of C onT;. We denote by, = {¢ = u(C): C €T;}. The cardinality ofl"; is denoted
by A (1). We shall consider that = % We denote byG, = u, — u the centered
empirical process. We then have
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Pr{supG,(C)| > ¢} <Pr{supG,(C")| > &1}
Cel Cel
+ PH{SURG,(C) — G,(C)| > &3} (15)

Cell

whereg; + &5, = ¢.

The first term corresponds to the same problem as the initial one but for a finite family
of sets. Itis easy to control it with a straightforward application of Chernoff’s inequality.
Hence, we have, for song

Pr{sufG,(C*)| > e1} =Pr{ sup|G,(C)| > &1}
Cerl’ Cerly,

<2N (0 exp{—n in}c Ay(e1)} (16)
qeJi

<2N (0 exp{—n im; Ay(e1)} a7
qe

<2N (V) exp{—nA ,(e1) } (18)

<2N() exp{—n(1— B)A (&) ). (19)

Inequality (16) comes from the union-of-events bound and an application of the
Chernoff bound (see the inequalities (6) and (7) in Section 1). The sum is bounded by th
worst exponential rate over the range of possible valugs 6. Inequality (17) simply
uses the fact that, c J, and inequality (18) is a notational transformation thanks to the
definition of the critical valuep (see Definition 1.3). We now explain inequality (19).
We note that (see Fig. 1), for fixed, we have

1
H(p+e p)<H(p—eg,p), forp< > and

1

H(p+e,p)>H(p—eg,p), forp> >

Thus, we have that eithex ,(¢) = H(p + ¢, p), eitherA ,(¢) = H(p — &, p) when the
parametep is fixed. Hence, the function , is a convex function of. We can write that

Ap(e1) = Ap(e) + (e1— &) A (1),
As we want to obtain the correct exponential ratg(s) with possibly some corrective

term, we seis such asA ,(e1) = (1 — B)A,(e). We also set; = (1 —60)e. Then, we
have thaig andé are related through

0=p( 00,
SAP(S)
and the factor between the two is a bounded non-zero quantity. We can keep in mind th:
0~p/2.
The difficult part of the work is to control efficiently the second term which is due to
the approximation. We have

Pr{sugG,(C) — G,(C*)| > &}
Cerl’
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<N maxPr{ sup |G,(C) —G,(C*)| > ez} (20)
Crel, CeB(C*,1)
The essential part of the proof is dedicated to the control of the localized empirical
process. Indeed we need to obtain a tractable exponential bound on the quantity

Pr{ sup |G,(C)—G,(C"|> e} (21)
CeB(C*,1)

The classical way to deal with suprema in empirical processes theory is to use th
chainingtrick (cf. [19,22,13]). However, this cannot be done straightforwardly since the
process involved here does not satisfy a subgaussian inequality. The argument develop
here is due to Talagrand in [21] and it can also be found in [22]. In the following
Section 4.2, we shall prove

PROPOSITION 4.3. — With A = 1/(ns?), and the sam¢ as before, we have, fore?
larger than a constand/(B),

Pr{ sup |G,(C)—G,(C"|> e} <16exp(—n(1l—B)A,(e)}. (22)
CeB(C*,))
We haveM (8) = O(ﬁ—l4 expﬁ—lz).
Combining inequalities (19) and (22), we finally obtain a global boung @n w, n,
).
Pr{ggan(C)y >} <18V(L) exp{—n(l— A ,(e)}. (23)
We conclude the proof of this proposition by using the relationship between metric

entropy and the VC dimension. Indeed, we recall from [10] and [22] that there exists a
constantk such that

1 Vv
N@OR) <K (X) . (24)
We eventually set being equal to A(ne?). We also consider that
18K (ne?)” < exp{nBA,(e)} (25)
as soon age? = O(logl).
Then, at the cost of modifyingg up to a multiplicative constant, we obtain

Proposition 4.1.
We now turn to the proof of Proposition 4.3.

