Ann. |. H. Poincaré — PR8, 6 (2002) 863-878
0 2002 Editions scientifiques et médicales Elsevier SAS. Al rights reserved
S0246-0203(02)01123-8/FLA

A DIFFERENT CONSTRUCTION OF GAUSSIAN FIELDS
FROM MARKOV CHAINS: DIRICHLET COVARIANCES

UNE NOUVELLE CONSTRUCTION DE CHAMPS
GAUSSIENS A PARTIR DE CHAINES DE MARKOV

Persi DIACONIS2! Steven N. EVANSP-2

aDepartment of Mathematics, Stanford University, Building 380, MC 2125, Stanford, CA 94305, USA
b Department of Statistics #3860, University of California at Berkeley, 367 Evans Hall,
Berkeley, CA 94720-3860, USA

Received 10 April 2001, revised 22 March 2002

ABSTRACT. — We study a class of Gaussian random fields with negative correlations. These
fields are easy to simulate. They are defined in a natural way from a Markov chain that has
the index space of the Gaussian field as its state space. In parallel with Dynkin’s investigation o
Gaussian fields having covariance given by the Green’s function of a Markov process, we develo
connections between the occupation times of the Markov chain and the prediction properties c
the Gaussian field. Our interest in such fields was initiated by their appearance in random matri
theory.
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RESUME. — Nous étudions une classe de champs aléatoires Gaussiens a correlations négativ
Ces champs sont faciles a simuler. lls sont définis de fagon naturelle & partir d’'une chaine d
Markov dont I'espace d’états est I'espace d'indices d’'un champ Gaussien. Nous développons d
connexions entre temps d’occupation d’une chaine de Markov et les propriétés de prédiction
d'un champ Gaussien, dans la méme veine que celle des études de Dynkin sur les cham
Gaussiens dont la covariance est donnée par la fonction de Green d’'un processus de Markc
Notre intérét pour ces champs a été suscité par leur apparition dans la théorie de matrice
aléatoires.
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1. Introduction

Let X be a finite set. Our goal is to define and study a rather general class of mea
zero Gaussian fields = {Z, }cx With negativecorrelations. These fields may be used
for smoothing, interpolation and Bayesian prediction as in [40,1,3,2,5,4], where there
are extensive further references.

The definition begins with a reversible Markov chafnwith state spacetY. Our
development in the body of the paper will be for continuous time chains, because
the exposition is somewhat cleaner in continuous time, but we will first explain the
construction in the discrete time setting. LB(x, y) be the transition matrix of a
conservative discrete time Markov chainwith state spacet’ (that is, the chain is not
subject to killing), and assume for simplicity that the chdihas no holding (that is, the
one-step transitions of are always to another state). Thi#x, y) > O0forallx, y € X,
> yex P(x,y) =1forallx € X (nokilling), andP (x, x) = 0 for all x € & (no holding).
Suppose further that the cha¥is reversible with respect to some probability vector
(r(x))xex; thatis,m(x)P(x, y) =7 (y)P(y, x) forall x, y € X. The matrixZ given by

7, if x =1y,
E(X,y)-—{_n(x)p(x,y), if x #y,

is positive semi-definite, and hence is the covariance matrix of a mean zero Gaussia
field Z = {Z,},.cx. Note that the dependence structure of the fi&ldccords with the
local neighbourhood structure defined by the transition mari P (x, y) =0 (that is,

the chainX is unable to go fromx to y in one step), then the Gaussian random variables
Z, andZ, are independent.

Examplel.1. — LetX be the points of the x »n discrete torus (that i%,, x Z,, where
Z, is the group of integers module), and let P be the transition matrix of nearest
neighbour random walk o/’. Thus, P(x, y) = 1/4 if x and y are adjacent (that is,

x —y e {(£1,0),(0,£1)}) and P(x, y) = 0 otherwise. This chain is reversible with
respect to the uniform distribution (x) = 1/n2. A realisation of the resulting field is
shown in Fig. 1 for the case = 50. Sites at which the corresponding Gaussian variable
is positive (respectively negative) are coloured black (respectively grey).

