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ABSTRACT. — We study a pair of populations &? which undergo diffusion and branching.

The system is interactive in that the branching rate of each type is proportional to the loca
density of the other type. Previous work had established the existence of such a process al
derived some of its small scale and large scale properties. This paper is primarily focused ol
the proof of uniqueness of solutions to the martingale problem associated with the model. Thq
self-duality property of solutions, which is crucial for proving uniqueness and was used in the

previous work to derive many of the qualitative properties of the process, is also established.
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RESUME. — On étudie un couple de populations dans le plan, sujettes a des phénomeénes
branchement et de diffusion.

Le taux de branchement de chaque type est supposé proportionnel a ka densité de I'autre tyy
L'existence et les propriétés a grande et petite échelle d’un tel processus a été établie dans:
article précédent. Ce travail est centré sur I'unicité de la solution du probléme des martingale
associé au modeéle.

La propriété d’auto-dualité, qui est cruciale dans la démonstration de 'unicité et a été employé
dans le travail précédent pour établir de nombreuses propriétés qualitatives du processus, ¢
également démontrée.

0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction and statement of results
1.1. Background, motivation and brief description of results

Super-Brownian motion is a measure-valued process which arises as a limit o
branching particle systems undergoing Brownian motion and critical (or asymptotically
critical) branching. For example let us take large populatiovgdarticles inR? with
small masses aV ! per particle and let them move as independent Brownian motions
with diffusion rates2. Suppose that each particle dies independently of the others with
rate Npo(x) at sitex at timer and at the time of death each particle (independently of
the others) is replaced by 2 particles or by nothing with probabilit¥ tb each event.

The replacement patrticles, if there are any, perform independent Brownian motions an
the story of alternating branching and diffusions continues. If we define measure-valuec
processx” by

XN (A) = {mass of the particles alive at timén A}, VA € B(R?),

then asN goes to infinity the resultinge” converges in an appropriate topology to the
measure-valued process known as super-Brownian motion with diffusionr faaed
branching ratep. In dimensiond = 1 super-Brownian motion takes values in the space
of measures which are absolutely continuous with respect to Lebesgue measure and
density satisfies the following stochastic partial differential equation (see [9,15]):

2
P T AX )+ VIOK@ W), (0B x B (L)

whereA is the one-dimensional Laplacian aidis standard time-space white noise on
R, x R. In dimensionsd > 2 the super-Brownian motion takes values in the space of
singular measures, therefore it can not be represented as a solution to the above SPI
(for discussion on parabolic SPDESs see e.g. [16]). It is characterized as a solution to a
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appropriate martingale problem (see e.g. Chapter 6 in [2]). One of the strongest tool
available in the study of superprocesses is its Laplace transform. Mrite or w(e)

to denote the integral ap with respect to a measuye. Then for the super-Brownian
motion X adapted to filtratiorF, we have

Ple X9 | Fo] =e X0 Vi) vy >0, (1.2)

whereV, (¢) solves the following nonlinear partial differential equation:

5 = 5 AU - —u®? (1.3)

Vo= ¢@.

{ ov; (x) _ o? p(x)

This formula for Laplace transform is the key for proving that super-Brownian motion
is a unique solution to the martingale problem and so is strong Markov.

Recently there has been considerable interest in the area of the superprocesses w
interactions. In [5] solutions to the following system of stochastic partial differential
equations were studied:

X! 2 ) ..
_a’—t(x) = ZAX[0) + [y XHOXP@ W (@), (v R xR i=12 (L4)

whereW?!, W2 are independent space time white noisesand0. In this model, called

the mutually catalytic branching model, there are two types of particles each of which
may branch only in the presence of the other type. More precisely the branching rate c
each type at a site is proportional to the density of the other type present at that site.

A number of approaches are used to study uniqueness in law of interactive
superprocesses (see e.g. the use of “historical calculus” in [13,14,8], or exchangeab
particle representation in [6]). For the one-dimensional mutually catalytic branching
model (1.4), unigueness was resolved in [12], by deriving the so-called exponential self
duality formula. We will introduce this formula now. Here and elsewhere we identify
non-negative functionX (x) which are integrable on compact sets with Radon measures
X(x)dx = X(dx). If (X%, X?) and (X?, X?) are two independent solutions to (1.4)
starting at(X}, X3) and (X}, X3) respectively (suppose that the initial conditions are
in the space of continuous functions) then the self-duality formula states that

Plexp{—(X/ + X?. Xo+ Xg) +i(X} — X7, X — X5)}]
= Plexp{—(Xg+ X3, X} + X?) +i(Xg— X5. X} = XP)}].
In addition to proving the uniqueness result, the above self-duality formula is the key
tool for deriving the long time behavior of the processes with infinite initial conditions
through the long time behavior of the processes with finite initial conditions.

The question of extending the mutually catalytic branching model to dimensions
greater than one was of interest for a number of reasons. One’s intuition does nc
work very well in this case (see, for example, the intuitive “non-existence” argument

in the introduction of [3]). Eventually the existence of the model in dimengiea2
was proved in [3,4], providing’ /o2 is small enough. More specifically, it was shown
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that a mutually catalytic process = (X1, X?) makes sense in dimensiegh= 2 as a
pair of measure-valued processes that solves the following martingale problem. For a
appropriate class of test functiops i =1, 2,

t
. . . . O’ZA i .
M;(<pi>=<x;,<pi>—<X5,<o,->—/<x;, 2“’>ds, (>0, i=12,
0

are orthogonal continuous®-martingales such tha(¢;) = 0 and

(M' (@), =y(Lx(0),9f), 120,i=12
Here Ly is the collision local time of* and X? loosely described by

t

Ly(t.dx) = / / 5. (WX d0)X2(dy)ds, 130,
0 R2

whereas the precise definition is given in Definition 1.1 below. [3] deals with the finite
measures state space and [4] handles the infinite measures case. Several interest
properties of mutually catalytic process were derived in these papers, such as absolu
continuity at fixed times, segregation of types property, the extinction of one type as
time goes to infinity and a number of others. The proof of some of these properties i
based on self-duality formula which we are going to derive in this paper under additional
integrability condition (ntC). The uniqueness for the mutually catalytic martingale
problem, which is the major result of this work, follows from the self-duality formula.
The derivation of self-duality formula id = 2 is by no means simple generalization

of d = 1 case. The main problem is unboundedness of the densities of the processe
To circumvent this problem, first, we introduce an additional integrability condition
(IntC) and prove self-duality, and hence uniqueness, under this condition. Second, t
show that our uniqueness result is not vacuous, we verify existence of the processe
satisfying (ntC). Some moment calculations are required to show that the processes
with finite initial conditions constructed in [3] satisfyntC), and hence are unique
solutions to the corresponding martingale problem. Note that these moment calculation
are based on moment duality introduced in [3]. Besides uniqueness, we prove the stror
Markov property for the finite measure case—the requirement of a side condition like
(IntC) means, there is a bit to say here. MoreovéentC) also allows us to give a
simple proof of absolute continuity of collision local time with respect to time, that is,
the existence of a collision measure proc&sgr, -) such thatLy (dr, -) = Kx (¢, -) dt.

In the case of infinite measures initial conditions, the situation is more complicated.
We were able to derived((tC), and hence self-duality and uniqueness, only for initial
conditions with bounded densities. As the problem of finding a proper state space fo
these infinite measure-valued processes remains unresolved, we do not have results
the Markov and strong Markov properties in this case.
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1.2. Notation

We will try to use the same notation as in [3] and [4].

We usec to denote a positive (finite) constant which may vary from place to place.
A ¢ with some additional subscript or superscript usually denotes a specific constant
Write | - | for the Euclidean norm iR, d > 1.

For A € R introduce the reference functiagn :

i (x) =e M x eRY.
For f:RY — R put

|fl=sup[f()]/gn(x), *eR,

xeRd
and
I flloo = SUP| f(x)].

xeR4

For A € R, let B, = B, (R?) denote the set of all measurable (real-valued) functiéns
such thaf f|;. is finite. Introduce the spaces

Btem - Btem m B—)u Bexp— Bexp U B)u
A>0 A>0
Brap = Brap m By,
A>0

of tempered exponentially decreasingnd rapidly decreasingfunctions respectively.
Also let B = B(R?) (respectivelyBp = By(R?), Bp.com = Bb.com(R?) C = C(R?), Cp =
Cp(R?), Ceom = Ccom(R?)) be the set of all measurable (respectively bounded measurable,
bounded measurable with compact support, continuous, bounded continuous, continuol
with compact support) functions @?. Note that3 will also serve as a notation for Borel
sets inR?.

Let C, refer to the set of continuoug in 5; with the additional property that the
f(x)/¢,(x) has afinite limit agx| 1 co. The definition 0Cem, Cexp andCiap is analogous
to that of Biem, Bexp @andBiap. If F is any subset of continuous functions&fi then F
(respectivelyF*°) is a subset of functions iR whose partial derivatives up to the order

m (respectively of any order) belong fo. For exampleCSS  is the subspace of infinitely
differentiable functions i€om.

If F is a set of functions we will writé", or F* for non-negative functions i#'.

The topology orCiem is induced by the metric

com

dtem(fvg)Ezz_n(lf_g|—l/n/\1)7 /-8 € Ciem.

n=1

Let M be the set of all Radon measuresdh Then letMiem = Miem(R?) denote
the subset of all measuresin M such that{u, ¢,) < oo, for all A > 0. We topologize
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the set of tempered measutk$enm, by the metric

drem(pt, v) =do(u, v) + 27" (I = vlyn A L), @, v € Miem
n=1

Hered, is a complete metric on the space of Radon measur&? @mducing the vague
topology, andu — v|, is abbreviation for (i, @) — (v, ¢, )|. Note that(Miem, diem) IS
a Polish space and, — w in Miem if and only if (i, ¢) — (i, @) for all ¢ € Cexp.
Let M; = M;(R?) denote the space of finite measuresRGrwith the topology of weak
convergence. LeM,, be the space of rapidly decreasing measures R? such that
(u, @) < oo for any ¢ € Biem. We say thatu, = w in Mg if @, = n in My and
sup, (in, ¢5) < oo foranyar < 0.

For any metric spacg let D(R,, E) (respectivelyC (R, E)) be the space of cadlag
(respectively continuousk-valued functions with Skorohod topology. Lé¥t,(E)
denote the set of probability measures Brand B(E) serve as a notation for Borel
sets inE.

Let®p,(x) = 2P(°§, =x | *6o=0), t > 0, x € ¢Z?, where®, is a continuous time
simple random walk which jumps to a nearest neighbaiZf with rate 2202, Write
(¢, I1,, x € R?) for the Brownian motion ofR? with variance parameter?,

P (x,y) = (2n02t)_lexp{—|x —yl?/2ta?}, t>0, x,y eR?

for its transition density, anélS;: ¢ > 0} for the corresponding semigroup. With slight
abuse of notation let,px) = p; (x, 0). If 1 € Miem, S€tS,;u(x) = [ p,(x — y)u(dy).
For E atopological space lgf(X) be the law onE of E-valued random variabl#& .

1.3. Uniquenesstheorems

In this subsection we will state our main uniqueness theorems. We start with necessat
definitions. LetX = (X?, X?) denote anMZ,,-valued process, whet#12,, = Miem x
Miem. Define a pair of measures on the plane by

§ t
1
Ly (t,dx) = g//srxg(x)srxf(x)dsdrdx, >0, §>0, (1.5)
00

t
L5 (t,dx) = /S(;Xsl(x)S,;st(x)ds dx, t>0,8>0. (1.6)
0

DEFINITION 1.1 (Collision local time). —Let X = (X!, X?) be an M2, -valued
continuous process. The collision local time Xf(if it exist9 is a continuous non-
decreasingMem-valued stochastic process— Ly (t) = Lx (¢, -) such that

(LY’ (1), ¢) — (Lx(t),¢) asé | 0in probability,

forall t > 0andg € Ceom.
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The collision local time will be also considered as a locally finite measwi@s, dx)
onR, x R?,

Now we are ready to introduce the martingale problem for the mutually catalytic
model ind = 2. Note that all filtrations will be assumed to be right continuous and
contain the null sets at time 0.

DEFINITION 1.2 (Martingale probleniMP)3”). — A continuous7,-adapted Mg, -
valued procesX = (X', X?) on some(Q, F, F;, P) satisfies(MP)y” if and only if
Vo, eCP i=1,2,

exp

t
. . . . O‘ZA i .
M;(¢i>=<xg,<pi>—<X5,<o,->—/<x;, 2“’>ds, >0, i=12,
0

are orthogonal continuou&? F,-martingales, such thatZ{(¢;) = 0 and
(M (@), =y (Lx (), 9?), 120, i=12

Note thatXy may be a randonfFy-measurable initial condition.
To present the results dealing with solutions to the above martingale problem we nee
to define spaces of measures satisfying some regularity conditions.

DEFINITION 1.3.-Define

P (1, 2) (x) = S;pa(x)Sipa(x),  t>0,

81, m2)(x) E/S‘vﬂl(x)ssﬂ2(x)ds Z/Iﬁv(ul,uz)(mds, t>0.
0 0

DEFINITION 1.4. -Write u = (ut, u?) € Ms and say thatu satisfies theenergy
conditionif and only if u € M? = M; x M; and

/gt(,ul, u2)(x)dx <oo, VO<t<oo.
RZ

Write 1 = (u!, 1?) € M se and say thatu satisfies thestrong energy conditioif and
only if u € M? andVp € (0, 1] there exists = c(p, 1) such that for allr > 0

max [ p;(u;, mwi)(x)dx <ct™?.
1<l_’j<2/pt(,uz /’Lj)( ) X
R2

Remark1.5. — In view of Lemma 8(b) of [3] (see also (1.8) below) the strong energy
condition need only be checked for<0t < 1 (asct™! < ct~” for t > 1). As we only
need to check=2"andp = p, | 0, (n € N), clearly M . is a Borel subset aM?.
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DEFINITION 1.6. -Write i = (ut, u?) € Mieme and say thafu satisfies theenergy
conditionif and only if u € M2, and

/ 7 (11, 1) (D, (1) dx <00, WA >0, 0<1 < o0,
RZ

Write i = (!, 1?) € Miemse and say thaju satisfies thetrong energy conditioif and
only if u € MZ,,,and for anyp € (0, 1) and» > O there isc = ¢(p, A, ) such that for
anyr >0
D . . -
max [ Buu 1)) dx <er .
R2
DEFINITION 1.7. -Write o = (ut, 4?) € Myape and say thau satisfies theenergy

conditionif and only if u € MZ,, and

/gt(,ul, w2)(xX)p_5 (x)dx <00, VYA>0, 0<t<oo.
R2

In Theorem 11(a) of [3] solutions 1 P)” were constructed foXo, a deterministic
initial condition in M e, providing

y/o? < (B3V6mem) L, 1.7)
wherecy is a universal constant (independenwd) defined in Lemma 8(b) of [3] by

cw= sup °p(x)to’. (1.8)

xeeZ2, t>0

In Theorem 4 of [4] solutions tGVI P)i’;’ were constructed for infinite initial conditions
Xo € Mz, which have densitie&d, x3) in BZ,,. Recall that we often use the same letter
to denote a measure and its density.