4.2. Proof of Proposition 4.3

4.2.1. Symmetrization

Consider the centered stochastic proc¢Zs(C)}cesc+,) Where we have set
Z,(C) = G,(C) — G,(C*) (we suppose here that* is fixed). We introduce the
independent Rademacher random variablgs. ., ¢, (s; takes values 1 and1 with
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probability 1/2 each). Thanks to a result from [21] (Lemma 3.1, p. 44 — original result
due to Giné and Zinn [9], Lemma 2.7, pp. 936-937), we haverfef > 8 (here, the
measurable functiong are of the form(1¢ — 1¢+)),

}, (26)

Zs,(lc —1e)(X)| >

Pr{ sup |Z,(C)|>e}< 4Pr{ sup
CeB(C*,)) CeB(C*, nin

and, since the random variables

sup Ze,(lc —1¢)(X;)| and sup Zel Leac (X))
CeB(C*, k) ceB(c* |1
have the same distribution, we have
PI’{ sup ’Zn(c)’ > 82} 4Pr{ sup 281 1CAC*(X ) > _} (27)
CeB(C*,)) ceBcH 0|

4.2.2. Conditioning and decomposition using the median
We set some notations

1 n
== Z&' leacH(x), (28)
i
1X.ll= sup [X,l, (29)
CeB(C*,))
1 n
0'2: Sup <—221CAC*(Xi)> (30)
ceBcx )\ =1

and Pk, Ex (respectively Pr, E,) are the conditional distributions and expectations
given (g;) (respectively(x;)).
We attempt to control the the following probability tail.

Prq sup >— 5= Pr{||X,,|| > 2} (31)
CeB(C )| 4

We fix X; = x; fori =1,...,n and we consider the conditional probability of the
previous tail. We observe that this is the tail of the supremum norm over the set of
indicator functiong1cac+; C € I'} of a Rademacher process over the Banach sRédce
of the formX = 3""_, e;x; which is known to be subgaussian. This fact is guaranteed
by a concentration inequality from [13] on the deviations from the median. This result
involves the median (X,,) of the process (conditionally on the;)’s) which is defined
by the following inequalities

Z gileac(Xi)

<Pr{IXI > Mx}. (32)

NI =

Pr.{lIXIl > My} <
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Then, using the right inequality, we obtain with the help of Markov inequality
My < 2E. || X]. (33)

According to this concentration result from [13] (Inequality 4.10, p. 100), we have
that

Vi >0, Pr{|X,|l—MX,)>1t} <2/

We can then write (computation follows essentially [21] recomposed in [22]), for all
u>0,

Pr{nxnn>%}=ExPrg{an||>?j} (34)

< IEX Prg{ ”Xn” M(Xn) > g} + PrX{M(Xn) > 8_82} (35)

2
€2
< 7 =
<Eyx (ZGXD{ 512 2}) +PrX{E 1 Xl > 16} (36)

82
<2exp{ 5124}+Prx{o >u}+PrX{E X, ||>—} (37)

We adopt the following notation for this bound,

82
H=2exp{ 512M}+Prx{o >u}+PrX{E 1 X, > 6}:D+F-|—G. (38)

4.2.3. Estimating theterms F and G

Now we use the following result from [22] (Lemma A.4.3, p. 455) in order to bound
F andG in the previous inequality. Indeed, §f, is a permutation-symmetric map such
that

(I) Sn ()C) < Sn—i—m (.X, y),

(”) Sn+m(-xay) < Sn(-x)+Sm(y)
Then, we have, for any strictly positiveand for any integes,

Remark4.4. — We have slightly modified the original result by keeping the term
4(2ES, + 1) in the denominator under the logarithm rather thadEls] v 1) which
is given in [22].