For the sake of comparison, the corresponding picture for a field of i.i.d. Gaussian
random variables is shown in Fig. 2. Note that the negative correlation is apparent to th
eye as amore clustered pattern. This phenomenon is an example of the Julesz conjectu
which claims that the eye can only distinguish first and second order statistical feature
(densities and correlations). A review of the literature on this conjecture and its
connections to de Finetti’'s theorem — an early joint interest of Bretagnolle and Dacunha
Castelle —is in [14].

1.1. Continuoustime and Dirichlet forms

As we noted above, it will be more convenient to work with continuous time
Markov chains. To this end, IeX now be a continuous time Markov chain on the
finite state spacet’. Write Q for the associated infinitesimal generator and suppose
that X is reversible with respect to the probability measuréhat is, 7 (x) Q(x, y) =
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Fig. 1. Signs of the Gaussian field arising from the simple random walk on thke3®0discrete
torus.

Fig. 2. Signs of the i.i.d. Gaussian field on the;660 discrete torus.

7(y)Q(y, x) for all x,y € X). We do not suppose that is conservative. That is, we
allow 3°, O(x, y) <0, in which case the chain is killed at rate}~, O(x, y) when it is
in statex.
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SetL?(X, ) :={f:X — R} equipped with the inner producf | g) :=>", f(x) x
g(x)m(x). The kernelQ operates oiL.? by

Qf (x)=>_0x, ) f().
y

Reversibility of X is equivalent to requiring that the operatgris self-adjoint onZ?.
Of course, ifP is the transition matrix of a reversible, conservative, discrete time chain
with no holding as above, the@ = P — [ is the infinitesimal generator of a reversible,
conservative, continuous time chain, namely the chain that exitsxstafe at rate 1 and
jumps to statey # x with probability P(x, y) upon exiting. Consequently, the discrete
time construction above can be subsumed under the more general construction we a
now considering.

The usual quadratic form associated withis the Dirichlet form:

E(f,8):=—(0f |8)
1
=5 S () = FONEE) —gNT(x)Q(x, )
X,y

+> 0 f0)g)K (), (1.1)

where
K(x) ==Y @O, y) ==Y 7(»Q(y,x) =0
y y

It is clear from (1.1) that the Dirichlet form is a positive semi-definite, self-adjoint
quadratic form. The two terms on the right—hand side of (1.1) are called, respectively, the
jump part and the killing part of the form. X is conservative (that is, no killing occurs),
then”, O(x,y) =0 forall x € X andx = 0. A standard reference for Dirichlet forms
is [23], but we find the original paper by Beurling and Deny [6] useful and readable.

It follows from (1.1) that

X(x,y)=—mw(x)Q(x,y) 1.2)

is a positive semi-definite self-adjoint matrix. Hercas the covariance of a mean zero
Gaussian field = {Z,},cx indexed byX.

Examplel.2. — SetX¥ = Z,, the integers modula. Take X to be nearest neighbour
random walk with unit jump rate, so

-1, ifx=y,
%, if x —y=4=41,
0, otherwise.

Qx,y) = {
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Thenr(x) =1, S(x,x) =2, Z(x,x £ 1) = -2, and X (x, y) = 0 otherwise. When
n =5 the matrixX (x, y) appears as the circulant

=

0O 0 -

1 _% 1 z
N 11 -1 ol 0
5lo ¢ 1

-1 0 o2 -1 12

2 2

1.2. Outline of therest of the paper

In Section 2 we develop some properties of this construction. We give a simple
procedure for simulating the field using independent Gaussian random variables
associated with the “edgeg, y) such thatQ(x, y) > 0. Generating realisations of
Gaussian fields on grids or graphs with general covariances can be a complex enterpris
A useful review of the literature is in [24].