In order to establish uniqueness in law of solutionsl\m:’);’(’;’, we need to assume
additional integrability condition:

For any compack c R? set

Hox(X,) = / / (L4 x — D) S X 2008, X2(0) S X2 (1) S X2(y) dx dy, & >0,
K K

(IntC)  Foreach O<§ < T < oo, compactk C R?,

P

T
/Hg,K(Xs)ds | }‘3] is bounded in probability as | 0
8

i.e.Vn > 03M > 0 such that limsup (P

T

/HS’K(XS)dS | f5‘| > M) <n.
el0
8
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Note that (ntC) is implied by the simpler condition

(SIntC) VT > 0, compactk c R?, limsupP
el0

T
/HSQK(X‘Y)ds] < 0Q.
0
We now introduce an integrability condition on possibly random initial condi¥gn

(EnC) P

2
S X0 + / 2 (x3, x2) (x)qﬁk(x)dx] <00, Vt>0, VA>D0.
j:l R2

Now we are ready to present our main result.

THEOREM 1.8 (General uniqueness theorem)Assumey /o2 < (v/6mc)~t and
let Xo € Mieme be a possibly random initial condition satisfyitgnC). Then there is
at most one solution taMP)5” satisfying(I ntC).

Notation — Let Qo = C(Ry, M7), Quap= C(Ry, MZ,), Qem= C (R, M) with
the usual topology of uniform convergence on compact subséts of

It will be shown in Theorem 5.1 of Section 5.1 that the solutions constructed in [3]
with X € M e satisfy (ntC). It was also shown in [3] thaX, € M; e forall r > 0 a.s.
and this allows us to show the strong Markov property for the processes starting fron
finite initial conditions and satisfying iitC). Overall we have the following theorem.

THEOREM 1.9 (Finite measure initial conditions). Assumey /o2 < (3v6m )t
andXg € Mse.

() There is a processX satisfying the martingale probleniM P)i’oy and the
integrability condition(IntC), and such thatX, € M;, for any r > 0 a.s. If
Xo € M sethen there is a solution taMP)y” satisfying(SIntC).

(b) The lawPx, on 2, of the solution in(@) is unique.

(c) There is a time-homogeneous Borel Markov transition kekhel {P,(u, dv):
t >0, ue Mjie} on M such that any process satisfyiilyl P)y” and (IntC)
on (2, F, F,, P) is (F;)-strong Markov with transition kerne?.

The martingale problertiv P)i’g' for finite initial conditions was defined in [3] with a
larger set of test functions than in Definition 1.2. Clearly any solution to the martingale
problem (MP)y” in [3] is a solution to the(MP)5" of Definition 1.2. Therefore the
existence part of (a) follows from the proof of Theorem 11(a) in [3]. To complete
the proof of (a) we need to verify integrability conditionsitC) and SIntC) for the
constructed processes. This will be accomplished in Section 5.1. Then part (b) will
follow from part (a) and Theorem 1.8. Part (c) will be proved in Section 5.4.

Remark 1.10. — To ensure the existence of solutiongtP);” satisfying (ntC),
condition (1.7) maybe weakened gc? < 1/+4/6, although to ensure only existence
(without (IntC)) it may be weakened tg /o2 < 2/+/6 (see Remark 12(ii) of [3] and
Theorem 5.1 of Section 5.1 derivingh(C) below).
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The uniqueness in law of the mutually catalytic branching proeséth X € 132,
constructed in [4], is established in the following theorem.

THEOREM 1.11 (Initial conditions with bounded densities). Assume
v/o? < (V6mew) ™t (1.9)

andXg € (B{)2. Then
(a) There is a solution t¢M P) " satisfying(SIntC).
(b) The lawPx, on Qiem Of the solution in(@) is unique.

The existence of a solution tGv P)X” follows from Theorem 4 and Remark 9(i)
of [4]. To complete the proof of (a) we need to verify integrability conditi@hn{C)
for the processes constructed in [4]. This will be accomplished in Section 2 in
Corollary 2.11. Part (b) then follows immediately from part (a) and Theorem 1.8.

1.4. Duality relation

The key ingredient in the uniqueness argument is an exponential duality introducec
in [12], [5] for solutions to the analogue ¢f P)f(;’ onR! and on a lattice respectively.
For our continuum setting the dual procéésrvill be a particular solution t¢M P)"
constructed in [3], [4] for particularly nice initial conditions, which we now descrlbe Let
%) € B and setX{(dx) = &j(x)dx, j =1,2. Fore > 0 defineX}* :Z2 ~ [0, c0)
by

X4e (e ) = 672 / Hydy, j=12,
Ce(x)

where C,(x) is the square of sidelength and southwest cornex € ¢Z2. Let
{Wtj(x): x € 7%, j =12} be a collection of independent standard 1-dimensional
Brownian motions on some filtered probability space and consider the unique (in law)
solutions of

. ! 2 ~ . / i il j
th,é‘(x) — Xé,&‘(x) + / % lAX:Y]’S(x) ds + / \/ng"g(x)sz’g(X)dWYJ (-x)7
0 0

xeZ? t>0, j=1,2

constructed in [5]. Her#A is the usual discrete Laplacian @A (*Af (x) = Y2, (f (x +
ei)+ f(x —e;) —2f(x)), e; is theith unit basis vector). We then consider the rescaled
process

X/ (x)=X/"(xe™Y), xeeZ? 120
and define its associated measure-valued prd(’fes-s X1 eX?) by

Xl o)=>" 8}?{(x)<p(x)sz:/8}?;’(x)<p(x)d8x, 120, j=12,

xeeZ?
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whered® x assigns mass’ to each point i Z?. Let® M, denote the subspace Miem

of measures with densities with respectdtoc. Then¢X. is a® M2, -valued process.

Clearly*Xo = X in M2, Propositions 37, 38 and Remark 9(i) of [4] show that if
y/o? < (V6mem) ™t (1.10)

then{*X : ¢ > O} are tight inC(R,, M2,) and any weak limit poinK = (X!, X?) (that
is

ey = )N( (1.12)
for someeg, | 0) satisfiegM P)%”’. Using notation from [4], we set
0
EmMPAR) = m(xq, x2, X3, X4)
= P(* X x0) X (x2)* X2(xa)* X2(xa)), (X € (¢72)").
Then Corollary 31 of [4] states that if

5 Sin(@(1- p))
Pt Sl 54

\/éﬂcrw

for somep: 0 < p < 1, then there is;(y, 02 p) > 0 which is increasing in and
satisfies

- ~ ~ 4
“my 43 < ey, 0%, p) (%ol V 11510

y/o (1.12)

t
X <1+/s_”(‘9pzs(xl—x2) +£pzs(x3—x4))ds>, vt >0, (1.13)
0

and

supc, (v, 0% p) =cr(y,0% p) <oo, VT >0,
t<T

In particular, ifp = 1/2, then

. - . . 4
mi 243 < e (v, 0%) (5]l v [176]1c)
t
X <1+/s_1/2(‘9p25(x1 — x?) 4 Py (3 —x4))ds>, v >0. (1.14)
0

These moment properties of play an important role in the proof of the dual
propositions stated below.

PROPOSITION 1.12 (Duality under I(itC)). — Assumey /o? < (v6mcw) L. Let
(¥, %5) € (Cip)* and X be the particular solution ofM P)%” given by(1.11) on some
0

(Q, F, F,, P). LetX be any solution tqMP)5;” satisfying(IntC) on (2, F, F,, P) for
somef, measurable initial conditiorXq satisfying(EnC). Then for any > 0
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Plexp{—(X!+ X2 35+ i3) +i(X} — X%, 55 — %5)}]

=lim P x Plexp{ —(X%+ X2, S.(X* + X?))
&

+i(Xg— X5, S: (X7 — X))} (Dy)

In particular, if X} (dx) = x{ (x) dx for some(deterministi¢ xj € C;,, then

Plexp{—(X}+ X2 X5+ %3) +i(X} — X2, 55 — %5)}]
= Pexp{—(Xg+ X5. X} + X7) +i(X5 — X5. X = X2)}]. (D2)

Remark1.13. - N

(a) The restriction ony/o? is required for the existence of and (1.14). This
restriction may be weakened @ 2 < 2//6 (see Remark 1.10).

(b) As X is a fixed particular solution, the right hand side(@f;) depends only on
L(Xp). This will allow us to to derive the Markov property of solutions with finite
initial conditions—see the proof of Theorem 1.9 below.

Proof of (D;) — (D). —We will show that(D;) is an easy consequence @,).
Note that

Sexd(x) = x{(x), VxeR?
ase | 0, and also by Lemma A.1 of the Appendix we have

SUPS.xg (x) < car(L V|| 0o (x),  j=1.2,
e<1

foranyi > 0. P(¢_;, X!) < o0, j =1, 2, therefore by Dominated Convergence
(X8, 8. X)) = (Sexb, XY — (xb, XJ), P-as., i,j=12

A second application of Dominated Convergence allows us to take the liniiDin
inside theP x P and derive(D,). O

We can get another version of Proposition 1.12 under finite initial conditions for larger
class of test functions.

PrROPOSITION 1.14 (Duallty under I(tC) for finite initial conditions). — Assume
y/o? < (V6mew) L Let (33,33 € €y )2 and X be the particular solution of

M P) given by(1.11) on some(<2, F,F., P). Let X be any solution to(M P)

satlsfylng(l ntC) on (2, F, F,, P) for someF, measurable initial conditiorXy € /\/lf e
satisfying(EnC). Then for any > 0 (D,) is satisfied, that is,

Plexp{—(X! 4+ X2, 33 + 73) +i(X} - X%, 55 — 35)}]
=lim P x P [exp{—(X§ + X3, Sg(X,1+X,)> +i(Xg— X5, Se (X7 — X2)}].
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Organization of the paper. Section 2 is devoted to the proof of basic duality
Proposition 1.12. The proof of Theorem 1.11(a) is completed in Corollary 2.11 of
Section 2. In Section 3 we prove uniqueness Theorem 1.8 for general initial conditions
Theorem 1.11(b) follows as a trivial corollary of Theorem 1.8 and Theorem 1.11(a).
Section 4 is devoted to continuity of transition function of mutually catalytic process
with respect to initial conditions. In Section 5 we prove Theorem 1.9, Proposition 1.14
and show existence of the collision measure for a process satistyit@)(

The last section is Appendix A where some auxiliary results are presented and provec
Note that all the results in Appendix A are labeled with capital letter “A” instead of a
section number (for example Lemma A.1).

2. Proof of Proposition 1.12

We start with proving of Proposition 1.12 under the strong8imi{C) instead
of (IntC). That is we are going to prove

'PROPOSITION 2.1 (Duality under $IntC)). — Assumey /o2 < (v/6mcw) ™!, Let

X} e Crip andX be the particular solution ofM P)Z” constructed in Sectioh.4on some
Xo

(Q, F, F,, P). LetX be any solution téMP)” satisfying(SIntC) on (2, F., F;, P) for
someF, measurable initial conditiorXy satisfying(EnC). Then for any > 0
Plexp{—(X; + X7, 55+ %5) +i(X; — X7, % — %) ]
=lim P Plexp{—(X5+ X2, S: (X! + X?))
+i(Xg — X§. S. (X} = X)) }]. (Dy)
We start with some first and second moment resullts for solutiotd Bfy” satisfying

(SIntC) and ENnC). Throughout this section we assuXeis such a solution withXg
possibly random. To simplify our notation in the following let

L,(dx) = L(t,dx) = Ly (t, dx), 2.1)
L**(dx) = L**(t,dx) = L (1, dx), (2.2)
Lf(dx) = L*(t,dx) = L5 (1, dx). (2.3)

The proof of the next lemma shows that a weakened fornsbftC) (the [x — y|~*
term may be dropped in the definition Bt ) implies square integrability of, (¢) for
any ¢ € By com Nonetheless we continue to assume our stronger standing assumption
(SIntC) and EnC).

LEMMA 2.2.— (a)For eachT > 0, ¢ € By com there existsr , < oo such that

limsupP [L*¢ ()% + L (9)%] < crot, Yt el0,TI.
el0

In particular
P[L,(¢)?] <cryt, VtelO,T1, Yo € By com
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and

1
LF(9) = Li(p)
ase | Oforanyg € Ceom.
(b) If 91, ¢» € B, and T is a stopping time, then ofa > T}
P[X[ @) | Fr] = (X7, Si-rej),  j=12
and

PXNeOXP(p2) | Fr] = (XF. Siro1)(XF. S-102).
() If @1, 92 € By then

P[X/(p))] = P[(X}, Sip))], j=1,21>0
and

P (XN X(g2)] = P[(X3, Sip1)( X3, Si92)], t>0

where all these quantities are finiteSfy; € B, for somex > 0.
(d) If ¢ : R?— [0, oo] is Borel, then

P[L,(¢)] = / / P[SX5(x)Ss X5(x)] ¢ (x) dx ds.
0 R2

Proof. —(a) Fix arbitraryg € Bp com There is some compact skt Cc R? such that
suppl¢) C K. If t < T, then

2

L0 [ yig 2 ds 2
(8!//SMXS(x)SMXS(x)w(x)dx » du) ]t

0 R2

P[L(p)*] =P

& t
1 d
<lol; [au [ TSP[ / Suxsl(X)Squz(x)dxz}tz
0 0 K
& t

1
<l / du / ds P[H, x (X)]1.
0 0

An analogous bound holds fa?[L¢(¢)?] by an even simpler argumenstC) now
implies the first inequality in (a). Fatou’s lemma gives the second. The ahéve
boundedness shows that the convergence in probability in the definitibp(@f may
be strengthen té.* convergence.