We now apply this result to get the following upper bounds.
¢ On the one hand, by applying the lemma W§{(X) = n?0?, andt := nu, we get

1
F = Prx{O'z > I/l} § exp(—énzu IOQ(M)) (40)
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e On the other hand, by settiry(X) = nE,| X, || ands := ne,/16, we havé

&2 1 néen &2
G =PryE || X, —s<expl —=-—1lo . 41
R e O R e o) ) I

Now we appeal to some result from [21] (Corollary 3.2) to boilacf. Applying this
inequality for indicator functions of the formfi = 1o+ (We haveE f = u(CAC*)), we
obtain

nEo? <k + 2E| X, |. (42)
Thus, we have

4<2nE02+ %) <4<2k+4E||X,1|| +%> (43)

and we can use the following bound fbr.
Pry{o?>u} < exp(—}nzu Iog( i - )) (44)

2 8+ 2E[ Xl + 3)
Letm1, mo be such that

ma A ZEIX, (45)
mo > ZRIX, |+ (46)

We have obtained the following control of the tail

2
&2 1 2 (nu)} 17182 < E2 )}
L=2expl— —ZnZulog( p{———l . (47
eXp{ 512u}+eXp{ nulog\ g - ) 1+ ~576 %9 6, ) [ A7)

4.2.4. Bounding E|| X, ||
To get an estimate fon,, m,, we need to computg|| X, |. We recall the technical
result obtained by Talagrand [21] (Proposition 6.2). If we set

A= sup u(CACH),
CeB(C*,))

then

K v U 12
EX,| < —((r+K? =log— |vlog— | 48
1, ﬁ(( rr2 " g4k)v 941) (48)
wherekK, U, andv are some constants.

As we have set = 1/(ne?), we get

EIX, ] < = log(ne?). (49)
ne

5Note thatES,, = nExEe | Xp |l = nE[ X, ||.
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Hence, we can take

K
miy = E |Og(n8 ) (50)
my= K log(ne?). (51)
ne

4.2.5. Optimization
Now, we adjust the various parameters in such a way that each exponential term in th
bound becomes smaller than ¢xm (1 — B)A ,(¢)}. We set

(98)2

512” n(l—B)A,(e), (52)
2
Lo g<64m >>n(1 BIA (e, (53)
n98 £
o Iog<64m >>n(1 BIA,(e). (54)

From the first two conditions (52) and (53), we can get a single inequality and there
is no need to provide the proper choice forbut only guarantee that such a choice is
possible. We have

132 82

20481—p) Ayie) - " (55)
nu I’l€2

'Og(eTKlog(Tz)) > 21— B, (). (56)

Using the fact that the terrﬁ% can assumed to be constant (possibly depending
on p) and taking into account the fact that we have, up to a constant,

x>AlogA = > A,

we deduce a condition of the form

K C
& >M1(ﬁ7p7 V) yexp{ﬂ2}

whereK andC are some constants.
Now the third condition (54) leads with a similar argument to

K’ c’
& >M2(ﬁ7p7 V) Eexp{ﬂ }a

with K’, C’ being some constants.
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5. Combinatorial method

We now turn to the proof of Theorem 2.1. We introduce a new notation for the
empirical mean which makes a more explicit reference to the sample,

n(C,Up) = ZlC(U) (57)

We introduce a “ghost” i.i.d. samplg,, ..., Y,, from the same probability distribu-
tion u, and we use the symmetrization lemma due to Devroye [5] which states that, for
anye >0,m>1and O< a < 1, we have

Pr{gugu(c, X1) = n(C)| > ¢}

1 _1 n m
< (1_ W) Pr{supu(C. X}) = u(C.¥7)| > A-ae).  (58)
We sets* = (1 — )¢ and

t(n,m, e, n) =Pr{sugu(C, X}) —n(C,Y{")| > &*}. (59)

Cell
With these notations, we rephrase the previous lemma in the following form by
-1

1
p(T, pm, 6) < (1— —) T(n,m, . 10). (60)
Ama’e?

We introduce the notationV = n + m. Now, we work on the symmetrized probability
tail.