In Section 3 we show how the problem of using the observati@gi$, .5 to predict
Z, for x ¢ B C X is intimately related to the properties of the occupation times of the
Markov chainX. In Section 4 we indicate how certain questions that involve minimising
the variance of a linear combinatign, f(x)Z, subject to constraints can be related to
the potential theory oK.

We conclude this Introduction with some comments on the background and contex
of this paper.

1.3. A random matrix connection

Our interest in this construction began with some results in random matrix theory.
Let U, be the unitary group oi x n matricesM with MM* = I. Elements ofU, have
eigenvalues on the unit circl® in the complex plane. The study of the distribution of
these eigenvalues under Haar measure makes up a chapter of random matrix theory (s
for example, [35]).

Let Hzl/ % denote the space of functiorfse L?(T) such that

1132 =D 1 fi121i1 < o0,

JjEZ
and define an inner product diy’? by

(f.82=_ fi&ilil.

JEZ

Alternatively, Hzl/ %is the space of functiong € L?(T) such that

_ 2
1 / (f(P)— f(9)) 46 d < o, (1.3)

1672 sinf(252)
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and, moreover,

1 (f (@) — f(0)(g(p) —g(®))
(f. 8)12= 16”2/ SIP(E) do de

(see Egs. (1.2.18) and (1.2.21) of [23]).
In independent work, Johansson [27] and Diaconis and Shahshahani [15] proved th
following result which was extended in [13].

THEOREM 1.3. —ChooseM ¢ U, from Haar measure. Foyf in H,’* let W (M) =

Z;le f(€%), whereds, ..., 0, are the eigenvalues dff. Then, as: tends to infinity, for
any finite collectionfy, f», ... fx in Hy'?

(Wi (MW = 120K,

where (Z;: f € Hy'%} is a mean zero Gaussian field with covarianBgZ ;Z,] =
(f: &)1z

The space%l/ Zis an example of a Bessel-potential function space and it coincides
with the Besov spac®,’;, the Sobolev-Lebesgue spagg,” and the Lipschitz space
A3/ (see Egs. (18) and (19) in §3.5.4 and Eq. (13) in §3.5.1 of [36]). However, for
our purposes the interesting observation is that the sHéé%equipped with the inner
product (-, -)12 is nothing other than the Dirichlet space and Dirichlet form of the
symmetric Cauchy process on the circle (see Example 1.4.2 of [23]). (The symmetric
Cauchy process on the circle is just the usual symmetric Cauchy process on the lin
wrapped around the circle.) It is possible to carry through much of what we do in the
discrete state space setting of this paper to Dirichlet forms of Markov processes ol
general state spaces, but we do not pursue that direction here.

Note also that if we take the complex Poisson integraf @f L2(T), namely

1 [€%+¢

PIO =or | o7

f©)do = fo+23" fizd, lzl<1,
j=1

then, lettingm denote Lebesgue measure on the disk C: |z| < 1},

1
dPf () |? & r 2.2 20 oy
/‘ df m(dz):/er [4Z|fj|2]2r2<f l)]rdr:2n2|fj|2|]|.
< A =1 ez
Thus, f € H,’? if and only if
d 2
/’ Pr@ m(dz) < oo,
dz

and

1 rdPf(z)dPg(2)

, - dz), f,ge HY?
(f 8)12 o e pE m(dz), f,g€H,
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The form
1 [dF(z2)dG(2)
2 dz  dz
is (up to a constant multiple) nothing other than the Dirichlet form of Brownian motion
on the unit disk. There has been much recent interest in studying the Dirichlet form of
Brownian motion on such restricted domains (see, for example, [25]).
The above connections suggest that we should be able to find a Brownian motiol
or Cauchy process as a limit of objects defined in terms of the eigenvalues of randon
unitary matrices. We have so far failed in this attempt.

m(dz)