(b) If t > 10 > O are fixed we may argue as in Corollary 43 of [4] to see thatdfCS,,
then

t
X[ @)= X[+ [ [ 10205 00aM V0. j=12. (24
0 R2
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(See Chapter 2 of [16] for the construction and properties of the stochastic integral with
respect to the orthogonal martingale measuié’.) Let ¢, be a stopping time taking on
finitely many valuedz,, ..., t,} with {t1,...,£,} N[0, t] = {t1, ..., t}. Then on{zy < ¢},

t

k t
[ |10 > 0500 dm V00 =Y 100=1) [ [ S-e1am? e
i=1

0 R2 = 1 R2

as one can easily check by noting that 1) S, _,o(x) = 1(r > 1;,)S;_,¢(x) on{to =t}

and then following the proof of the corresponding “localization” result for ordinary
stochastic integrals (see Theorem 27 on p. 307 of Meyer [10]). It follows that (2.4)
remains valid for the finite-valued stopping tinmgon {ro < t}. Let T be an(F))-
stopping time and lef,, | T be the standard set of finite-valued stopping times (we
may allow 7, = oo). Apply (2.4) with 7, in place off and letn — oo to see that on

{T <t} CUZi (T, <1},

XJ (¢) = X5 (Si_r) + / / 1 >T)S o) dMP(rx), j=12.  (2.5)
0 R2

This is of course trivial on{T = ¢t} (again using the localization result) and by
taking bounded pointwise limits we see (2.5) is valid gh <} for ¢ € Bp.com
We get by (a) and the definition @MP)5 " that the stochastic integralg [z 1(r >
T)S,_,o(x)dMP(r,x), s <t, j=1,2, in (2.5) are orthogonalL? martingales and
hence (b) follows forg; € By com j = 1,2. The boundedness and compact support
conditions are readily dropped by Monotone Convergence.

(c) The equalities are immediate from (b) with= 0. The finiteness follows from
(EnC) condition onX.

(d) It follows from Monotone Convergence that, to establish the equality in (d), it
suffices to consider non-negative boundedith compact support. The!-convergence
of L**(¢) ase | 0 from (a), and the second moment result in (c) imply

P[Li(p)] = lgi?g P[Ly* ()]

t &

. d

:IIEr(I)///P[Squl(x)Squ(x)]go(x)dx?uds
0 0 Rr2

t &€

. d

=iim [ [ [ PI8, X300, XG0 ] dx X ds
0 0 Rr2 ¢

t

=Ilim [ P
el0
0

&

d

/ / Surs Xb () S0 X200 dx | ds. (2.6)
£

0 R2

Let G.(s) denotes the expression in square brackets. Then
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/ P[G.(s)%] ds
0

toe J
<[/ Pl / SuﬂXé(x)smx(%(x)go(x)dxﬂ?“ds
00 R2
t € ~ 2
://P P[/SMXXl(x)SMXf(x)w(x)dxIfo} ]dg—“ds (by (b) with T = 0)
00 B R2

t €

I d . .

<//P /Squl(x)Squz(x)w(x)dxz]—uds (by Jensen inequality)
00 R ¢

which is bounded uniformly ire < g¢ by (SIntC). This allows us to take the limit

through the first two integrals in (2.6) and conclude

t

P[L.(9)] :/p

oy d

im / / SuﬂXé(x)SuHX%(x)go(x)dx—u] ds <oco.  (2.7)
e &

0

0 R2

We are implicitly assuming this limit exists. To this end we claim

U / S X§(x) S, X3(x)p(x) dx (2.8)
R2

is continuous or{0, o).

Note first thatu — S, X{(x) is continuous on0, co) by Corollary A.5. As¢ has
compact support and, by Corollary A.8, X} (x) < cas(T, })caa(e)d_s(x) X (¢) for
e<u<T, (2.8) follows from application of Dominated Convergence. (2.8) shows that
the limit in (2.7) is [z Ss X3(x) S X3(x)@(x) dx for s > 0 and this gives the equality
in(d). O

In the following we assume that, € (C;5)? andX is a particular solution toM P2
0

constructed in Section 1.4, which is independenX of
Denote byCiha) (respectiverC(Tl”t?m)A the set of all real-valued functiong on
[0, T] x R? such thatt > ¥ (z, ), t — 22&0 andt > Ay (t,-) are continuouLrap

(respectivelyCien) Valued functions.

LEMMA 2.3.— (a)Let (i1, 12) € Mieme andT > 0. Definepn = 1 + po + i (o —
p1), and letin = g + o —i(uz — pa). Then

e (XE ST G0)—(X2.ST-() — @ (X357 (1) —(XZ,S7 ()

t
x1 X2 7
+4y / e T RSSO S (1) () 74 (112) () L (ds, dx)
0
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t
_ / / o (XL.57- )= (X2.57-, (7))

0 R2
x (Sr—y(w) ()M (ds, dx) + Sr_, (@) (x)M *(ds.dx)), 0<t<T,
whereM!(ds, dx) (I =1,2) are martingale measures.

(b) Let (1, u2) € Miape @nd T > 0. Define . = 1 + pz + i(u2 — 1), and let
= p1+ p2 —i(u2 — p1). Then

e (XS (0) ~(XP. 57— (1) — o(X§.57 (1) —~(X§. 57 ()

t
_(x1 _(x2 o
+4y / e (S U= S= U S (1) (6) S7—s (12) (x) Lx (ds, dx)

0
t
_ / / e (XES7 s ()~ (X2.S7 - ()

0 R2
x (Sr_s (W) ()M (ds, dx) + Sp_y (L) (x)M?*(ds,dx)), 0<t<T,
whereM'(ds, dx) (I =1, 2) are martingale measures.

Proof. —Arguing as in Lemma 42 of [4] we get
t
; o) i1 0
X! () = Xp(Po) + /Xs éAtlfs + at/fs ds
0

t
—i—//z//s(x)Mj(ds,dx), 0<t<T, j=12 yeCia (2.9)

0 R2

. . r_o/1 9
Xl = Xgo + [ X1 (Emzfs + gx/f‘v) ds
0

t
—|—//1//s(x)ﬁj(ds,dx), 0<r<T, j=12 yeCl?, (2.10)
0 R2
(A little bit of care is needed to be able to talec C(Tlt?m in the second case—the proof
uses Monotone Convergence and simple moment calculations.) By choosing function

U= Sr_.(w), ¥2=Sr_, () in (@), (b), and then applying Itd's formula on the interval
[0, T) one can readily complete the proof of the lemmal

LEMMA 2.4. - If X € (Cj5)? and X is as above theX. € Qppa.s.
Proof. —By Theorem 11(c) of [3] we get that. € Qo. To complete the proof we have
to show that
P[supX/,¢,)] <oo, j=1,2 ¥T>0, »<O0.

1<T
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First, for anyA < 0, choosep, € Ctem such thatp; > ¢;. Then use (2.10) withy, () =
@,.(+) for all ¢+ > 0. The result follows easily by moment calculations and by Doob’s
inequality. O

To simplify our notation (as in (2.1)—(2.3)) in the following let

Li(dx) = L(t,dx) = Lg (¢, dx), (2.11)
Ly (dx) = L™ (1, dx) = LY (1, dx), (2.12)
Li(dx) = L*(t,dx) = L (1, dx). (2.13)

LEMMA 2.5.—LetT be any bounded stopping time apdbe a random function such
that

pe LY (R*x Q, L (w, dx)P(dw)), Vt>0
andg is B x Fr-measurable. Then

T+t

P[L(T,T+11x¢)|Fr] = //S r(XF) @) Su—r (X3)(X)p(x)dx du, P-as.

T R2

(2.14)

Proof. —Take a non-randonp € Ccom- L; IS @ continuous measure-valued process,
therefore L,(¢) is continuous. IfT is a bounded stopping time, then by Dominated
Convergence and Lemma 2.2(a)

I{!?C} P [LT+5(§0) —L7(p) | -7:T] =0, P-as.

Hence, for any > 0, for P-a.ew there exist$’(w) > 0, §' € Fr such that
P[L([T,T+8"1 x |¢l) | Fr] <8, V0O<8"<4§.

Arguing as in the proof of Lemma 2.2(b), that is by using approximation of the stopping
time T with finite values stopping times and continuity f we can show that

P[Lr+(9) = L4s (@) | Fr] = U'm L7 (9) = Ly5s(9) | Frl.

By Lemma 2.2(a).** converges td. in L1, therefore
[LT-H () — Lrysr (@) | -7:T]
= Ilm P[ T+t((/’) T+5”(<0) | fT]

T+t

=Igi?8 // /P (x)S( )(x)|fT](p(x)dudxds
T+48" R2
T+t

—tim | / /sw P (XE) @) Sursr (X2) (000 () dudx ds

T+48" R2
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T+t
/ /Ss (XD (0S8, (X2) (0)p(r) dxds, VO<8' <8,
T+58" R2

where the second equality is a consequence of Fubini's theorem and the third equalit
follows by Lemma 2.2(b). Hence, we get that

T+t
PILUT. T+ x¢) 1 7] = [ [S1r(X3) 00807 (X3) (g di du| <.

T+38" R2

V0< 8" <§, P-as.
Lettingé” | O, (2.14) follows sincé was arbitrary and., is continuous.
The extension of (2.14) for an§ x Fr-measurable

g€ LY(R* x Q, L,(w, dx)P(dw)), Vit >0,

is trivial. O
The next lemma does not give li@L° = L but it is nonetheless quite useful.

LEMMA 2.6. — Letg be Borelx optional-measurable function dR, x R? x Q such
that for P-a.e.w the mapping

S = g(sa *y Cl))
is continuous fronR . to C and for each compact s& c R? andr > 0, there exists a
constantCg , such that

lglixk= sup [g(s.x,w)|<Ck, P-as.
0<s<t,xek

Assume also that

//|g(s X, )’L (ds,dx)

sup P
0<e<1

+ P

//|8(S x, )| L(ds, dx)] < 00,

0 R2

ILmOOoigflp // |g(s, x, )|L*(ds, dx)]
0 |x|>k
Then
IJ?SP //g(s,x,-)Lg(ds,dx) =P //g(s,x,-)L(ds,dx)].

0 R2 0 R2

Proof. —For anys’ > 0 choose a compact s&t C R? such that

//|g(s x,)|Lf(ds, dx) //]g(s x,)|L(ds, dx)

OK‘

sup P +P

O<e<1

<§8'/3. (2.15)
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By Lemma 2.5 for any > 0 and$ > 0 and any3 x F,-measurablel; . s(w, dx) P (dw)-
integrable functiorp(w, x), we have

t+4

P[L(plg, x 1.1 +8]) | F] = //S 3 () S0 (X2) (0)(x) dx dut.

t K(;/

This means that for any optional step functipr=>";_; ¢x 1([#, fx+1)), Whereg; is an
B x F,-measurabld., (o, dx) P (dw)-integrable function, we have

/t/f(s,x,-)Lg(ds,dx)]

0 Ky

lim P
el0

1, At
n k+1

> / /Ss+u—tk(lek)(X)

k=14t Ky

=lim P
el0

X Sevu—r (X2) ()ex (x) dx du] (by Lemma 2.2(b))

t
_p //f(s,x, L(ds. dx)] (by Lemma 2.5). (2.16)
0 Ky
For arbitraryg (indicated in the assumptions of the theorem) the procedure is standard
Define:

1t =0,
tn-'rl_t +2_

k k
g (t): (n)’ tn <l‘<l‘n—&-l’

Ak,g//:{w: Sup ’g(sax’a))_gk(svwi” <8N}
0<s<t,xeKy

g(-, -, w) is continuousP-a.s. and so for each934, §” < 1 there existX > 0 such that

P(Ars)>1—8, Vk>K. (2.17)

P /t/g(s,x,-)Lg(ds,dx)

0 Ky

_ N ok NTE
=P //g(s,x, )—g(s,x,)L (ds,dx)]

0 Ky

P /t/gk(s,x,-)Lg(ds,dx) ,

0 Ky

P[L:(Ky)], P[L:(Ks)?], P[L;(Ks)], P[L,(Ks)?] are bounded by Lemma 2.2(a).
Choose’” such that

Vk>1 (2.18)

§"(P[L{(Ks)] + P[L(Ks)]) <68'/3
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and choosé such that

2lglx, (/PLLE(K5)218 + \/ PLL,(K3)?18) < 8'/3

Now takek such that (2.17) is satisfied. Then

. —_— k . £
P[//’g(&x, ) — g (s, x, )| (L (ds,dx)—i—L(ds,dx))]

OKB/

<P 1Ak’8,,(.)//|g(s, x,-) — g" (s, x,)|(L*(ds, dx) + L(ds, dx))]

0 Ky

+ P

k,a//
0 Ky

<8P, () (Li(Ks) + Li(Ky))]
+2lglly ky P[Lac , O (L§(Ky) + Li(K3))]
<8"(P[L{(Ky)] + P[Li(Ky)])
+2ligll ky (v PILE(K3)?1P (A ) + 1/ PILi(K3) 2 P(AS ) )
2
3
Lettinge | 0in (2.18) we get by (2.15), (2.16), (2.19) that

O/R/Zg(s,x, SL(ds, dx) //g(s,x, -)L(ds,dx)] ‘

0 R2
<48 /3+28/3=4¢.

Sinced’ was arbitrary we are done.O

Lye (.)//|g(s, x,-) —g~(s, x, I|(L*(ds,dx) + L(ds, dx))]

