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ABSTRACT. – We suggest a generalisation of the convex-hull method, or ‘DEA’ approach,
for estimating the boundary or frontier of the support of a point cloud. Figuratively, our method
involves rolling a ball around the cloud, and using the equilibrium positions of the ball to define
an estimator of the envelope of the point cloud. Constructively, we use these ideas to remove lines
from a triangulation of the points, and thereby compute a generalised form of a convex hull. The
radius of the ball acts as a smoothing parameter, with the convex-hull estimator being obtained
by taking the radius to be infinite. Unlike the convex-hull approach, however, our method applies
to quite general frontiers, which may be neither convex nor concave. It brings to these contexts
the attractive features of the convex hull: simplicity of concept, rotation-invariance, and ready
extension to higher dimensions. It admits bias corrections, which we describe and illustrate
through implementation.
 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – On suggère une généralisation de la méthode de l’enveloppe convexe pour estimer
la frontière du support d’un nuage de points. De manière imagée, notre méthode consiste à faire
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rouler une boule autour du nuage et à utiliser ses positions d’équilibre pour définir un estimateur
de l’enveloppe convexe. On peut ainsi construire une enveloppe convexe généralisée, le rayon de
la boule jouant le rôle de paramètre de régularisation et l’enveloppe convexe correpondant à un
rayon infini. Comparée à celle de l’enveloppe convexe, cette méthode s’applique à des frontières
plus générales tout en conservant les même avantages : simplicité conceptuelle, invariance par
rotation, extension immédiate aux dimensions supérieures. Elle donne lieu à des corrections de
biais que nous décrivons et illustrons dans des implementations.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The convex-hull estimator of a boundary or frontier is popular in econometrics,
where it is a cornerstone of a method known as ‘data envelope analysis’ or DEA; see
for example Charnes et al. [2], Seiford [22], Gijbels et al. [5] and Kneip, Park and
Simar [10]. Relative to some of its competitors it has the advantages of being simple
in concept, rotation-invariant in definition, and readily extendible to higher dimensions.
However, a disadvantage is that it does not apply beyond the case of convex frontiers,
and it does not directly involve a smoothing parameter. In this note we suggest a related
method which has immediate extension to estimation of general smooth curves, which
involves an adjustment for smoothing, and which retains the virtues of convex hull
methods. Our approach admits a degree of bias adjustment, particularly when the point
cloud under investigation is in two dimensions.

A figurative definition of our method involves rolling a ball around the edge of a point
cloud, and taking the estimator of the frontier,F , of the support of the cloud to be ‘the
trajectory’, in some sense, of the ball. The radius of the ball may be interpreted as a
smoothing parameter, and can be varied from place to place. The convergence rate of
this rolling-ball estimator depends on our definition of the trajectory.

For example, if we ask only that the frontier have a tangent at each point then it is
adequate to take the curve traced out by the ball’s centre to be our estimator ofF . There,
a minimax-optimal convergence rate is achieved if the ball’s radius gets smaller (at a
suitable rate) as the number of points per unit area diverges. However, if the tangent to
the frontier varies smoothly, in a way which is differentiable, then that part of the ball that
is nearest to the point cloud, in some sense, should be taken as defining the trajectory,
and the ball’s radius should be kept bounded away from zero as the density of the cloud
increases. More explicitly, we suggest defining the trajectory in terms of the polygonal
pattern formed by positions of stable equilibrium for the ball.

If the frontier is convex, and if we take the ball’s radius to be infinite and define the
trajectory as suggested just above, then we obtain exactly the convex-hull estimator,
which may therefore be regarded as a special case of a rolling-ball estimator. However,
an infinite radius is not appropriate when estimating a general smooth frontier. There,
the nearest analogue of the convex-hull estimator is arguably a method based on
triangulation of the points, such as the Delaunay triangulation (see e.g. [18, Section 4.3]).
We need a method for removing some of the lines in the triangulation, and the rolling-
ball approach provides an algorithm for doing just that.
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Related work on boundary and frontier estimation includes that of Korostelev and Tsy-
bakov [12], Korostelev, Simar and Tsybakov [13,14], and Mammen and Tsybakov [14]
on optimal estimation of sets and frontiers, and that of Hall, Park and Stern [8] on
polynomial based methods. Some of the work on frontier estimation assumes Poisson-
distributed points, and some assumes a given number,n, of independently-distributed
points. There is of course a duality between the two approaches, in which the intensity
function of the former is replaced byn multiplied by the common probability density
for the latter. First-order asymptotic results are generally the same in both contexts. We
shall work in the Poisson setting.