T(n,m, e, 1) Z/l{suhrm(c XM= pu(C, y"’)|>a*}dM®N(X" x Y{") (61)

= /SUPl{lmc XD—pc.ymseny dp®V (X] x Y. (62)

Following the line of proof of [26], we conside? = {T;};,—1.._n the set of all
permutations of the s&f., ..., X,,, Y1, ..., Y,, and we notice that there is a finite number
NI, X1,...,X,,Y1,...,Y,) of equivalence classes of setsIinachieving different
values for the quantityu(C, X7) — u(C, Y{")|. Hence, it is possible to replace the
supremum overf™ by a supremum over an approximatiori of the family I', andI™*

has a finite number of elements equalNaT’, X4, ..., X,,, Y1,...,Y,). Thus, we can
write
t(n,m, &, L)
1 Y
/ Z Zl{m(C* 1xn (e rymse du® (X] x Y1) (63)

C*eF*

= [ 3 Plu(cn.x) —u(Cn ¥R > e} du (X5 x V). (64)

C*el'*
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whereX"] x Y']' is obtained by a sampling without replacement draw fi&inx Y;".
We bound each term of the sum separately thanks to the following proposition. Thus, w
will consider that the elemeni* is fixed.

ProPOSITION 5.1. —Let X} x Y;" be a fixed sample. For a fixet, we set

r=r(C =Y 1c(X)+ > L= (V). (65)

=1 =1

We denote byX"] x Y’]' the random variables obtained through sampling without
replacement from the original sampl x Y7". We have

Pr{|u(C*, X)) —u(C*, Y'T)| > &* | X] x Y1}

<2(n+m+1)7exp{—nA r (( " )8*>} (66)
notm n—+m

Proof. —We notice that the actual distribution of the random variable binomial
with parametergN, 1 (C*)). Now we consider that the samplg x Y;" is fixed, so that
all the probabilities involved in this proof are conditional probabilities given the sample.
Suppose that (C*, X'}) = £, then we have(C*, Y'}') = =K. Thus,

n m

k r—k N/k r
C*,X/n _ C*,Y/m -~ _ = (1),
M( l) M( l) n m m (n N)

and{ = u(C*, X'} x Y'T"). Hence, we have
Prijp(C, X7) —u(C™. YT)| > &7}
= Pr{]u(C*, X7 —u(CXTxYT)| > (%)g} (67)

wherew(C*, X"} x Y'T') = {; is non-random iC* is fixed as well as the sampl x ¥
obtained from the distributiom.. Now we have to state an upper bound of Cramér—
Chernoff type for the probability

r

(- (2}

Pr{‘,u(c*, xmy - L

whereX'] is a sampling without replacement draw from the set of pakits< ¥;". We
write

r m cken*
Pre |u(C*, X']) — — —e* b = S r=N-r 69
{M( 1) N > (N)e } e cr (69)
ClamwI=Gpet

Then, by Stirling’s formula, one gets straightforwarélly

1 Ckcn—k k —k 6
—Iog( ) N_r><_{H<_,L>+@H<r ,i>+—log(N+1>}, (70)
n Ch n N/ omo A m N/ on

6 0One could also check some neat large deviations formulations for sampling without replacement for
binary alphabet in [4] pp. 20-22 and pp. 318-323.
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whereH (p, q) = plog(p/q) + (1 — p)log((1 — p)/(1 - q)).
We recall that the functionx — H(x, g) is decreasing forx < g and increasing
for x > ¢. Let us considek such that% - L > (%)s*. We notice that, in this case,

N
k— H(%, Z) increases, and we have

k r m r
H(—, — H 71
(n N) g <N tNe N) (1)
Moreover, we have tha(t‘— <y and— H(— %) is also increasing ik. Thus,
r—k r r n r
H(_,_) >H(———e*,—). (72)
m N N N N

We then have, by brutally bounding the second term under the exponential (by zero!)
CkCZ"\, room r
N +1)° —n(H(|—4 —¢*, —
Z o <r(N+1) exp{ n( <N+N8 ’N)

ko koo (e N
m r n . r
+;H(ﬁ‘ﬁ8 N))} (73)

gr(N+1)6exp{ nH( R r)} (74)