< Vo<e<1 (2.19)

limsup|P —P

el0

To simplify our notation in the following let

E(u, 1) = exp{—(ua + po, fla + i) + i1 — w2, fla — fi2) },
for = (u1, u2) € M x M, ji = (jig, ft2) € By x By
or u= (1, n2) € By x By, o= (1, fr2) € M x M,
L'([0,s] x B) = L([0,1] x B) —L([0,t —s] x B), O0<s<t,

L"*([0,s] x B) =L*([0, ] x B) — L*([0,t —s] x B), 0<s<t,

and we set(u, it) = 0if (1 + uo, fig + i) = 0o. Foru = (uq, u2) € M x M we set
S = (S; 1, S u2). Given the Polish spacg and the space of Radon measufrdsE)
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on E, let P be any probability measure oM (E). If the measurgi € M(FE) defined by
(A = fM(E)M(A) P(dw) has a density, this density, with a slight abuse of notation,
will be denoted byP[(x)]. For example we will write
t
Pl [ [ Sg(>~<s>)w(s,x>i(ds,dx>]

0 R2

= //ﬁ[ez(x,_s, Se (X)W (s, x)L(s, x)] ds dx,

0 R2

//e(xs, Se (X)) ¥ (s, x) L(ds, dx)]

0 Rr2

P

t
= [ [Plerx S. K ps, LG 0] ds
0 R2
for any integrable functiony on R, x R? Recall that the above measures are
absolutely continuous (and therefore densities are well-defined) Bificels, dx)] and
P[L(ds, dx)] are absolutely continuous by Lemma 2.2(d) (note thatiso satisfies the

hypotheses of Lemma 2.2).
LEMMA 2.7.—Foranyt,e >0
P x P[€(X;, Se(X0))] — P x P[€(Xo, Se(X1))]

=4y P / / PE(X_y Se (X)) (S X 1) (x) (S X2) (x)] L' (ds, dx)

0 R2

t
— / / P[&(X,_s, Se(X))L(s, )] L' (ds, dx)].
0 R2
Proof. —Fix any T > 0 and define three functions;, i, f by

ft,s) =P x P[E&(X,, Sr__sX)],

ha(t,s) = / 4y P x P[&(X;, St_y—s(X)) (Sr_i—s X1 (x) (S7_—s X2) (x)L(t, x)] dx,

R2

ha(t,s) = / 4y P x P[&(X,, St_y—s (X)) (St—i—s X1 (X) (S7_1—s X2) (x) L (s, x)] dx
]RZ

forO<s+t<T.
By Lemma 2.3 (it is easy to check that stochastic integrals with respect to martingale

measures are in fact martingales dud.fdoundedness) and Fubini’s theorem we have

t
f(t,s):f(O,s)+/h1(u,s)du, Vi, s >0 t+s<T,
0
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f(t,s):f(t,O)—l—/hz(t,u)du, Vi, s >0:t+s<T.
0

From Lemma 4.4.10 of [7] (see e.g. Lemma 4.17 [11]) it follows that
t
f(@,0 — f(0,1) = /hl(t —s,8) —ho(t —s,s8)ds (2.20)
0

for almost every, 0<r < T. To verify (2.20) for every X ¢ < T it is enough to show
the continuity of the right side of (2.20). Take an arbitrgry> ¢ and check that

T T
/1(s <t)hi(t, —s,s)ds — /1(s <Hhi(t—s,s)ds, i=1,2. (2.22)
0 0

Consider (2.21) fof = 1. To simplify the notation define
[t ) = €(Xy, S70, (X)),

Then
T T
/1(s <t)h(t, —s,8)ds :/l(s <t)h(s, t, —s)ds
0

0
T

[ [ 16 <uf.s

0 R2

=4yP x P

X (ST_hj?i_ﬂ)(x)(ST_hj?i_ﬂ)(x)L(ds,dx)].

By Lemma 2.4)~(_1, f(? are continuous oM. This together with Corollaries A.4, A.5
and Dominated Convergence implies that
s < ta) f (b, ) (Sr—i, X ) ) (S7—, X2 _,) (%)
— f(t,)(Sr_ XE ) (x)(Sr_ X2 ) (x), asn— oo, (2.22)

for everyx e R?, s <1, P x P-a.s. Note that

T

[ [ 16 <t (Sr, X)) (1, X2 )0 L (s, d)
0 R2

lim P x P

th—>t

:ﬂm//ﬁxH@Fjbmijémwﬁbmwﬁamwmh

Ihn—>t

0 R2
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- / / [(S7— X2) (1) (S7_s X2) () (8, X3) (0) (8, X2) ()] dx ds

T

/ / s <O(Sr_ XE ) (x0)(Sr_ X2 ) (x)L(ds, dx)|. (2.23)

0 Rr2

Defineu(ds, dx, d®, dw) = L(w, ds, dx) P(d&) P (dw). Then (2.22), (2.23) imply that
convergence

s < 1) (S, Xp_ ) (0) (S7—, X2 ) (1)
— 1(s <1) (ST—IX,_S)(X) (ST_,XI_S)(x), asn — 0o,

—PxP

isin LY(u(ds, dx, d®, dw)). Since f (1,, s) is uniformly bounded im we get that

105 < 1) f (ta ) (S7—0, X1 ) (0) (S, X2 ) (%)
— Us <O, ) (Sr—X1,) () (Sr—e X2,) (x)

in LY(u(ds, dx, do, dw)) and (2.21) follows foii = 1. By the same argument it is easy
to show that (2.21) holds far= 2 and the continuity of the right hand side of (2.20)
follows. Hence (2.20) is satisfied for each< < T. TakeT =t + ¢ and the proof is
complete. O

Fix t > 0. To simplify the notation denote

= ¢(X,, S:(Xi—y)),
/ B B (2.24)
Fo8 (s, 0) = (Se X7, (0) S X2 (1)) (Ser X (x) Ser X2(x)).
Use Lemma 2.7 and the equality in (2.24) witk= 7 to see
I.=|P x P[o — ¢

=|4y P

/ / PlgfS.XE (x)S. X2 (x)] L(ds, dx)

0 R2

- / / Plof L(s, x)S: X (x)S. X2 (x)] dxds] . (2.25)

0 R2

Now apply Lemma 2.6 to see that the second term insidétegpectation is

/ / o S X (x)SgX,Z_S(x)i(ds,dx)]

0 R2
t
//@f_sfg’g/(t —5,x)dx ds].

0 R2

—=limP
e'}0
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Similarly by applying Lemma 2.6 to the first term in (2.25) we get

//P @: e Fee(s, x)]dxds]

0 RrR2

//(p e s, x)dxdsH‘ (2.26)

0 Rr2

I.=4y|lim P

siO

I|m P

To justify taking the limit outside the expectation in the second term, fix arbitrary
A >0, ¢ > 0 and note that

// 0% £ (5, x) dx ds]

0 R2

t
< [ [ 8 XH0S X211 K0 Se -, Ky() i ds
0 R2

<///ps(yl—x>p8<yz—x)(cmt+1>,x)2|??é|k|??8h
0 R2 R2
X ¢, (x) dx X H(dy1) X2(dy2) ds

< (Ko, Mgt / XY () X2(,) ds.
0

where the first inequality follows from Lemma 2.2(c), the second one follows from
Lemma A.1 and the third one from Lemma A.2. Note tlaaf(o, A) is finite since
Xo € (Crap)z-

By Lemma A.15;¢, € C, for anys > 0 and anyx € R. Therefore Lemma 2.2(c)
shows that [y X1(¢,)X?(¢,)ds is P-integrable and hence we may use Dominated

Convergence to write (2.26) as
t
//(p;:(fs’é‘/(s’ )C) _ fs’,é‘(s’ _x)) dx dS] .

0 RrR2

I, =4y limP x P

lim (2.27)

Arguing as in the proof of Theorem 11(a) of [4] (this theorem establishes absolute
continuity in the particular case m‘é < dx, j=1,2),wecan check that the hypotheses
of the general absolute continuity Theorem 57 of [3] are satisfied. Therefore, with
probability 1, X/ andXJ have densmes/( ) andx/ (-) respectively forj =1, 2.

Fix0<s <t. ThensS X,’ s(x) = xl_,(x), j=1,2, for Lebesgue a.ax, P-as., by
standard differentiation theory. Moreover,

P x P[(X],S.X]_)]
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= | [S.(x§)S. (X)) dx] - (by Lemma2.2(0)
R2

P[//psﬂ()’l—Y2))~(é(dy1)xé(dY2)}

R2 R?

—>P[ / / p,(yl—yzﬁé(dyl)Xé(dyz)], ase |0, j=12  (2.28)
R2 R2

by Dominated Convergence, LemmaA.1 dh@(é(@)] < 00. Use again Lemma 2.2(c)
to show

Pxp| [Hwxian| =P [Pl wa
R2

R2

= [ PIS.(X8) ]S (X))

R2

=P [ / P (y1 — yzﬁé(dyl)Xé(dyz)], j=12 (229
RZ

It follows from (2.28) and (2.29) that
S (X)) (x) > F_(x) inLY(P x P(X!(dx))) asel0, j=1,2
and hence
(X1, 8. (X]_5)) = (X],5,) inLYPxP)ass |0, j=1,2
Therefore for each in (0, 1),
o g = exp{—(X}+ X2 EL 482 ) +i(xX! - XAEL —#)). (2:30)

boundedly and a.s. as| 0. The right side is only defined up to a null set for eachut
clearly we may define a Borel map

¢ Mpmt> {z€C: [z] <1}

such that
(05 — Qs = @(st )ﬂzt—s) (231)

boundedly and a.s. as|, 0 for eachs € (0, 7). Our immediate goal is to prove

im 1, = 0, (2.32)
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By (2.27) and an elementary argument it suffices tefix 0, ¢, | 0 and show

lim P x P

n—oo

/(pjn ( /f&‘n,&‘,/l (S,)C) _ f&‘,/l,é‘n (S, x) dx> ds‘| — 0 (233)
0 R2

The key step in proving this is the following lemma:

LEMMA 2.8.—
{ / foren(s,x) + £ (s, x)dxt n €N } (2.:34)
RZ

is uniformly integrable orf2 x Q x [0, ¢] with respect taP x P x ds.

We first assume this and finish the proof of (2.33) and Proposition 24 & x Q x
(0,7) = Cis bounded andt x F x B(0, r)-measurable let

i
0

(Lemma 2.2(c) easily shows this integral is finite.) The left side of (2.33) is bounded by

L (y)=P x P

([ rmssn = o) "s]

R2

t

/ 0" — o ( / FEmen(s, x) 4 foron(s, x) dx) ds] + lim supJ, (¢),
]RZ

n—00
0

limsupP x P

n—00

which by (2.34) and (2.31) is easily seen to equal lim,sup J,(¢). Therefore (2.32)
reduces to proving

limsupJ,(¢) =0. (2.35)
Let W be the linear class of bounded measurable x Q x (0,1) — C satisfying
limsup,_, o, J.(¥) =0. Assumey : Q x Q2 x (0, 1) — C is bounded measurablgj;,} C

W, andy, — ¥ boundedly and irP x P x ds-measure. Then our uniform integrability
assumption (2.34) implies

lim sup|J, (¥x) — J,(¥)| =0

k—oo 5
which in turn shows) € ¥. So we have showw is closed under bounded convergence
in P x P x ds measure. Hence in order to praye= ¢(X;, X;_,) € ¥, we may assume

¢ is bounded and continuous. Now we may approximatky the appropriate sequence
of step functions and use the linearity \f to see that it suffices to prove (2.35) for

@y = (X, >~(t—a—33)1(a + 81 <5 <a+062) = @aliutsyatsy)(S),
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wherea <a+ 8, <a+ 68, <a+ 83 <t andg is bounded continuous. Fix suchwaand
note by Fubini's theoremXX = o (X,: 5 < a+))

a-+d2

oo [ [ (PS4 (x5, (X200 1 7
a+31 R?

(S0, (X1 ) @)Se, (X2 ) @) | F, 55

[Se, (X1) () S, (X2) (x) | FY]

L@ =PxP

x P
P

X P[S (XE)(0)Sy (X2,)(x) | f?_a_as]) dx ds]

a-+d2

oo [ [ (Sussa(¥D0Sgsa (XD

a+481 R2
X S6n+a+83—s (}?tl—a—53> (X)Ss,l+a+53—s ()?tz—a—%) (x)
— Serps—a (X2 (0 Set—a (X2) (x)

—PxP

X Sl ta+og— Y(Nt —a— 53)(X)Ssn+a+53—s(f(tz—a—ag)(x)) dx ds]’

where we have used Lemma 2.2(c) in the last line. Note that the integrand in bracket
approaches 0 a8 — oo (notes —a > 38, > 0 anda — s + 83 > 83 — &2 > 0). Fix
A1 > A2 > 0 and use Corollary A.4 to bound the integrand by

cas(t + 1, A0 2cas(t + 1, 22 %caa (81 A (83 — 82)) X2 (,) X263,
x )thl_a_53(¢—x1))~(t2_a_33(¢—x1)¢2(/\1—;\2) (x)

(without loss of generality we assume that ¢, < 1). By Lemma 2.2(c) and our
assumptions on the initial conditio and X, this latter expression is integrable with
respect taP x P xdx xds and so by Dominated Convergence we have lim J, (¢) =

0. This completes the proof of (2.32).

Itis now easy to use (2.32) to prove Proposition 2. 1X¢3mas a bounded continuous
density{ (), Se(X3)(x) — )EO pointwise boundedly as 0 and so by Lemma A.1 and
Dominated Convergencex/, S XO) (X/, ~’) A second application of Dominated
Convergence now show®,) is immediate from (2.32).

It remains only to prove the uniform integrability condition (2.34). To this end we
need the following moment condition o\ which will be also used in the proof of
Theorem 1.11(a).