Properties of the convex hull, in the case where the Poisson point process has an
unbounded convex domain, are investigated by Nagaev [17]. Results on the number
of vertices (and other quantities) of the convex hull of random points are given by
Groeneboom [6] and Cabo and Groeneboom [1], who generalise results by Rényi and
Sulanke [20,21] and Efron [4].

Section 2 will introduce our methods, including those for bias correction, and
Section 3 will describe numerical implementation. Theoretical properties will be
summarised in Section 4, with outlines of proofs given in the appendix.

2. Methodology

2.1. Rolling-ball algorithm

Suppose we observe point-process dataX = {ξ1, ξ2, . . .} in d-dimensional Euclidean
spaceR

d , and that the intensity function ofX is supported on a compact set bounded
by a smooth frontierF of dimensiond − 1. We wish to estimateF , and suggest the
following algorithm.

Let r > 0 denote a smoothing parameter, and roll ad-dimensional sphere of radiusr
around the perimeter of the point cloud. For almost all positions of the sphere (defined
with respect to Lebesgue measure) this motion involves pivoting the sphere about a
single point in the cloud. However, in some instances, arising with probability 0 if the
sphere is placed randomly against the cloud, the sphere touches 2 or more points. When
the sphere touchesd points it is in a position of stable equilibrium, in the sense that
movement into and out of this configuration, in any direction, produces a discontinuity
in the derivative of the position of the centre of the sphere. We call these sets ofd points
‘equilibrium clusters’. If the point cloud is produced randomly in the continuum then,
with probability 1, at no time during its rolling motion does the sphere ever touchd + 1
points simultaneously.

In principle the value ofr should be chosen empirically. In the absence of a purely
objective procedure, experimentation is suggested. We shall note in Section 2.2, and
argue rigorously in Section 4, that the minimax-optimal choice ofr is to taker fixed.
And we shall observe in Section 4 that takingr = ∞ gives the conventional convex-hull
estimator.

Each equilibrium cluster defines a(d − 1)-flat in R
d . Let G denote that part of this

plane bounded by the12 d (d − 1) lines connecting all pairs of thed points; we call it
the ‘equilibrium face’ associated with that particular equilibrium cluster. (Then,G is a
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line, triangle or tetrahedron in the casesd = 2, 3 and 4, respectively.) The union of all
such faces is a surface,̂F . EitherF̂ , or a smoothed version of it (possibly incorporating
a correction for bias), is our approximation toF .

Smoothing in the present context may amount to no more than passing a smooth
interpolant through the union of vertices in the setsG. One approach is to use splines,
for example ind = 2 or 3 dimensions. Ford = 3 an attractive alternative, making explicit
use of the triangulation required to definêF , is that suggested by McLain [15].

In asymptotic terms, if the point process is Poisson, if its intensityν diverges and if the
frontier is twice-differentiable, then the optimal size ofr is a constant, not converging
to 0 asν → ∞. This results inF̂ converging toF at rate Op(ν−2/(d+1)) in a pointwise
sense, which is the minimax-optimal rate for frontiers that are differentiable and satisfy
a Lipschitz condition of order 1 on the first derivative. (This result may be proved as in
Härdle, Park and Tsybakov [9]. See also Korostelev, Simar and Tsybakov [13].)

The case of estimating a production frontier understood as in Grosskopf [7] is a
specialisation, and may be formulated as follows. For eachi, let Xi denote a(d − 1)-
vector andYi be a scalar, and letX = {ξ1, ξ2, . . .} whereξi = (Xi, Yi). It is assumed that
the distribution functionF(· | x) of Y givenX = x has an endpoint atg(x), say:

F
{
g(x) − y | x

}{
< 1 for y > 0,

= 1 for y � 0.