N N 'N

Similarly, for k such thatt — £ < —(%)&*, we obtain

CkCZ"\,_k r m r
FNTE < (N +D8expd —nH (| — — —&*, — | §. 75
2 A p{” (N N® N)} (75)

o ko k(e N

We finally use the fact that< N to end the proof. O

In the sequel, we will consider only the case of a critical valignaller than 12 (this
is indeed just a matter of notations sinkg = A1_,). The other part shall be treated in
the same way. Now consider the random variabighich has a binomial distribution
with parametergN, w(C*)). Its rate function is known to he — H (x, u(C*)).

Intuitiveargument. Suppose we can directly proceed as in the proof of Varadhan’s
lemma (see e.g. in [4] the remark p. 137). Then, we would have the following upper
bound onz (n, m, e, ) (which is not rigorously correct).

/Z 2(N—|—1)7exp{ nAu<N )—NH(u,u(C*))}du

C*el'™*

Intuitively, we can see that it suffices to show that the value of the integral is given
essentially on the neighborhoods arowtd™*) for eachC*. Then takingV large enough
compared ta: shall end the proof.
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Rigorous argument. Let us go through the details. In the sequeblyvill denote a
point in the product spac®?)" (a sample ofV points ofR). We start from the bound
ont(n,m,e, ),

2[ > $((©)dn 0 (76)

Cel*(x)
where
o(r):=¢(r,m,n,e)=(N + l)7exp{—nA# (%8*> }

First, we fixé such thatp + 45 < 1/2, and we decompose, for anythe finite family
I (x),

T*(x) = I} (x) UTS(x) UT(x) 77)
where
Ff(x):{Ce *(x): % p+46},
F;(M:{Cef‘*(x): p+48 < ”(Nﬁ <1—p—45},

F§(x)={CeF (x): % 1—p—45}.

We have that, for/N < p 4+ 48 < 1/2, ¢ is non-decreasing, and foy N > 1— p —
45 > 1/2, ¢ is non-increasing. Therefore, we obtain the following inequalities

VC eT}, ¢(r(C))<(N+1)7exp{ nH<p+43+(N)8 p+46)}, (78)
VCels, ¢(r(0)<(N+1

x exp{—nH<1—p—45 - (%)g l—p—48)}, (79)

and then we can bound uniformly the corresponding parts of the sum using the fact the
IT*(x)| =N (T, Xq,...,X,, Y1,...,Y,) <s(I', N). Using the symmetry properties of
the functionH, we finally obtain

S ) <s@ NN+ DT exp -t (p+o+ () p+5) | (60
Cel* (x)Urs(x) N

For the remaining sets (i), we detect the “worst set” which shall be denoted by

C(x) = argmaxp ( (]\(;)) (81)

Celj(x)

and we use a uniform bound for the sum

V(C(X)))

> #(r(0) < |M3x >!¢>( (82)

Celj()
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Now we introduce the event

Q= {x: p+45< r(é(x))

<1—p—45} (83)

and we attempt to control its probability by applying Varadhan’s lemma uniformly
over the sef2. We recall indeed that the rate function of the random variéﬂré is
u — H(u, u(C)). However, we cannot apply Varadhan's lemma straightforwardly on

the random variabl& &2 because its expected valuéC (x)) depends on the sampte
First, we notice that

r(C(x))

T3 (x >!¢< )és(F, N)Y(N +1), (84)

and we then focus on the estimation of the intedra (x) du®" (x).

Estimation of [ 19(x)du®N (x). Wefirstintroduce afinite, and fixe8kapproxima-
tion " of I" such thafl = {C4, ..., C;}, and

VCeTl, 3i: u(CAC;) <.