LEMMA 2.9.— Let y/o2 < (v6rew) ™, Xo € (B7)2 and X be the particular
solution to(M P) constructed in Sectioh.4. Define

w] (x, y) = P[S,(XD)(0)S, (X7) () S, (XD S, (XF) W], (1.1 > 0:x, y € R?).
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For any p: 0 < p < 1/2 such that

- sin(z (1 - p))
\/67TCHN

the following holds. For eaclf > 0, there is ac; = ¢ (y, 02, p, )~<o) > 0 such that

y/o? (2.36)

wt"(x,y)écr(l—l—lx—yl_z”), Vne(0,1], x,yeR? 0<r<T.

Proof. —Recall thaiX = (X*, X?) is a weak limit point inC(R ., M2,,) of a sequence
of rescaled lattice systemisX = (X1, ¢ X2). By taking subsequence if necessary we
may assume that is the limit in lawof X . Recall (see Section 1.4) thatem is the
subspace oM e, Of measures with densities with respectita. Let

wl e (x,y) = P[*S, "X (x)* S, (" X2) (x)°S, (XD 0°S, (XD ()], x,y €eZ?,
where

5, (W) (x) = / ‘o, (x — Vu(dy), Vx €eZ? V€ Miem 0> 0.
RZ

A local central limit theorem (see Lemma 8(a)) of [3] implies

d(e,n) = sup |°p,(x) —p,(x)| > 0, ase | O for eachy > 0. (2.37)

xeeZ?

By Skorohod’s Theorem we may assum¥, — X, in M2, a.s. Fix arbitraryx € R?
and a sequenceér,} such thatx, € ¢,7Z2 Vn > 1 and lim,_,..x, = x. Then, for any
compact seK c R?,

lim sup|™S,, (* X7 ) (x,) — S, (X]) (x)]
<limsup [ [*p,(z = x,) — Py(z — X)[* X/ (dz)
n—>oo %
+limsup [ [p,(z — x,) — Py (z — X)|* X/ (dz)
n— o0 ke
+ limsup /p,,(z —x) (" X/ (dz) — X/ (dz))
n— o0 RZ
=limsup [ |*p,(z — x,) — P,(z — x) & X/ (dz)
n—>oo Ke
=limsuply, j=12, (2.38)

by (2.37) and the above a.s. convergefic — X, in M2,
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For anys > 0, there exists a compact skt ¢ R? such that

Pl)= [

Kg

<%l [

K¢

10, (z — X,) — Py(z — %) | P[" X/ (d2)]

Py (2 — Xp) — Pylz —x)|dz <,

uniformly in 2. Sinces was arbitrary we get by (2.38) thats, (" X/ ) (x,) — S, (X])(x)
in probability, a1 — oo for j =1, 2.
Now Fatou’s Lemma shows that for arbitraryy € R?

wl(x, ) < liminf " (x,, y,). (2.39)

where lim,_, sox, = x, liMm,_ ooy, = y andx,,, y, € €,7Z%, VYn > 1.
For anye > 0 let® p,(z1, z2, 23, 24) = Hf:fpn(z,-) be the transition function for the
8-dimensional continuous time simple symmetric random walkZh Recall that
‘mitAZ) = P[FX] (20" X} (22)" X] (23)° X7 (2)].
and hence

W (x, y) = / B (Z = (2 v, x, ) mIE) d°7
RS

where d°7 assigns masg® to each point in(sZ?)*. Apply (1.13) and Chapman-—
Kolmogorov to conclude thatfor ¢ < T,

t
wl(x, y) <cr(y, a2 p, Xo) <1+/u_”(8pz<u+n)(x —y))du>-
0

Now use (2.37), (2.39) and Dominated Convergence to conclude thatf@®, 1] and
p asin (2.36),

t
w’(x,y) <cr(y, o2 p, )~<o) <1+ /M_ppzw+n)(x - y)du>

0

n
Lcr ()/, 0'2’ p, )~<O> <1+ /u_p du 2p4,,(x —-y)
0
t
+ /2”(14 + 1) P24y (X — ) du)
n

N 2 r+1
<CT(%02»P»X0><1+n_peXp{—%}+/M_ppzu(X—)’)du>
0
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<er(y,o? p, )N(o) (14 |x—y|™%), VYO<t<T.
In the last line we use
n_Pe_AZ/SU < Supz2pe_zz/8A_21’
Z

to bound the term preceding the integral and the substitutien|x — y|?/8u to handle
the integral. This gives the desired bounda

COROLLARY 2.10.—Letyo 2, XoandX be asin Lemma.9. For eachT > 0, there
isacr =cr(y, 02, Xp) > 0such that

wl(x,y) <er(1+x—yI™), ¥ne(1], x,yeR? 1€[0,T].

Proof. —Immediately from the previous lemma with=1/2. O

COROLLARY 2.11.— Let yo~2, Xo and X be as in Lemma&.9 ThenX satis-
fies(SIntC).

Proof. —Take p < 1/2 satisfying (2.36). Then, for any compact $&t- R?, we have
fors <T,

P[H, x(X)] =//(1+ v — v Y wi (x, y) dx dy
K K

<//(1+|x—yl_l)cT(l+|x—y|_2”)dxdy (by Lemma 2.9)
K K

<0
uniformly in 0 < ¢ < 1. This gives the desired result

Remark?2.12. — The proof of Theorem 1.11(a) is now finished since Corollary 2.11
implies that solutions constructed in [4] satis§i (tC).

Proof of Lemm&.8 —As ¢,, ¢, | 0 are arbitrary we only need to shdvi. femen(s,
x)dx: n € N} are uniformly integrable with respect # x P x ds. As a first step we
will show that for any compact s&f C R?,

{/f””“*"’l (s,x)dx: ne N} is uniformly integrable with respect t8 x P x ds.
K

(2.40)
This would follow from (each of the above functions are integrable by Lemma 2.2(c))

SsupP x P

n>=ngp

! 2
/(/f‘”f"’gff (s,x)dx) ds] < oo, forsomengeN. (2.41)
0 K
For fixedn the above expectation is

[ [ Pls.(F) 08, (RE) 05, (KL 0., (¥2.) 0]
0 K K
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X P (S5 (X7) ()8 (XT) () S, (XT) (1) Se, (XT) )]

t
< c,P( /Hg;,,K(Xs) ds> (by Corollary 2.10).
0

By (SIntC), there are constants € N andc; ;, > 0 such that

n=ng

t
Supct/Hg;“K(Xs)ds << k-
0

This gives (2.41) and so (2.40).
Fix arbitrary A > 0 and assume without loss of generality thate, < 1. Now by
Lemma 2.2(c), Lemma A.1 and simple calculus we get

//ﬁ x P[fern(s, x)] dsdx

RZ2 0

- / / PLSi—sre (KB 0)S,—ss0, (X2) 0] P[Syey (XB) (1) Sy (X2) ()] s dv
R2 0

< (cast+ 02| K3L K3, [ [ 020P (11 (XB) 0S5, (XD 0] s d
RZ2 0
t+1

<Jeastt+ D)%, 153, [ [ 6200 P 5. (X5 XE) )] dd
R2 O

= (car(t + 1), )\)2|)~((1)]k|)~((2)],\/¢2k(x)P[g,+1(Xé, X3)(x)]dx, Vn>1.
R2

The last bound is finite byENC) condition and hence, by Fubini's theorem, we get

/I/fg”’s'/l(s,x)dxds] < 00. (2.42)

0 R2

SupP x P

Moreover, for any: > 1, fé P x P[fe% (s, x)]ds is dominated by integrable function

2\ S -
(car(t + 1), )| X5, | X3, 622 (x) P [8r41(X5. X5) ()]
Therefore for arbitrarg > 0 we can fix a compact séf c R? such that

t

//ﬁxP[fg”’s'/l(s,x)] dxds <8/2, Vn>1

0 K¢
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It follows from (2.42) that [,. fenen(s, x)dx} is P x P x ds-tight, and so we can choose
N such that

t
/13 x P( /fwé(s,x)dx > N) ds < 82/4c,
0

R2

for all n sufficiently large. Therefore

0/(/fsn,s,l(s,x)dx)1<R[fsn,sn(s’x)dx >N) "

R2

P xP

t

O/<K/fsn,s,z(S,X)dx>l(IR[fsn,sn(s,x)dx>N> ds]

O/<K[fsn,s,z(s,x)dx>l<R[fan,s,,(s,x)dx2]\7) ds]
o / 2

< O/PXP[<K/JC”’”(S,X)dx> ]ds

t
X /ﬁx P(/fsmsfz(s,x)dx>N> ds +5/2
0

R2

<PxP

+I~’><P

< 4.

This gives (2.34) and so completes the proof of Proposition 2.

Proof of Proposition1.12 —Fix ¢t > 0 and anys € (0, 7). (IntC) implies that there
exists a sequenck, C F, C --- of events inFs such thatf; 1 , asl — oo and for each
n>1:

limsupP
el0

t
/HS,K(XS)ds 14 <oo0, VcompactseK c R?, vVt > .
)

Define the procesk! = X, filtration F? = F;,, and
P[(B):P(lF,P(lg |.7:3))/P(F1), B e F.

ThenX! satisfies th&M P)%’(:é’ on (2, F, F?, ) with

V() =L(XE) = P(Xs€-| F).
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Note that
t+38
limsupP, /HsK ds] =limsupP /HS,K(XS)ds 1y /P(F,) < 00,
el0 el0 s

for any compact sek c R2. ThereforeX' satisfies §ntC). (EnC) for X}, also follows
easily by Lemma 2.2. Therefore Proposition 2.1 shows that for gng,

Pe(X!, %)] = lim Pi P[e(Xh, S.(X))].
Now let us takd — oo. We immediately get that

lim P,[¢(X!, %0)] = P[€(X,45. %0)].

[—>o0
For the right hand side we have
| lim lim P, x P[€(X, S.(X,))] — lim P x P[&(Xs, S:(X))]|

[—o0 ¢|0

lim Ilm//QE(Xg,Sg()N(t))lF,(a))/P(E)P(da))ﬁ(d&))

=00 ¢l0
_|jr£/~/e(xa,sg(i,))P(dw)ﬁ(d@)

< lim IIm//Q‘E X5, Se(X, N |1r (w)/P(F) — 1|P(da))P(da))

l—>oo el

< Jim [ |15@)/P(F) ~ 1 P(de)
Q

=0,
where the last limit follows by Bounded Convergence Theorem. Therefore we have

P[€(X,43, 50)] = lim P x P[&(Xs, So(X))]. V£,8>0. (2.43)

Now we have to lets | 0. By continuity of X, the left hand side converges to
P[E&(X;, Xo)] and we have to handle interchange of limits on the right hand side. By
Lemma 2.3(b), for any, ¢ > 0, we have

P x P[&(Xs, Se(X))]
=P x ﬁ[(’f(XO, Ss+5(>~(t))]

8
+PxP / €(Xs, Seqs—s (X)) Ay Seps—s (X]) (1) Seys—s (XP) (¥) L(ds, dx)

1 2
_I <S+I£5
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Trivially

lim lim I}s= lim P P[€(Xo, S:(X))].

We will show that limy o lim, 0 2 = 0. Without loss of generality assume that s < 1.

|I£5] <4y P x P

[ Sets-s (RS-, (X2 ) L(ds, d)
0

§4y/S,+8+5_s()~((1)) (x)S,+g+5_s()?(2))(x)

x P[S;(X3)(x)Ss(X3)(x)] dxds (by Lemma 2.2(c))
<dyea(t+1, mxly kN

x P{ / $25.(x) / Sy (X3) (x)S, XZ)(x)dsdx} (by Lemma A.1)

= dycai(t + 1, 0)?|55], | %], { / ¢21.(x) g5 (X3, X%)(x)dx}
RZ
— 0, asé | 0, uniformly ine,

where the last convergence follows BNC) and Dominated Convergence. This gives
the desired result. O

3. Proof of Theorem 1.8

We start with the following lemma.

LEMMA 3.1 (Uniqueness of one-dimensional distributions)Assumey /o? <
(WBmen) tandXg e Mieme. LetX andZ be any two solutions taM P)X” satisfying
(IntC) with initial conditions satisfying[EnC). ThenX and Z have the same one-
dimensional distributions, that is, for each- 0

P(X,eT)=P(Z, €T), VI eBMZ,).

Proof. —~A monotone class argument shows the bounded pointwise closure of the
complex linear span of&(-, Xp): Xp € (C;;p)z} is the set of all bounded complex-

valued measurable maps ovlZ,,, (e.g. see Lemma 6.2 of [5]). Therefore, the result
is immediate from Proposition 1.12.0

Before we give a proof of Theorem 1.8 let us prove two useful lemmas.

LEMMA 3.2.— Let X be a solution toM P) on (2, F, F;, P) satisfying(IntC)
and(EnC). Then
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(a) X; € Mieme for anyr > 0 P-a.s., and for any bounded stopping time
P { / 25 (X1 x?) (x)q&,\(x)dx] <00, V8§>0, VA>0. (3.1)
R2
(b) For any bounded stopping time

2

> X{(@)Z] <00, VA>0. (3.2)

Proof. —
(a) The proof essentially goes along the lines of the proof of Propaosition 25 of [3] with
changes necessitated by the infinite measure states. Define

8o (1, (L2)(x)
E/e“”’ W1 (X) S, p2(x) du, Yo >0, x € R?, (11, n2) € Mieme,  (3.3)
8a,e (1, 2) (X)

= [ €SS du, Vo= 0, x €R (41, 12) € Meeme  (3:4)

Fix arbitrary A > 0. For anyr > 0, g,(u1, u2)(x) < € g, (w1, n2)(x). Therefore it is
enough to check that

sup [ gq (X} X2)(x)$p(x)dx <00, P-a.s, VO<T < oo, (3.5)
ngRz
and
P{/ga(Xi X2) (%) (x) dx| < 00 (3.6)
RZ

for any bounded stopping time It follows from Ité’s formula, just as in the derivation
of (T;) in Section 5 of [1], that

/ Soe (X1 X2) () (x) dx = / 8o (X5, X5) ()3 (x) dx
/ -as / Be (XL, X2) (1) (x) dx dis

+a//ga5 (x)d)k(x)dxds—l-Ms

0 R2
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whereM; is a local martingale. Then

/ Gae (XL, X2) (1) (x) dx

- / Gae (X3, X2) (0)5.(x) dx

t
/ g o +) / 5 (XL XA @) drds + [ edu.
0

This shows that €’ [ ga,g(X, , X,z)(x)qﬁ,\ (x) dx is a positive supermartingale. Letting
¢ | 0 we get by Fatou lemma that the limiting proces&’ g2 g, (X}, X?)(x)é; (x) dx
is also a positive supermartingale. This together with maximal inequality for positive
supermartingales, Optional Stopping Theorem @) gives the desired result.
(b) Fix arbitrary > 0. We can choosé > ¢, such thaip € C?. Sincer is bounded,
it is enough to check that

P

2
sup ZX{'(&)z] <00, VT >0.