We wish to estimate the(d − 1)-dimensional frontierF defined byy = g(x).

2.2. Alternative rolling-ball methods

Our decision to base the method on equilibrium faces, rather than take a simpler
approach, is motivated by a desire to obtain minimax-optimal performance for twice-
differentiable frontiers. See Theorem 4.1 below. However, simpler approaches perform
optimally when only one derivative is assumed of the frontier.

For example, we may take the estimator ofF to be the locus of the centre of the
ball as it rolls around the point cloud. Equivalently, we could centre a ball of radius
r at each point in the cloud, and take the union of the spheres as our estimator ofF .
Alternatively, returning to rolling the ball aroundF , we could take the locus of any
consistently-defined point on the surface of the ball as the estimator ofF . For example,
we could use the ‘lowest’ point, provided we can define ‘lowness’ in terms of some
coordinate axis. This is perhaps reasonable in the context of estimating a productivity
frontier, where Cartesian coordinates have important physical interpretation. If we take
r to be of sizeν−1/d , whereν is the intensity of the point process on its support, then
the pointwise rate of convergence of the resulting estimator ofF is Op(ν−1/d), which is
optimal for frontiers that satisfy a Lipschitz condition of order 1.

Heuristically, the reason the equilibrium-cluster method works optimally well for
second-order frontiers is that it implicitly estimates the gradient of the frontier at each
point. It does this through the equilibrium face, which with high probability is very
nearly parallel to the tangent toF at each point of the latter which is close to the face. No
matter what order of bandwidth is used, the methods described in the previous paragraph
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fail to achieve minimax-optimal performance for twice-differentiable frontiers, because
they do not address the problem of estimating gradient.

The rates of convergence for the equilibrium-cluster method, and for the simpler
procedures suggested above, may be shown (using methods similar to those in our
Appendix) to equal Op(b2 + s) and O(b + s), where terms inb describe the size of bias,
terms ins describe the size of the difference between the estimator and its asymptotic
mean, andb = ν−1/(d+1)r1/(d+1) ands = ν−2/(d+1)r−(d−1)/(d+1). On equating the orders
of these quantities, and solving forr , one can see that, in general, asymptotically optimal
performance of the equilibrium-cluster method is attained for fixedr , which produces a
convergence rate of Op(ν−2/(d+1)), while optimal performance of the others is achieved
with r decreasing to 0 at rateν−1/d , which gives a convergence rate for these estimators
of ν−1/d . The superiority of the equilibrium-cluster approach, in cases where frontier is
twice differentiable, is therefore clear.

2.3. Bias correction

First we deal with the cased = 2, where relatively simple corrections are possible.
They depend on positive constantsw(q) and w′, defined byw(q) = E{W(q)} and
w′ = E(W ′), where the random variablesW(q) andW ′ will be introduced in Section 4.
(See (4.2) for a definition ofW(q).) Table 1 gives approximate values ofw(q), computed
by simulation, for a range ofq ’s. In the same way we calculated thatw′ ≈ 1.12.

The first correction (ford = 2) amounts to shifting the frontier estimatorF̂ an amount
(2r)−1/3�̂−2/3 w(0) away from the point cloud, in a direction perpendicular toF̂ , where
�̂ is an estimator of the intensity,�, of the point process at the placeP onF where the
frontier is being estimated. This adjusts for the effects of bias under the assumption that
the frontier is flat atP . It does not correct for the curvature,p, atP , although that could
be achieved by changing the shift to(2r)−1/3�̂−2/3 w(p̂r), wherep̂ estimatesp. These
corrections are justified theoretically by Theorem 4.2, of which a more general,d-variate
form is the following, which for future reference we call result (R): IfD(p) denotes the
distance from the frontier estimator to the true frontier, measured perpendicularly to the
latter, then as the Poisson intensity� diverges, the distribution of{rd−1�2}1/(d+1)D(P )

converges to a distribution that depends on unknowns only throughpr , and has expected
valuew(pr).