From inequality (24), we have that
- 1\V

We introduce the sets
A ={x: p(Cx)AC) <8}, (86)

K = {x: r€w)) _ < 23}, (87)
N N
and we use the following decomposition
1 1
®RY" cJa =UJ(@Ank)U @ nEK), (88)
i=1 i=1

which holds becausE is assumed to be a totally bounded family.
On the one hand, we have

/1mmmﬁWm</ﬁﬁmﬂm @O ), (89)

<1-
AiNK; N

and this last integral can be controlled thanks to Chernoff’s inequality. We have indeed

C;
/ L et @ q_ o™ >du®N(x)_Pr{ r(C)

}. (90)
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Then, we have, if.(C;) < p,

r(Cy) r(Cy)

Pr{p+28< <1—p—28}<Pr{

<exp{-NH(p+25,u(C)))}, (92

<exp{—NH(p+25,p)}, (93)
where the inequality (92) is the straightforward application of Chernoff inequality (6),
and the inequality (93) is due to the fact that the functjor- exp{—N H (u, ¢)} is non-

decreasing fon >¢q.
In a similar way, ifu(C;) > 1 — p, we obtain

>p+25}, (91)

F(éi)

Pr{p+28< <1—p—25}<eXp{—NH(1—P_25al—P)}’ (94)

thanks to the monotonicity of the functiop — exp{—NH (u, g)}, which is non-
increasing fou > ¢, and also to the second Chernoff inequality (7).

Hence, we have obtained the following bound for any indébecaused (x + y, x) =
Hl—x—y,1-x)),

[ 10 du @) < exp{~NH(p+25. p)}. (95)
AiNK;
On the other hand, we have
| 1a@du® @ < 4K, (96)
A,'ﬂfi
We introduce the following notation

(Zl,...,ZN)::x:(Xl,...,Xn,Y]_,...,Y;ﬂ),

and we notice that

N
F(C0)) = r(C)] <3| (Lg, — 1)(Z0)] (97)
k=1

lE(X)AE; (Zk) (98)

N
k=1

Hence,

_ 1Y - - _ _
xeA,NK, = Nzlaxma(zk) —u(Cx)AC) =8 and u(C(x)AC;) <$
k=1

1Y N
= sup (NZlCAa(Zk)—,u(CAC,-)>>8,
CeB(C;,8) k=1
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whereB(C;, §) = {C: n(CAC;) < §}. Thus, we have

N
1BV (AN < Pr{ sup (%Zlma(zk) —M(CAG,-)> > 5}. (99)

CeB(C;,5) k=1

At this point, we use the proposition proved with the approximation method in the
previous section (Proposition 4.1) which states thatMéf large enough, there exists a
constantk and a corrective term such that

1Y -

Pr{ sup (ﬁ D Leas (Zi) — M(CACi)> > 5}
CeB(C;,2) k=1

<Kexp{—N1—B)H(25,6)}. (100)

We can fixg = 1/2. We have proved that, fav? large enough, the following bound
holds,

/ lo(x)du®V (x) <K exp{—%H(ZS, 3)}. (101)
A,‘ﬂf,‘

Thus, we have obtained a uniform version of Varadhan's lemma]sf is large
enough, for the integral

/ 1o(0) dp® (x)

1\ N
<K(<§) exp{—NH(p—l—ZS,p)}—l—exp{—EH(ZS,S)}). (202)
We will now show that the ratio

H(p+ 25, p)

TH(28,9) (103)

is smaller than 1 fo8 small enough. We will need a simple inequality by Hoeffding [11].
Indeed, ifx < 1/2, we have

1 1—x
H > I 2, 104
(x 4y, x) 1_2x091< )y (104)

X
Moreover, we have, for fixed, wheny tends to zero,

y2

H JX)~ — 105
(x +y,x) ) (105)
Hence, a$ comes closer to zero, we have
H(p+25 I 4
(p + ) P) < 2p(1-p) (106)

< ~ <1
TH(28,8) ~ ii-log(:2)s2  log(1/s)
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We can then neglect the second term at the cost of increasing the multiplicative
constantk . Thus, we shall use the bound

Vv
/1Q(x)du®N (x) < K(%) exp{ —NH(p+25,p)}. (107)