0I<T [

But this follows by a simple moment calculation combined with Doob’s maximal
inequality. O

LEMMA 3.3.— Let X be a solution taMP)y” on (2, F, F;, P) satisfying(IntC)
and (EnC). Let t be any bounded stopping time. Fix arbitrafye F, with P(F) > 0.
Define

Py(B)=P(1rP(1| F1))/P(F), BeF,

Fr =F,q, and X, = X,4,. ThenX solves(M P)%’V on (R, F, F7, Py) with L(Xo) =
0
P(X; € -] F) and satisfiegl ntC) and (EnC).
Proof. Slncer is bounded there exist®% > 0 such thatr M, P-as. It is easy
to check thafX solves(M P)iy on (2, F, FF, Py) with LXo) = P(X, €| F). Letus

check that it satisfied I(ItC) and EnC). It is enough to checki(tC) and EnC) for
F = Q. Fix arbitraryé > 0. Take a sequenck; C F, C --- of events inF; such that
F, 1 @, asl — oo and for eachh > 1 andr > §

limsupP
el0

t
/HS,K(XS)ds 14 <oo0, VY compactseK C R2. (3.7)
)

Then foreachh > 1, > §

limsupP

el0 el0

T+t
/ H&K(Xs)ds 1Fn‘|

T+§

t
/HE,K()A(S)ds 14 =limsupP
)
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M+t
/ H&K(Xs)ds 1Fn‘|
§

<oo, Vcompactsek c R?,

<limsupP
el0

by (3.7). ThereforeX also satisfiesl atC) (note that{X,} is adapted tq.F,,,}) and the
result follows. RegardinggnC) it follows from Lemma 3.2. O

Proof of Theoreni..8 — We argue as in the proof of Theorem 4.4.2 [7]. XetZ be
any two solutions t@M P) satisfying (ntC). We want to show that

[[AXp| =P

k=1

11 fk<sz>] (3.8)

k=1

for all choices of, € [0, co) and bounded Borel measurable functighon /\/ltem Itis
sufficient to consider only} > 0. Form = 1 (3.8) follows from Lemma 3.1. Proceeding
by induction, assume (3.8) holds for all < n. Fix 0< 1t <t,--- < t, and bounded
strictly positive Borel measurable functiofs, .. ., f, on MZ,. Define

P15 TT/_y fi(Xo)]
P, fiX)]
P[5 [Ty fi(Zy)] ,
. BeF’
Pl fiZ)] €

PYB) = Be FX,

(3.9)

P%(B) =

and setX = X,n+,, Z =2, Then Lemma 3.3 shows that and Z solve (MP)%”

on (R, F, PY and(Q, F, Fl", P?), respectively, with the same initial distribution

v (the Iatter by the induction assumptlorX and Z also satisfy (ntC) and EnC)

by Lemma 3.3, and therefore by Lemma 3.1 they have the same one dimensiona
distributions. This implies that for any bounded Borel measurable fungtion M2,

we have

PYf(X)]=P?[fZ)], Vi=0. (3.10)

It follows from the definitions ofP* and P? and the induction hypothesis that

Pl fKya) [T feXi)

k=1

P f(Zs,+1) H S (sz)] ) (3.12)

k=1

and by setting,, ;1 =1, +tweget(3.8) form=n+1. O

Proof of Theoreni.11 —As it has been mentioned already in Remark 2.12 the proof
of Theorem 1.11(a) was completed by Corollary 2.11. Part (b) of Theorem 1.11 follows
now from Theorem 1.8 and Theorem 1.11(ajx
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4. Continuity of thetransition function with respect to initial conditions

For any A, t > O let ca3(2, 1), caa(?) be the constants defined in Lemma A.3. To
simplify the notation define also the constants

ca1(i, a1, 8) = Bycas(t, M)caa(t — 8)2u (@) (1),
VM: (/J,l, M2> (S Mteme, 0< < t, A > 0,

ca2(i, a1, 8) = Bycas(t, M)eaa(t — 82t (@) u?(d_1),
VM: (/J,l, M2> (S Mrane, 0< < t, A > 0

LEMMA 4.1. -
(@) Let u = (ut, u?) € Mieme, it = (i1, i?) € Mrape. Let X solve the martingale
problem(M P Thenforall0 <8 <t, A >0

imsup| P [€(S,X;. )] = PE(S X4 )]

< can(i, ht,8) / 25 (7% 712) ()2 (x) dx < 0.
RZ

(b) Letxo= (x3,x3) € Bf x By, i = (i, i%) € My, LetX solve the martingale
problem(MP)$.”. Then for all0 < § <+,

imsup| P [€(S,X,, )] = PS5 0]

<yl el [ B (it i) e dx < oo
R2
(c) Let u = (ut, u?) € Miape, it = (A%, [i?) € Mieme. Let X solve the martingale
problem(M P Thenforall0<d§ <¢, A >0

imSup| P [€(5.X,. )] = P [€(5:X,-5. 0]

< a8 [ B (i i) ()9 () dix < ox.
R2
Proof. —(a) By Lemma 2.3(b) we get that for aay> 0,

|P[&(S: X, 1)] — P[E(S5X,—s, V)]

< |4y P

t

t
/ E(SusrsXss /1) / Setr—sfi () Seps—s 2 (X)L (ds, dx)] ‘
) R2

+ [P [€(SesX s, f1)] — P[E(Ss X5, W]. (4.1)
The first term in (4.1) is bounded by

4y P / / SH,_‘y/zl(x)Ssﬂ_s/zz(x)L(ds,dx)]

t—8 R2




174 D.A. DAWSON ET AL./ Ann. I. H. Poincaré — PR 39 (2003) 135-191

t
<dy / / Sty M) Sos s 2 00) S, (1) S, 12(x) s dx

t—38 R2
e+4

<4y / / Caslt, 1) 2ena(t — 826z () ()
0 R2

x 12 () L(e < s <& +8)S, it (x) S, 1% (x) ds dx
&+8

=c41(i, A, t, 6) / / 1e < s <&+ 8)S, it (x)S, 1P (x)p_2.(x) ds dx,
0 R2

where the second inequality follows from Corollary A.4. Now de} 0. By Corollar-
ies A.4, A.5 and Dominated Convergence we get that the second term in (4.1) converge
to 0. Applying again Dominated Convergence we get

e+8

im / / 1e < 5 < &+ 8) Sy i (x0) Sy A2(x) 2 (x) ds dx
0 R2

- / 75 (A% 12) ()2 (x) dx < oo,
RZ

and the result follows.
The proof of (b), (c) is completely analogous and therefore is omitted.

PROPOSITION 4.2 (Continuity of transition function with respect to initial conditions). —
Letu, — @ in Mieme, such that

im sup [ 2 (it 12) (1 () dx =0, V3= 0,

Assume that there exist solution€’, X to the martingale problemgMP)?” and
(MP)%:” respectively, satisfyingintC), and letP,(u,,-) and P;(u,-) be their one-
dimensional distributions onMZ,... Then

Pt(:uﬂ’u')_) Pt(,bL7 ')7 A 207

asn — oQ.

Proof. —To prove the proposition we have to check weak convergence
X=X, in M, asn— oo, Vt > 0. (4.2)
To this end it is enough to check that for arbitrary= (¢*, ¢?) € (Crap)?

(X" (). X2 (7)) = (XA, X2(P), asn—oo, V=0, (@43



D.A. DAWSON ET AL./ Ann. I. H. Poincaré — PR 39 (2003) 135-191 175

and
SUpP [X/"(¢)] <00, j=1,2, Vt>0, VA>O0. (4.4)

(4.4) follows immediately from Lemma 2.2(c), Lemma A.1 and our assumptions on the

initial measures.?, ©2.

To check (4.3), fix arbitraryy = (¢*, ¢?) € (C;5)* and letX be a solution to the
martingale problentM P)Z:”. Then
[P[E(X], 0)] = P[EX;, )]

= [lim P[€ (e, $:X)] —lim P[€(, 5.X,)]

, (by Proposition 1.12)
< [lim P€ (e, S:X0)] = P[€Gan, X))
+ |ﬁ[@(ﬂn, Sa)N(t—a)] - ﬁ[@(ﬂ, S(s)N(z—a)] |

+ [P[€, X)) = lim P[E(1, S.X))]|

<cazlp,h,1,8) / (85 (e, 12) (%) + g (1, %) () pa(x)dx  (by Lemma 4.1(c))
RZ

+ | P[€(n, S5Xi—5)] — P [E(1t, S5X—5)]
Letn — oco. Then by Lemmas 2.4 and A.1,

, V>0, n>1

lim |}~)[€(Mm Sé)ﬂzt—ﬁ)] - ﬁ[e(,bb, Sg)z,_g)]’ =0.

Therefore
limsup|P[€(X], ¢)] — P[E(X,, 9)]| <SU|OC4.2(</>,/\,I,S)/(éa(ui,uﬁ)(m

R2
+ 8 (1t 1?) (1)) 1 (x) dx
for anys > 0. Lets | 0. Then it follows from our assumptions e}, w2 that

limsup|P[€(X],¢)] — P[€(X,, ¢)]| =0, Vi=0.

n—oo

By a standard argument, the last convergence implies (4.3) and we are done.

5. Finiteinitial conditions
5.1. Existence of a process satisfying (IntC) and proof of Theorem 1.9(a),(b)

We recall some facts about the dual process I,) introduced prior to Theorem 32
of [3]. This process takes valuesdh= M;((R?)%) x 2!1-+4 and points inS are denoted
by (¢, I). For 1< j, j’ < 4 define mapse; ;1 (R?)* > (RH)* and f; ; : Cf (RH)*) >
Mi((RH*) by
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i ifist )
(7w, x)i = . X = (X1, X2, X3, X4),
xj, ifi=j,

i (@)(A) = / (T, )0(x; — x;) dxydxadxada.
A

Let S, be the 8-dimensional Brownian semigroup with varianéeThe dynamics of the
dual process., 1) € D(R,, S) are as follows:

(a) For each(j, j') € I x I, j # j', with rate /2, (¢, I,-) jumps to(f; ; (¢:-),
I,_ —{j'}), and for each(j, j') € I x If, j # j', with ratey /2, (¢,—, I,—) jumps to
(fj. (=), I,—U{j'}. In either case we will say’ switches viaj.

(b) LetO=To < T1 < T2 < --- be the successive jump times. ThenTor< 1 < 7,44,
(¢17 It) = (St—T,,¢T,,a IT,I)-

Let 13¢0,10 be the law of(¢., I.) on D(R,, S). Note again that we identify functions
¢ in Cp(R®) N L (dx) with ¢ (x) dx € My(R®). LetU, =T, — T,,_1,n > 1. Then under
Pd’o,lo

{U,} are independent exponential random variables and 5.0)

if |Io] = 2, Us,.1 has meari2y)~* while Uy, has meari3y) L.

Assume thaX € M; e andX satisfies martingale problegvi P)fgg’. We introduce a
fourth moment condition oX: for § >0

(MB); Voo € C; (R2)4, Ip C {1, 2, 3,4} and any Borel mag : M;(R?*— R, Vr > §,

P { [ 9ot vz, v0,x0 T] X 1 X,Z(dxj)wxa)}

iely JEI§

< P¢0’10 x P

[ ostuainzxe,xa TT X [] Xexw X

iel_s jEI[C_a

t—4§
X exp / <|15|>+<|I‘Yc|>ds
4 /2 2 '
The existence of a solution satisfyingB); for any § > 0 was established in
Proposition 52 and Theorem 53 of [3] providing

yo 2 < (BV6men) (5.2)

In addition conditions were given under which the upper bound is finite (see Theo-
rems 53, 54 of [3]).

The following theorem completes the proof of Theorem 1.9(a), by establishing
existence of solution satisfyingr(tC).

THEOREM 5.1. — Assume
yo <672 (5.3)
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(@) If (MB); holds for alls > 0, thenX satisfieqIntC).
(b) If (MB)o holds andX € M;s s, thenX satisfiegSIntC).

The rest of this subsection is devoted to the proof of the above theorem and we wil
use the following notation.
co=co(o) = (27102)_1,
e1 = c1(0) = 2c0(0) = (m0?)
n—1

pn=c1(0)" 7 [[ Wk + Ui ™
k=1

For the proof of Theorem 5.1 we will need the following lemma.
LEMMA 5.2. - Assumdp = {1, 3} and
0< ¢ (1, ¥2, ¥3, ¥4) < f(O)Parin (V1 — ¥2)Perar (3 —ya), forO<e <7y, (5.4)

for somea, ¢ > 0, b, d > 1, and continuous functiorf : R, — R, which is bounded on
compacts. Let

f @, if To <t < T,
IO( ) f(Ul)(Hk 1 (Uk+UA+1))U/1+(T T’ If Tn < < Tn+la n= 17 27 e

Then for alln > 0 there are random variable¥’ > 0,5’ > 1 (i = 1,2) and random
indices{iy, ..., i5} ={1,...,4} such that

(Dn(a)  ¢:(y) < P(t)pvl bl (1—T2y) (y12" - y,-gn)
X pV22n+h§n(z—T2,,)(yi§" - yifn), if Toy <t < Tougn, I ={i{". i3
(D) & () <200Pv 14d -y (Vi — Yizra)
X P2(t=T,11) (ylg'lﬂ - yigwl), if Topp1 <t < Toguy1),
1, = {iZ} or {iZ"+h)°.