Whenp > 0 the frontier is concave upwards, and so represents a ‘valley’. Moreover,
pr > 1 corresponds to the radius of the ball being so large that the ball cannot touch
the vertex of the ‘valley’ while it is rolling. Therefore, we would not use a value
of r such thatp̂r > 1. That is why Table 1 only givesw(q) for q < 1. Indeed,
w(1) = E{W(1)} = ∞, even thoughW(1) < ∞ with probability 1; andW(q) = ∞
with probability 1 if q > 1.

The second correction is designed for the case of a convex-hull approximation to a
convex frontier, and amounts to shifting the frontier estimator by|p̂/2|1/3�̂−2/3w′ in the
perpendicular direction, wherêp is an estimator of the curvature of the frontier at the
point where the correction is being made. This adjusts for all the bias of the convex-hull
estimator, up to terms that are of the same order as�−2/3 multiplied by the larger of the
relative errors in the estimatorŝ� andp̂. The correction is justified by Theorem 4.3.
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Similar corrections may be developed in any number of dimensions, based on
generalised versions of Theorems 4.2 and 4.3. However, corrections that involve the
curvature,p, now depend on curvatures in several different directions. There are
1
2 d (d − 1) of these, even after the axis system has been rotated so as to be aligned with
the tangent plane at the pointP of estimation. Thus, explicit corrections for curvature
are arguably not attractive in more than two dimensions.

The d-variate analogue of the simple adjustment for tangent whend = 2, i.e. of
(2r)−1/3�̂−2/3 w(0), is r−(d−1)/(d+1) �̂−2/(d+1) wd , where�̂ is an estimate of the intensity
of thed-variate point process nearP , andwd is an absolute constant, equal to 2−1/3w(0)

whend = 1. Rather than calculatewd , one may use a Monte Carlo approach, as follows.
Conditional on the data, and assuming temporarily thatF is planar at the pointP of
approximation, generate a homogeneous point process, with intensity�̂, below a plane
passing through the originO, and compute the rolling-ball estimate (for the given value
of r) of P ≡ O. Of course, the estimate will be belowO. Repeat this procedure a large
number of times, and takeδ to be the mean distance of the estimates belowO. To
correct the original estimatêF at a pointP , simply shift the estimate a distanceδ further
away from the point cloud. If it is necessary to vary(r, �̂) to new values(r1, �̂1), say,
then in view of result (R) given three paragraphs above we should simply multiplyδ by
(r/r1)

(d−1)/(d+1) (�̂/�̂1)2/(d+1).
We may estimate� in a locally adaptive way using a histogram-type method, and in

the cased = 2 we may estimatep by fitting a quadratic locally to the frontier. Details
will be given in Section 3.

3. Algorithm

3.1. Implementation of the rolling-ball algorithm

We begin by describing implementation of the rolling-ball algorithm ford = 2. First
we determine the Delaunay triangulation and the convex hull of the observed points,
performing computations in S-PLUS using the Delaunay triangulation package of
Turner and Macqueen [23]. Hence, we start with a triangulation defined by all the points
and by a polygon identical to the convex hull. We construct the rolling-ball estimator
starting from this polygon. At the same time the triangulation is modified by removing
and changing some triangles so that in the end only triangles that are ‘inside’ the rolling
ball estimator remain.

Specifically, to construct the rolling-ball estimate for a given value ofr we start at a
point on the convex hull and move in one direction, say clockwise. Assume that we are
at a pointP1 of the polygon. Then we determine the next point, sayP2, on the polygon,
and calculate the Euclidean distance betweenP1 andP2. If this distance is greater than
2r , then it is clear that in the rolling-ball estimate these two points are not connected.
Hence, we modify the triangulation by removing the edge between these two points.
In removing this edge we are also removing a triangle from the triangulation. The third
point of this triangle now becomes part of the polygon that ultimately defines the rolling-
ball estimates. After adding this point to the polygon, it becomes the closest point on the
polygon toP1, and we iterate the process just described. SinceP1 is connected to a finite
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number of points at the beginning of this process, it is clear that these iterations will
either stop if (1) a point with distance less than 2r from P1 is found or (2) all edges
connectingP1 with other points are removed.