Global bound on t(n,m,e, u). Hence, we have obtained an explicit bound on
t(n,m, ¢, u) for § small enough, which is the following

%
t(n,m, e, 1) < Ks(I, N)(N +1)7 (exp{—nHl} + <%> eXp{—NH2}>, (108)

where we have used the following notations

H1=H<p+45+%8*,p+45>, (109)
H,=H(p+ 25, p). (110)
Now consider the following functions,

fi(@=H(g+x,q) (xfixed) (111)
gpr(X)=H(p+x,p) (pfixed). (112)

Thanks to the convexity of both functiors andg,, we have
fo(p+48) = fu(p) + 451 (p), (113)
g,(28) > c(p)8?, (114)

wherec(q) is some constant depending @nHence, if we set = 5;¢*, we have

exp{—nHy} = exp{—nf.(p +45)}
:exp{—nH(p+48+%8*,p+46>} (115)

<exp{—nH(p+%e*,p)}.exp{—n45f;(p)}. (116)

Thus,s should be at most of the ordérsincef;(p) is usually negative (and bounded
sincem ~ N) and behaves like?. Moreover, to control the second term, we shall take
N such that

NH;>nH;. (117)
Thus, we imposeV to satisfy

Ney(@) = nH (p+ e p). (118)

while we are assuming thatis of the order;l. Hence, we can chooseand N verifying

Nc(p)§? > nH (p + %8*, p>, (119)
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which leads to & of the order\/%. Eventually, whers goes to zero a%, choosing
N =n3 gives a bound on(n, m, &, ), for some constank, like

t(n,m, e, n) < Kn®""2rexpl—n H(p +¢, p)}, (120)

where we have used Sauer’s lemfi@a bounds (T, N).
To obtain, the global bound gi(T", n, m, ¢, 1), we setw = ,—11 in the inequality (60).

Remark5.2. — Note that we have obtained an exponential raté(ip+ ¢, p) because
we assumed that the critical valyeis smaller than 22. If we had takenp > 1/2,
we would have found a rate i (p — ¢, p). The exponential raté ,(¢) given in the
formulation of Theorem 2.1 covers both cases.

6. Open issues

The result presented in this paper certainly appeals to several improvements
Talagrand has suggested in [21] that the proof technique used to prove his univers:
bound could be adapted in order to lead to tight distribution-dependent results (see [21
p. 63, last paragraph of Section 6). Indeed, the issue is to obtain the same exponenti
rateg(e) = A,(¢) asin Theorem 2.1 with a fairly tight capacity term (like=V —1/2
instead of ourr = 3V + 21).

There are other related issues which could be explored in the same spirit.

e Formulate and prove similar bounds in a functional setting.

e Compute tight bounds on the expected value of the maximal deviation, which is

a question of growing interest since the impressive recent results on concentratio
inequalities (see [3,20], and their references).

Moreover, we point out that theoretical analysis on VC bounds and VC dimension
could benefit of an empirical study. Indeed, we have proposed in [29] to use compute
simulations to estimate the probability of the evgptp- i |u,(C) — w(C)| > &}
for particular distributionsu. Through this experimental approach, there are several
conjectures which can be tested on particular examples.

e Validation of the general structure of VC bounds, and control of asymptotical

corrections (existence of polynomial terms smaller thast)?).
o Numerical values for the multiplicative constakitand the capacity index.
e Test of the relationship between the inde&and the VC dimensioi¥ (for instance,
we have checked, that, for halfspaces, the formuaV — 1 holds true).

e Dependence of the effective VC dimension on the underlying distribyti¢on a
simple example, we have observed that the estimated values of the VC dimensio
V for a fixed familyI" depend strongly on the distributiqp).

We find this experimental work very stimulating and complementary to the theoretical
analysis. Indeed, the simulation part appears as a very promising means to develc
intuition and state conjectures about issues such as the distribution-sensitivity o
combinatorial capacities.

7 This combinatorial result gives a polynomial bound on the shattering coefficient in case of a finite VC
dimension:s(I", N) < (eN/V)V.
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