Proof. —We proceed by induction om. Note that(I)q(a) holds by assumption with
Vi=a, V@=c, b}=b, b} =d. Assume thatl),_i(a) holds for some: > 1. Then,

writing i; for i5" ", we have

&1, 1— (V) < f(U1) p2n—1Py2

2n—1)
X pv S 1)+h2(n 1)U2n (yi3 - yi4)7 and ITQ,,,l = {l]_, 13}'

1 v
+b2(n_1) Uop—1 (yll ylZ)

By symmetry we may assunie, , = {i1}, i.e.iz switches via; atr = T,_1. This gives
¢T2,1_1(y) f(Ul)PZn 1pV( 1)+b2(1 1>U2n 1(y11 yiz)

X 2
pVZ(n 1)

+62, 3 Uz O — Yia)00(Viy — Yia)-

SetWs, 1) = Vi,_1) + bb,_1,U2—1 and use the semigroup property of the Brownian
densities to see that fab,_1 <t < T5,,
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B0 FUDPa [ Pus o i = i)
R2
X pW571+I—T%_1(Zi1 - yi4)pt—T2,,,1(Zi1 - yig)pt—Tzn,l(Zil - yil) dZil (55)

< F@Dpana [ |12 = il < b = DPug 1175, ,(©)
R2

Yip — Y
X pWZan-H—Tz,,_]_( 2 2 l4>

Yip — Y
+ l(lZil - yizl > |Zi1 - yi4|>pW22nl+t—T2,l_1(0)pW21n1+I—T2,,_1( B 2 l4>:|

X pI—Tz,,_l(Zil - yi3)pI—T2,,_1(Zi1 - yil) dZil' (56)

In the last line we use the fact that, — yi,| < |zi;, — yi,| iImplies|z;, — yi,| = |yi, — Vi, | /2
and also monotonicity ifz| of p,(z). Now setWy , = Wi A W2 _;andW!_ | =
W3,V W2, _,. Use the inequality

P, (0)p, (x) < P, (0)p,(x), if 1 <1, (5.7)

in (5.6) to conclude that fof,, 1 <t < Ta,,

& () < f (UL p20-1Pwg,_y+1-T5 1 OPwyt_yi 7, 1 (Giz = Y1) /2) P2tt—Tp,-) By — Vi)
4co
< f(UD)p2n-1 WE 1= T Paw)t_ +a6—15,_p) Viz = Yia)P2tt—12,_1) Viy = Vi)
S 20OPawyt 1461y, Wiz = Vi) P2u—Tz,-1) Viy = Yig)- (5.8)
This implies (1),_1(b) for appropriately choserVz, ,,i?"~* and b},_, = 4. Rather
than using this to derivel),(a), we can do a bit better with (5.5) which implies (set
Wén = Wén—l + U2n = U2n—l + U2n)

¢T2n_(y) < f(Ul)p2n—l/pW21” (Zil - yiz)pwzzn (Zil - yiA)pUzn (Zil - yis)
2

X Puy, (Ziy — Yiy) dziy,
ITz,l— = {ll}
Note the roles of;, i4 and ofiq, iz are symmetric in the above and so there are 3 cases

to consider.
Casel. is switches viai; (i switches viai, is similar). Thenly, = {i1, is} and

o1, (¥) < f(Ul)PZn—l/pwzln (Ziy = Yi)Pwz (Ziy = Yip)Puy, (Ziy — Yig)
2

X pUZn (Zil - yil) dzilso(yM - yiz)'
Case2. is switches viaiz (i switches viaiz is similar). Thenly, = {i1, i} and

o1, (y) < f(Ul)p2n—l/pW21n (ziy — yiz)pwzzn (Ziy = Yig)Puy, (Ziy — Yig)
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X pUZn (Zil - yil) dzilso(yM - yi3)'
Case3. i3 switches via, (i3 switches viai; is similar). Thenly, = {i1, i3} and

o1, (y) < f(Ul)p2n—l/pW21n (ziy — yiz)pwzzn (Ziy = Yig)Puy, (Ziy — Yig)
R2

X pUZn (Zil - yil) dZilso(yig - yi4)'

Now we may defingi#'} and Vi (= Wi W2, or Us,) > Us,, and useWs, > Ua,_1 +
U,, to combine these three cases into the simple bound (yyrfte if" now),

b1, () < f(U1) p2n—1(co/(Uzu—1+ Uzy)) /p@n (ziy — yiz)p§22n (Ziy — Yig)
RZ
X pUz,, (Zil - yil) dZi150(yi3 - yi4)7
ITz,, = {ilv l3}

Therefore ifT,, <t < To,41, thenl, = {iy, i3} and

¢ (y) < f(U1) pan-1(co/(Uzn—1+ Uz,))
X //pazlnﬂ_h” (zi, — yiz)p§22n (Ziy — Ziy)

R2 R2
X pUz,l-H—Tz,l (Zil - yil)pt—Tz,l (yi3 - Zi4)pt—T2,l (yi4 - Zi4) dZi]_ dZi4' (59)
Use (5.7) and the fact thii;tz",, > U,, and argue again as in the derivation of (5.8) to see
that
/pf‘\/'zj;,""t_TZn (Zil - ylz)pf‘\/'zzn (Zil - Zi4)pU2,1+t—T2,l (Zil - yil) dZil
RZ
< [ T2llzi = vil <1213 = 3Py 4r -1, P11, (s = ¥2)/2)
R2
+ 1(|Zi1 - yi1| < |Zi1 - yi2|)pU2,,+t—T2,, (O)pf/'zln_’_t_Tzn ((yil - )’12)/2>]
X p/\‘//z’Zl (Zil - Zi4) dZi]_
< (CO/(U2n +1— T2n)>pf//21n+t_T2n ((yil - ylz)/2>
= 4(60/(U2n +1— Tzn))p4{721”+4(,_T2n)()’i1 - yiz)'

Use this in (5.9) to conclude that f@, < ¢t < Ty,41, 7, = {i1, i3} and

6,0 < f(UY) ( 2o )( 2o )
V) X 1)P2n—1 Un1+ Uz, Upy + 1 — T,

X p4§21n+4(,_T2n)(yi1 - yiz)pZ(t—Tz,,) (yig - yi4)

= P(f)p47211+4(,_T2n)()’i1 = Vi) P2t—Tp) Viz — Via)-

This gives(]),,(a) and the induction is complete.O
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Now we are ready to complete the

Proof of Theorenb.1. —Fix0 <8 <T <o0.Let0< p <1/2, N > 0 and define

o) =1 max, sup 577 [ [ pxs — 0 Xy X (dr) <V ) = 1, (X0

1<iaj<20<s<T

We claim first that it suffices to show:

supP

e>0

T
/ Ho(X,)ds ¥y (Xa)] <00, (5.10)
)

where

H %) = Hese®) = [ [(L1x =518, x008. X2
R2 R2
X SSXXl(y)SgXSZ(y) dxdy, &>0.

Assume (5.10) and recall th&f € M; se, a.S., (by Proposition 25(a) of [3]). The latter
implies thatP (X; € Ky) 1 1 asN — oo. Therefore

T
P(P /Hg(xs)dsm] . M)
$

T
gP(X,;er\,)—i—P(P /Hs(xs)dSWN(X5)|f5‘| >M>
5

<PXseKy)+M*tP

T
/ H.(X,)ds ¥y (Xa)] .
)

If » > 0 we may first choos#& > 0 such that the first term is at mogt2 and then choose
M large enough so that the second term is at mgatfor all ¢ > 0. This provesIntC).
Turning to (5.10), a change of variables shows that

1
/u—1/2(1+ P, (x)) du > c(o) (]x|7* + 1). (5.11)
0

If e >0,u€(0,1],and

$0" (¥) = do(y1, y2, y3. ya)
2 4
=//(1+ PuCx =) [TpeGvi =) [T pe (v — ) dx dy.
i=1 j=3

then (5.10) is therefore equivalent to
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17
SUS)//P[/%”S(M, Y2, Y3, Ya)
E>

0 §

X X} (dy1) X (dys) X7 (dy2) X2 (dya) Y (xg} ududt <oco.  (5.12)
If (¢;, I,) is the dual process starting @ “, {1, 3}), then forz < Ty,

&: (¥) = P2(e+n) (Y1 — Y2)P2(e+1) (Y3 — y4)
2 4
+ // Pu(x = ) [ [ Pess i = ) [[ Pess (v — y) dx dy. (5.13)
i=1 j=3

Use the fact thaltx — y;| < |x — y| implies|y; — y2|/2 < |x — y»| to bound the second
term by

/ / [1(1x — yal < [x — y2l)Pere (¥ — y)Pese (01— ¥2)/2)

+ 1(|x — y1| > [x — y2|)Petr (X — y2)Pere (V1 — ¥2)/2)]
X Pu (X = Y)Pess (Y3 — ¥)Pess (Ya— y)dx dy

< p8+t((yl - )’2)/2) /(ps+t+u V= y1) + Pesru(y — )’2))

X Petr(¥3 = ¥)Pes (ya — y) dy
26‘0
g - -
E+t+u
Put this into (5.13) to see that forQr < Ty,

APse4+n (V1 — Y2) P24+ (¥3 — Ya)-

8Co

d:(y) < <2+ m

) Pae+n) (Y1 — Y2)P2ee+1)(¥3 — ya).

This shows the hypothesis (5.4) of Lemma 5.2 holds vfith =2+ t%
If p(¢) is defined as in Lemma 5.2, then that result & )s imply

T

/ P { / ¢3’8()’)X}(dh)xf(dys)X,Z(d)’2)Xt2(dY4)1/fN(Xa)} d

8

iel_s Jj¢l_s

T

< / Py 1y % P{ / ¢s [ X5@v) 11 X§<dyj>w<xs>} e’ di
)
T

< /e3” > 13%.8,,0 x P[U(T, <t < T,41)20(t)(t — T,) "] N%dt (5.14)
s n=0

T
<c(y,T,N) /{ IA’%.s,IO [1(t < Th) (1+ (t+ u)—1>t—p]
3
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o0
E uaJo

1
T, <t <T,+ U, <l+ )
(T, <t < +1) nt U,

::
Hl—‘

H U+ Ups) ' Uy +1 = T) Mt = T,) 77

c’{}dt. (5.15)

Recall (5.1), erte out the appropriate exponential densities, anduget u to
bound (5.15) byd(y, T, n) may change from line to line)

T

c(y, T, N){ /(1+ (t+uw)y NP de
8
n—1

00 1
T[]

n=1 S R”
n -1 n -P
x(un—i-t—Zui) (t—Zu,-) dul...dundt}
i=1 i=1

T n+1
gc(y,T,N){1+/(t+u) Pdt+2(\/_yc1) / (Zu,<T>
0

n=1

Rn+l

x (H(uk )+ [ [+ qu)—l) w, Py duy ... dun+1}. (5.16)
k=1 k=0

If ¢(p) =m(sin((1— p)r))~tand

n—1
I, (uo) = /(uo tud) [ 4w e, P dus . duy,
R =1

then (5.16) is at most

cy, T, N){l+11p(u)+Z(~/_ycl) (/Inp(ul)dul+lrz+lp(u)>}

n=1

=c(y, T, N){ 1+c(pu=®

T

+3 (Veyeie(p) ( / uy” duy + c(p)u-f’> } (by Lemma 60 of [3))

n=1 0
<c(y,T,N,p,0)(14+u?),
where we useda) in the last line and have chosen< 1/2, sufficiently close to A2 so

thatv/6c1yc(p) < 1. Put the above upper bound for (5.14) into (5.12) (and recall (5.11)
to conclude that
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supP

>0

T 1
/Hg(XS)ds UnXs) | <clo)te(y, T, N,p,a)/u_l/z(l—i—u_”)du
) 0

=c(y,T,N,p,0) <00, (5.17)

sincep < 1/2. This concludes the proof of (a).

(b) This is the minor modification of the above. We need the estimate (5.12) with
8 =0 andyy = 1. The only change is in the derivation of (5.15) where instead of using
¥y to get a factor ofV2 we simply useX, € M; s to get a constant depending 3.
The rest of the proof is the samen

5.2. Existence of collison measure

THEOREM 5.3. —Let Xo € M; and X be the unique in law solution aMP)3”
satisfying(IntC) on (2, F, F;, P). There is a jointly measurable map

Kx Ry x @+ M (R?)

such that

t
Ly (t, -):/Kx(s,~)ds, vVt >0, P-a.s.
0

Proof. —We work with (Q, 7, P) = ( x [0, 1], F x B, P x dx) on which we define
M;(R?)-valued random vectorg?® (for § > 0) by

_ Lx(s+8) — Lx(s)

7% (w,
(w,s) 5

Let ¢ € Cf. Thens — Lx(s)(¢) is a continuous non-decreasing process and so by
standard differentiation theory

(Z°,9) — (Li(s).¢)=(Kx(s).¢), P-as. as 0. (5.18)

By Proposition 52 of [3|(Ly"(s), 1) — (Lx(s), 1) in P-probability asn | O for each
s > 0.

Now let us fix arbitraryu € (0,1). (IntC) implies that there exists a sequence
F, C F> C --- of events inF, such thatF; 1 2, asl — oo and for eachn > 1:

limsupP
el0

t
/Hg(Xx)ds an] <00, Vi>u. (5.19)

For each > 1 define the measur® on 2 by

P(B)=P(plg), BelF,
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and for each: € (0, 1) defineP,, onQ x [0, 1] by
ﬁl,u(B) = ﬁ(lle[u,l]lB), BeFxB.

In the following denotdl; = Lx (¢), K, = Kx (¢).
Fix 1 > é§ > 0. Then we may choosg, | 0 so that

P (@) — LM (w),1) — (Z%(w,s),1), P-a.s.as — oo.

Fix somel > 1 andu € (0, 1). 13”, is absolutely continuous with respecti’o therefore

STHLEM () — L¥™(w), 1) — (Z%(w, ), 1), P, ,-a.5. ag — 00.