If the distance is less than 2r , we calculate the centre of the circle of radiusr on which
P1 andP2 lie. This circle is uniquely determined by requiring that its centre be on the
‘left’ of the edge running fromP1 to P2.

If one or more points (say, the points inP) connected toP1 or P2 by the triangulation
lie in the interior of the circle, we determine that point inP , sayP3, such that a disc
of radiusr with its circumference passing throughP1 andP3 and with its centre on the
left side of the edge running fromP1 to P3, contains neitherP2 nor any point inP other
thanP3. We addP3 to the polygon since, by construction, the edge connectingP1 andP3

belongs to the rolling-ball estimate. The triangulation is updated by removing the edge
betweenP1 andP2 (which removes one triangle). Occasionally it may also be necessary
to alter other triangles so that no triangle is intersected by the polygon.

If none of the points that are connected toP1 or P2 by the triangulation lie in the
interior of the circle, then the edge betweenP1 and P2 belongs to the rolling-ball
estimates, and we move fromP1 to P2 and repeat the process just described until we
reach the point at which we started the process. The polygon generated at this stage
describes the rolling-ball estimate. It is also clear that this process will terminate after a
finite number of steps (if it does not stop with an error becauser was chosen too small
and we would get two disconnected sets).

3.2. Implementing the bias correction

First we describe our Monte Carlo method for computingw(q) = E{W(q)} and
w′ = E(W ′). (Definitions ofW(q) and W ′ are given in Section 4.) To estimate these
quantities we simulate, for each value ofq, 500 (say) realisations of a Poisson point
process with unit intensity, in the region defined byy < qx2. We use a modified version
of the algorithm described by Møller [16], to obtain the first 100, 250 500, 1000 and
5000 (say) points of each realisation. For each realisation we calculateW(q), and the
values computed from realisations of the same length (i.e. 100, 250, . . . , 5000) are then
averaged. There are only minor differences between approximations tow(q) obtained
from the realisations for which 5000 points are simulated, and approximations based on
shorter sequences; this serves as a check on performance of our methods. Monte Carlo
averages over realisations with 5000 points are given in Table 1. Analysis of the data in
Table 1 shows that a good approximation tow(q) is given by

w(q) ≈ 0.75 log(1− q) − 0.006q + 0.68. (3.1)

We use this approximation to implement the bias correction. The value ofw′ is obtained
by similar simulations.

The area of a polygon (convex or otherwise) is easily calculated; see O’Rourke [19,
p. 24]. After computing the rolling ball estimate we can determine the area that it
circumscribes. An estimate of the intensitŷ� is now readily obtained by dividing the
number of observations by this area. It should be noted that this approach will in general
underestimatê�, although in our experience that does not pose a problem.
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Table 1
Values ofw(q). The value ofw(q) is given byw(q) = E{W(q)}, for given values ofq ,
and the random variableW(q) is defined at (4.2)

q w(q) q w(q) q w(q)

0.950 −2.0971 −0.250 0.8225 −2.500 1.8899

0.925 −1.5036 −0.300 0.8600 −2.750 1.9360

0.900 −1.0329 −0.400 0.9080 −3.000 1.9841

0.800 −0.4003 −0.500 0.9720 −4.000 2.1936

0.750 −0.1795 −0.600 0.9990 −5.000 2.4864

0.700 −0.0407 −0.700 1.1177 −6.000 2.6669

0.600 0.0821 −0.750 1.1086 −7.500 2.7606

0.500 0.2830 −0.800 1.1140 −8.000 2.8581

0.400 0.3862 −0.900 1.1384 −10.000 3.2194

0.300 0.4808 −1.000 1.1788 −12.500 3.4442

0.250 0.4795 −1.250 1.3134 −15.000 3.7324

0.200 0.5304 −1.500 1.4132 −17.500 3.8875

0.100 0.5814 −1.750 1.5100 −20.000 4.0630

0.000 0.6781 −2.000 1.5060 −25.000 4.4892

−0.100 0.7527 −2.250 1.5929 −30.000 4.8715

If a local estimate of�̂ is desired then the approach above can be easily adapted.
Instead of using the polygon that is given by the rolling ball estimator, we would employ
the Delaunay triangulation to determine points that are close to the location where a local
estimate of�̂ is desired, and which lie inside the rolling-ball estimate. We would then
use the polygon defined by such points to estimate�̂.

Finally, to obtain an estimatêp of the curvaturep at a pointP we calculate cubic
splinesx(t) andy(t) such that the curve(x(t), y(t)) interpolates the data. The curvature
p at a pointP is estimated by the curvature of the interpolating curve atP .

Examples of numerical implementation are given in a longer version of this paper,
avaliable from the authors.

4. Theoretical properties

We suppose throughout that the point processX is Poisson with intensity� = νλ,
whereλ is a fixed function defined onRd and the scalarν is allowed to diverge to
infinity. We assume that:

λ is compactly supported and bounded away from 0 on its support; that the support
is a connected set with frontierF ; that ball radius,r , is strictly less than the largest



P. HALL ET AL. / Ann. I. H. Poincaré – PR 38 (2002) 959–971 967

radius such that the ball may roll freely in a neighbourhood of a pointP onF without
touching more than one point ofF .

(4.1)

(For second-order surfaces, such as those assumed in the theorems, the latter assumption
will always be valid if r is sufficiently small.) In practice, adaptive smoothing when
estimatingF may be achieved by choosingr to be a function of location.

We computeF̂ as suggested in Section 2.1, using a ball with fixed radius. Given
an interior point P of F , let D(P ) equal the distance fromF to F̂ , measured
perpendicularly to the tangent plane toF at P . Our next result shows that the minimax-
optimal convergence rate, O(ν−2/(d+1)), is obtained for fixedr .

THEOREM 4.1. –In addition to assumptions(4.1), suppose that in a neighbourhood
of P , the first derivatives of the function definingF exist and satisfy a Lipschitz condition
of order1. Then,D(P ) = Op(ν−2/(d+1)) asν → ∞.

Next we describe the limiting distribution in the cased = 2. Let q be any real
number. Given a Cartesian coordinate system inR

2 with axes x and y, let X0 =
{(ξ1, η1), (ξ2, η2), . . .} denote a homogeneous Poisson process, with unit intensity, in the
region defined byy < qx2. Let i = I (1) be the index that minimisesαi ≡ ξ2

i − ηi over
i � 1. GivenI (k) for somek � 1, define

βj = 1

2

(
ξI (k) + ξj − ηI (k) − ηj

ξI (k) − ξj

)
,

and choosej = I (k + 1) to minimise(ξI (k) − βj )2 over

j ∈ {
j � 1 satisfying(ξI (k) − ξj )ξI (k) > 0

}
.

Let k̂ denote the smallestk such thatξI (k)ξI (1) < 0, and defineI = I (k̂ − 1), J = I (k̂)

and

W(q) = ξI (ηI − ηJ )(ξI − ξJ )−1 − ηI . (4.2)

THEOREM 4.2. –In addition to assumptions(4.1), supposed = 2, that the frontier
F has two continuous derivatives in a neighbourhood ofP , that λ(·), restricted to its
support, is continuous in a neighbourhood ofP , and thatλ = 1 at P . Let p denote
the curvature atP , with the convention thatp < 0 or > 0 according as the frontier is
concave(towards the point cloud) or convex atP . Then,(2r)1/3ν2/3D(P ) converges in
distribution toW(pr) asν → ∞.

The ‘free rolling’ condition among assumptions (4.1) guarantees thatW(pr) > 0 with
probability 1. The following definition ofW = W(q) is equivalent to the one above, but
provides greater geometric insight and is used in the proof of Theorem 4.2. Choose
I (1) = i such that the parabola defined byy = x2 −αi is as ‘high’ as possible, subject to
containing at least one point ofX0. (That is, move the parabolay = x2 down they-axis
until it first meets a point, which we call(ξI (1), ηI (1)).) Given I (k) for somek � 1,
chooseI (k + 1) = j such that (a)j �= I (k); (b) (ξj , ηj ) is on the same side of the point
P (k), defined to have coordinates(ξI (k), ηI (k)), asO; and (c) the parabola with equation
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y = a + (x − b)2, where the constantsa andb are chosen so that (i) it passes through
bothP (k) and (ii) the point with coordinates(ξj , ηj ), is as ‘high’ as possible. Continue
this process until the first time thatP (k) is on the opposite side of they-axis toP (1). Let
k̂ � 2 be the smallestk for which this is true, and putI = I (k̂ − 1) andJ = I (k̂). Then,
the parabola of the formy = a + (x − b)2 that passes through bothP (k̂ − 1) andP (k̂)