Therefore Fatou’s lemma and Jensen’s inequality imply

P (70, 0)"] <llplZ liminf Py, [(LE5 () = L3, 1)7]872

§4-8 1
= llg % liminf 7 /(///S XHw0S, Xz(x)dxd—r d_”> ds]

s 0 R2

1 s+8m ~|

. L ) 2dr dv
< llell?, liminf P, /// /Ser(x)SrXU(x)dx — s
n—o0 nn
0 R2

- u N

146

/(/S xS, Xz(x)dx> dv] n_r

2
d
/H,(Xv)dv 14 @

n

Mn
<l timint [ 7
0

Mn
< ||<p||§oliminf/P
n—oo
0

<lel%.C
by (5.19) independent @f This together with (5.18) shows that

(Z°,¢) — K, (p), inL*P.,)ass|O. (5.20)

Therefore

/KX(QO) ds 1F[‘| = Ig?(; 1/)\1,u [<st (p>]

=lim P,

im Lsss, @) = (L, <a>ds] 67

810

/1
u+é
=lim P, / (Lyss,@)ds 8™ — / <Ls,¢>ds6—1]
1
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= P[((L1,¢) — (Lu, 9))15)] (5.21)

where the last equality follows by continuity @f.,, ¢) and fact that(L,, ¢) is P-
integrable. Now také — oo. Then by Monotone Convergence we get from (5.21)

1
/Ks«o)ds = P[{L1.¢) — (Lu. )]

Now letu — 0, use Monotone Convergence on the left side again, and continuity of
and Dominated Convergence on the right side to get

= P[(L1, )] (5.22)

/l K (p)ds
0

This equality implies that the singular partsof> L;(¢) is P-a.s. 0 and so,
(L. ) = / K,(¢)ds, Viel0,1] P-asVgeCy. (5.23)

It remains to choose a version &f(w, s) which is a finite measure dR?. First note
that by the same arguments as in (5.21) we can see that

éflToﬁKZa"’ ©)] = P[(L1, 9)]. (5.24)

Since P[L1(dx)] is a finite measure ofR? we can easily get that the sequence of
measure$Z°%} is tight in M, P-as. Let{¢,} be a countable determining clas<n. By
considering an appropriate subseques)cm (5.18) we may assume Ilmo(Z‘Sn o) =

K (oo, Vk P -a.S. It follows that there is a random measife M; on (Q f) such
that Z& — K P-a.s. andk (¢) = (K, ¢) P-as. Yo € Cp. The required result is now
clear from (5.23), at least for € [0, 1]. Simply repeat the above construction on
[i,i 4+ 1] Vi € N to complete the proof. O

5.3. Proof of Proposition 1.14

Let X be any solution tqMP)3”" satisfying (ntC) on (2, F, F;, P) for someFy

measurable initial conditioi € M; ¢ satisfying EnC). LetXo = (i} dx, ¥2 dx) where
(X3, x8) € (C{ )2 Takey" = ((pl”,goz”) € (CHw? n > 1such thatp'™ 1 xi,i = 1,2,
pointwise. LetX andX" be particular solutions of\ P)J’ and (M P);’, ;/ respectively,

constructed in Section 1.4 on some probability smmef, F, P).
Then

|P[&(X,, Xo)] — lim P x P[E(Xg, S:X))]|

!P[@(ano)] PlE(X;, ¢")]]
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+w%Pxﬁ&am&%ﬂ—Pxﬁ&am&k4m

+|P x P[&(Xo, SsX"5)] — P x P[€(Xo, SsX,_s)]|
+|P x P[&(Xo, SsX,_5)] — Ii?g P x P[€(Xo, S:X,)]| (by Proposition 1.12)

<4vﬂw“%nwzﬂm%wfawuam)P[/§AX&X%Mde (by Lemma 4.1(b))
R2

+|P[E(X,, X)] = P[E(X,, ¢")]| + [P x P[E(Xo, $5X;)]
— P x P[€(Xo, $X,-s)]|
— 11,5,11 + 12,5,71 + 13,5,71
for any 0<é < andn > 1. Now taken — oo. Then by Proposition 4.2 we get that
X” s = X,_sin /\/ltem SinceS; X{, j =1, 2, is not necessarily i0exp, We need to check

that X" ”5(S5X0) = X/ ;(S;X}). But this follows easily by.2(P x P) boundedness of
X/"(S5X}) uniformly in n and the fact that

P x BRI (5:%3)] = PX§"(5,%0)
> PIXY(S,X3)] = P x PIXL;(5:X3)] < oo,

These two facts together easily give thglt’; (s X)) = X/ B(SBX({) (details are left for

the reader). Thereforg®"® — 0 asn — oo. Sincep™’/ — i boundedly pointwise we
get that/?>"% — 0 asn — oo. The first term/ 19 is bounded by

4y (upli™ | |+ 13858 P | [ 2 (xd B o
R2

<8 (3] J58].oP | [ 8 (XB XD) x|
]RZ

uniformly inn. Now by (EnC) and Dominated Convergence we getsljgsup, /1"° =0
and so we are done.O

5.4. Markov and strong Markov properties

LEMMA 5.4.— Let Xo € (C5)? and X be the particular solution of(M P2
0

constructed in Sectioh.4on some$2, F, F,, P).
(a) There is a time-homogeneous Borel Markov transition kebhel {P,(u, dv):
t >0, ue M;ie} on M e such that

| €0 K0P r.dv) = lim P[e(u. 5. (%)):
Mf,e
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(b) LetX satisfy(IntC) and (EnC) and solve(MP)5”. Then for any bounded Borel
measurable functioh on M; ¢ and any a.s. finiter,-stopping timer,

P[h(X,+,)|.7-",]:/h(v)P,(Xr,dv) a.s, (5.25)
Mf.e

i.e. X is a strong Markov process.

Proof. —

(a) Fix a (deterministic)Xo € M;e. By Theorem 1.9(a) for an), € My there
exists a solutionX to the martingale problenfM P)‘;(’Oy satisfying (ntC) and by
Proposition 1.12

P[&(X,, Xo)] =lim P[€(Xo, S, (X)]. (5.26)

By Theorem 1.9(b) the solutioX is unique. Let RXq, -) be the unique law ok,.
Then (5.26) shows

/ €(v, Xo)P: (Xo, dv) = lim P[€(Xo, 5: (X)) (5.27)
Mf,e

The right side is Borel measurable Xy € M. A monotone class argument shows

the bounded pointwise closure of the complex linear sp&€ 6t Xo): Xo € (cgp)z} is
the set of all bounded complex-valued measurable mapsljn (e.g. see Lemma 6.2
of [5]). The Borel measurability aKo — P, (Xp, ) from M; e to M1(M; ) follows.

(b) We now proceed by modifying the proof of Theorem 4.4.2 of [7] to accommodate
the side conditionsI(tC) and EnC). Let X be the unique solution toM P)x’g' on
(R, F, F, P) satisfying (ntC) with Xy (possibly random) satisfyinggnC). Let ¢ be
anybounded stopping time and” € F, with P(F) > 0. Define

Py(B)=P(1rP(1| F1))/P(F), BeF,

andY, = X.,. Thenby Lemma 3.3 solves(MP)}" on (2, F, F, P1) with L(Y ) =
P(X; € -| F) and satisfiesl itC) and EnC). So by Proposition 1.12 Ko € (cr;p)2 and
o= L(Yyp) then

PIEY. Xo)] =lm [ Ple(k. 5.(%)]ew)
Mf,e

_ / / ¢, Xo)P; (1, dv)o(du)
Mf,er,e

by (5.27) and Dominated Convergence. A monotone class argument again as i
Lemma 6.2 of [5] shows that for any bounded BadrelM; ¢ +— R

PLR(Y,)] = / / )P, (. dv)o(dy)

Mf,e Mf,e
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and so

P(lFP(h(X,+t)|.7-",)):P<1F / h(v)Pt(X,,dv)).
Mf,e

The required result follows for bounded stopping times, and the obvious truncation
argument then gives the result for a.s. finite stopping times.

Remark5.5. — Lemma 5.4 completes the proof of Theorem 1.9(c).
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Appendix A
LEMMA A.l.— Foranyx € Randr > 0, set
car(t A)E/—l e hIP/20t gl gy
’ 5 2rto?
R

Then, for anyr € R andy € C;, we have

S (x) <cart, VY (x), VxeR? (A1)
and

SUp ca1(t, A) =ca1(T,A) <00, VT >0. (A.2)

0<t<T

Proof. —(A.2) is obvious becausé*&! is a submartingale. We will prove (A.1) for
A > 0. For a negative. the proof is analogous. Far> 0, we have

/@u—ww@wy /2 Sy () dy
1 —lx—y|2/2t02 o2yl
< Wh/me € dy
2

1 y
:|1//|xe_)”|xl/me—lx—ylz/ZtozeM”_M),|dy

1 —|x—y[2/2t62 plx—y
<L) [ 5 e Pt ay
A Tlo
R

= |W|A¢A(x)/ 27'[t02e Iyl</2t eMyldy,
RZ

and we are done by definition of1(z, A). O
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LEMMA A.2.— Assumey € C, for somei € R. Then, for anyr > 0O, there is a
constantc4»(¢, A) such that

/pz (x — Y0P (x — y2) ¥ (x) dx < can(t, Dt W lda2(v)Paj2(v2),  Yyi, y2 € RZ
R2

Proof. —By the Holder inequality, we have

/ B (x — YD, (x — y2)¥ (x) dx
RZ

< J / p(x — yﬁ%(x)dxd / D% — )2 (x) dx
RZ RZ

= ct‘l\l /p,/g(x — yl)W(x)dX\l /pz/z(x —y2)¥(x)dx
R2 R2

< caxt, VY [V (1) da (02)

where the last inequality follows by Lemma A.10

LEMMA A.3.— Foranya,r > 0, set

2472
caz(t, ) =€ () =

2wto?’

Then, for anyu € Mg,

/pt(x = udy) < cas(t, Mcaa®)h (x)u(p-), VA >0, 1>0. (A.3)
If M e Mtem, then

/pt(x = udy) < cas(t, Mcaa®)p_ (x)u(¢pr), VA >0, 1 >0. (A.4)

Proof. —For anyu € M;ap
1 _ \x—yzwz
/pt(x —yuldy) = 5erg2 | € p(dy)

.xf)'\zf\x\)LZtaz

= caa(D by (x) / e Tt u(dy)

22t02|yl+22(2t02)2

< can()d, () / e ar u(dy)
— Caa(t, Weaa(® b (0) / &1 (dy)

where in the third line we used the trivial inequalityx| — |x — y|? < a|y| + a? for any
a > 0. (A.3) follows and the proof of (A.4) goes along the same lines.
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COROLLARY A4.— Foranypu € Mp, A >0and0<e <T

sup [ pi(x — y)uldy) <caz(T, A)casa(e)Pn(x) u(Pp-y). (A.5)

e<t<T

Foranyu € Mem A >0and0<e<T

sup [ pi(x — y)u(dy) < cas(T, A)caa(e) - (x) (). (A.6)

e<t<T

Proof. —Immediately from Lemma A.1. O

COROLLARY A.5.— For any v € Miem and x € R?, ¢ — S,v(x) is continuous on
(0, 00).

Proof. —By Corollary A.4 withu(dy1) = 8,(dy1), forany O<e < T, 1 >0,
sup p;(x —y) <cas(T, A)caa(e)p_(x) i (y)

est<T
= ca3(T, M)caa(e)e e (A7)

and the result follows by Dominated Convergence sirgg(T, A)caa(e)e! x
Jrz€*Y(dy) <o00. O

REFERENCES

[1] M. Barlow, S. Evans, E. Perkins, Collision local times and measure-valued processes, Car
J. Math. 43 (5) (1991) 897-938.

[2] D. Dawson, Measure-valued Markov Processes, Ecole d’été de Probabilités de Saint Flou
1991.

[3] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually
catalytic branching in the plane: Finite measure states, Ann. Probab. 30 (4) (2002) 1681-
1762.

[4] D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, J. Xiong, Mutually
catalytic branching in the plane: infinite measure states, Electron. J. Probab. 7 (15) (2002)

[5] D. Dawson, E. Perkins, Long time behaviour and co-existence in a mutually catalytic
branching model, Ann. Probab. 26 (3) (1998) 1088-1138.

[6] P. Donnelly, T. Kurtz, Particle representations for measure-valued population models, Ann.
Probab. 27 (1999) 166—205.

[7] S.N. Ethier, T.G. Kurtz, Markov Process: Characterization and Convergence, John Wiley
and Sons, New York, 1986.

[8] S. Evans, E. Perkins, Collision local times, historical stochastic calculus, and competing
superprocesses, Electron. J. Probab. 3 (5) (1998).

[9] N. Konno, T. Shiga, Stochastic differential equations for some measure-valued diffusions,
Probab. Theory Related Fields 79 (1988) 201-225.

[10] P. Meyer, Un cours sur les intégrales stochastiques, in: P. Meyer (Ed.), Séminaire de
Probabilités, X, in: Lecture Notes in Mathematics, Vol. 511, Springer, Berlin, 1976,
pp. 245-400.

[11] L. Mytnik, Superprocesses in random environments, Ann. Probab. 24 (1996) 1953—-1978.



D.A. DAWSON ET AL./ Ann. I. H. Poincaré — PR 39 (2003) 135-191 191

[12] L. Mytnik, Uniqueness for a mutually catalytic branching model, Probab. Theory Related
Fields 112 (2) (1998) 245-253.

[13] E. Perkins, Measure-valued branching diffusions with spatial interactions, Probab. Theory
Related Fields 94 (1992) 189-245.

[14] E. Perkins, On the martingale problem for interactive measure-valued branching diffusions
Mem. Amer. Math. Soc. 549 (1995).

[15] M. Reimers, One-dimensional stochastic partial differential equations and the branching
measure diffusion, Probab. Theory Related Fields 81 (1989) 319-340.

[16] J. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in
Mathematics 1180 (1986) 265—-439.