hasa = ηI − (ξI − βJ )2 andb = βJ , and so they coordinate of the parabola’s vertex
is ηI − (ξI − βJ )2. (Thus, the process consists of sliding the parabola downwards, and
sideways in the direction of the origin, keeping it touching the latest pointP (k), until it
first meets a point on the opposite side of they-axis fromP (1).) Let−W equal the point
at which the line joining(ξI , ηI ) and(ξJ , ηJ ) cuts they-axis.

The case of larger is of particular interest, partly becauser = ∞ and p < 0
correspond, at least locally, to a convex-hull approximation toF . First we treat the case
p � 0, however. There, the ‘free rolling’ condition in assumptions (4.1) is important; it
requirespr < 1 for all sufficiently larger asr increases, and in particular thatp should
decrease at least as fast as O(r−1) if p > 0. It may be proved that, ifr = r(ν) → ∞ and
pr → *, where* ∈ [0, 1), thenν2/3D(P ) → 0 in probability asν → ∞. For example,
this is the case ifF is flat at the origin, in which setting the result is intuitively clear. (The
convergence rate is thus a little faster than the theoretical optimum, this being possible
since the curvature is now vanishingly small.)

Our next result addresses the case wherep < 0 andr = ∞. We construct the random
variable W ′ as follows. RedefineX0 = {(ξ1, η1), (ξ2, η2), . . .} to be a homogeneous
Poisson process, with unit intensity, in the region given byy < −x2. Consider the convex
hull of X0 (an estimator of the frontiery = −x2), and let−W ′ equal the point where the
hull crosses they-axis.

THEOREM 4.3. –In addition to the assumptions of Theorem4.2, suppose the frontier
is concave (towards the point cloud), at least over the region where we are estimating it.
Let F̂ be the convex-hull estimator(that is, we employr = ∞), and letp < 0 denote the
curvature ofF at P . Then,|2/p|1/3ν2/3D(P ) → W ′ in distribution asν → ∞.

This result is also valid if, instead ofr = ∞, r = r(ν) → ∞ asν → ∞, subject to
the ‘free rolling’ condition. Theorem 4.3 is essentially a version in the point-process
context of Corollary 1 of Gijbels et al. [5], the main difference being that we give
here a constructive definition of the limiting distribution, rather than a formula for its
distribution function.

Appendix A

A.1. Proof of Theorem 4.1

Without loss of generality, the pointP onF at which we estimateF is the originO,
and the tangent plane toF at P is parallel to the plane of the firstd − 1 coordinate axes
(all but thez-axis, say). The latter assumption is permissible because our estimatorF̂ is
invariant under rotations of the data. We shall assume initially that, in a neighbourhood
of O, F is actually planar; and then we shall address the alterations necessary to deal
with the more general case.
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We first note thatD(P ) is determined by the equilibrium face which ‘cuts’ thez-axis.
This face is formed by a set ofd points which lie on different sides of the firstd − 1
coordinate axes, i.e. have different sign configurations of the firstd − 1 coordinates to
each other.

Let zν = ν−2/(d+1). Given a constantC > 0, consider ad-dimensional rectangle

R= {
(x1, . . . , xd−1, z): −(

rCzν/(d − 1)
)1/2 � xi �

(
rCzν/(d − 1)

)1/2
,

−Czν/2� z � 0
}
.

PartitionR into 2d−1 sub-rectangles according to the 2d−1 sign configurations of the first
d − 1 coordinates. Denote them byRi , i = 1, . . . , 2d−1. For example, in the cased = 3
one of the sub-rectangles is given by

{
(x1, x2, z): 0� x1, x2 � (rCzν/2)1/2, −Czν/2� z � 0

}
.

Suppose there exists at least 1 point in each of the partitionsRi . Then the protrusion
below the planez = 0 of a d-dimensional sphere of radiusr in the position of the
equilibrium which definesD(P ), never exceedsCzν . The maximum protrusion occurs
when the sphere touches a particular set ofd points among the ‘lower’ 2d−1 vertices
of R. This means thatD(P ) � Czν .

Let C1 > 0 be a lower bound toλ on its supportS . It follows then that

P
{
D(P ) > Czν

}
� P

{
No points inRi for some 1� i � 2d−1}

�
2d−1∑
i=1

exp
{

−
∫
Ri

νλ(ξ) dξ

}

� 2d−1 exp
[−C1ν

{
rCzν/(d − 1)

}(d−1)/2
(Czν/2)

]
= 2d−1 exp

[−C1{r/(d − 1)}(d−1)/2C(d+1)/2/2
]
,

which tends to zero asC → ∞.
If a portion z, measured radially, of ad-dimensional sphereT of radiusr protrudes

below a plane, then the radius of the(d − 1)-dimensional sphere formed by the
intersection of the plane withT , equals O(z1/2) as z ↓ 0. Therefore, ifF is not
planar in a neighbourhood of 0, the fact that the tangent plane satisfies a Lipschitz
condition of order 1 as it is moved aroundF implies thatD(P ) differs by no more than
O{(z1/2

ν )2} = O(zν) from its position in the planar case. Thus, the result continues to hold.

A.2. Proof of Theorem 4.2

We may suppose thatF passes through(0, 0), that its tangent at that point is the
line y = 0, and that the point cloud is belowF . We assume too that the point process
has intensity identically equal toν; the case where the intensity equalsνλ(·), and
λ(x, y) → 1 as(x, y) → (0, 0), may be treated similarly.

Suppose the ball (here a disc) is centred at(x1, y1) ≡ (c1θ +O(θ2), r +c2θ2 +O(θ3)),
whereθ > 0 is small and−∞ < c1, c2 < ∞. (We do not include terms of sizeθ in
the expansion ofy1, since if the ball has a protrusion of width O(θ) belowF then the
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depth of that protrusion will be O(θ2), not just O(θ).) The circumference of the ball has
equation(x −x1)2 + (y −y1)2 = r2, which implies thaty/r = 1

2{(x/r)+d1θ}2+d2θ2 +
O(|x|3 + θ3) asθ + |x| → 0, for constantsd1, d2 determined byc1, c2. Re-parametrising
to x = hru, y = 1

2h2rv andθ = ht , whereh = {2/(r2ν)}1/3, we obtain

v = a + (u − b)2 + O(h) (A.3)

as h → 0, wherea, b depend onc1, c2, t . (The order of the remainder term is valid
provided|u| = O(1).)

If the curvature, or second derivative, ofF at (0, 0) equalsp then the locus of points
(x, y) onF has equationy = 1

2px2 + O(|x|3) asx → 0. Reparametrising as before, the
equation becomes

v = pru2 + O(h) (A.4)

ash → 0, assuming that|u| = O(1).
The intensity of the Poisson process in(u, v)-space equals 1. Therefore, in the limit

ash → 0 (or equivalently, asν → ∞), the problem of rolling a ball across the top of a
point cloud (emanating from a Poisson process with intensityν, below the frontierF )
near the originO, until it just touches two points, converges to one of ‘sliding’ a solid
parabola, whose perimeter has Eq. (A.3), across the cloud so that it just touches two
points of another cloud (this time coming from a Poisson process with unit intensity, and
distributed below the frontier defined by (A.4)) near the origin.

The latter point process, and parabola-sliding algorithm, is exactly the one used to
define the distanceW(q), with q = rp, of O from the point on the parabola immediately
belowO. See the second definition ofW(q) in Section 4. Hence, after re-parametrisation
to the(u, v)-plane, the distance below the origin of the nearest equilibrium face (here,
a line) converges in distribution toW(pr). Equivalently, returning to the scale of
the original coordinate system,D(O)/(1

2h2r) converges in distribution toW(pr) as
ν → ∞. This is equivalent to Theorem 4.2.
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