1.4. Dynkin’sisomorphism

We conclude with a brief review of Dynkin’s isomorphism [18,19,21,20]. Assume
that the continuous time Markov chak considered above isansient The Green’s
function G(x, y) = —Q1(x, y)m(y)~! is positive semi-definite and so can serve as a
covariance of a mean zero Gaussian fiélthdexed byX'. Note the parallel: roughly,
our basic construction usesQ to construct a covariance while Dynkin used) .
Dynkin related properties of the Gaussian field to the underlying Markov chain. Among
other things he showed that the best prediction of the field at a pajivten its values
at sitesB C X' is a linear combination of the observed valuesBatvith weights the
first hitting distribution of the chain started atwhen it first hitsB. We have a parallel
version in Proposition 3.1.

Dynkin also proved the following distributional identity. Let

t
e :rr(x)_l/l{XX =x}ds, xek,
0

denote the “local time” process for the chadrwith respect to the measure Suppose
that on some probability space with expectatibwe have a mean zero Gaussian field
Y = {Y, }ex With covarianceG and an independent copy of the Markov ch&inThe
chainX is started ak € X and conditioned to die upon hitting € X. Then, for any
bounded Borel functio : RY — R we have

efrr, ()] =8]r(2 + o)ty

Here,Y? = {Y?},.x is the pointwise square of the Gaussian féldnd¢,, = (€5 },cx-

In a sustained sequence of papers Marcus and Rosen [33,30,32,31,34] have studi
symmetric Markov processes by using Dynkin’s isomorphism. The isomorphism is tight
enough so that refined knowledge of Gaussian fields (e.g., continuity of sample paths
can be carried over to develop fine properties of Markov processes (e.g., continuity o
local time). Sheppard [37] gave a proof of the Ray—Knight theorem on the Markovianity
of local times of one-dimensional diffusions that used Dynkin’s result and the obvious
Markovianity of the associated Gaussian field. We do not see such depth for oul
construction, but find the parallels tantalising.
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Dynkin’s construction has been used in statistical applications by Ylvisaker [40].
He used the Gaussian fields as Bayesian priors for prediction and design problem:
Dynkin’s fields only have positive correlations while the fields we construct have
negative correlations; using independent sums of both constructions may prove useful.

The relationship between a Markov chain and the Gaussian field with covariance givel
by the associated Green'’s function was discovered independently by several people. |
physics, there is work of Symanzik [38] followed by work of Brydges et al. [12]. In
statistics, Ylvisaker [40] gives references to Hammersley’s [26] workamessesas
followed up by Williams [39], Kingman [28,29] and Dozzi [16,17]. Variants of Dynkin’s
isomorphism have been established by Eisenbaum [22], as well as by Marcus and Ros
in the papers cited above. Markov chain representations of fields other than Gaussis
ones have also been studied: a recent paper with an extensive bibliography is [8].

Here are two lesser known alternative appearances of this connection. Bhattachary
[7] establishes general results that specialise in our finite setting to the following.
Suppose that the chakis ergodic. Forf in the range oD, 717 fOT f(X;)ds converges
in distribution asT’ — oo to a Gaussian field with covariancga

In a more applied context, various authors (see, for example, [11,9,10]) have
considered optimal estimates of height in surveying problems. There poats and
estimates of height differences are available for some pairs. Forming an undirected grar
with the pairs as edges (assumed connected), they find the best linear unbiased estima
of the true height#, . Assuming one true height, say at sitds known, they show that

A A 1
Cov(hy, hy) = ——G.(x,y)
gy Y

with G, (x, y) the expected number of timesis hit starting atx by a discrete time
reversible Markov chain constructed from edge weighits?dx, y). Hereo?(x, y) is the
variance of theéx, y)th height difference measurement aj@) = 3", (1/0%(y, x)). The

walk is killed when it hitsz. If the measurement errors are assumed Gaussianfz;hen

is a Gaussian field with covariance given by the Green’s function: Known asymptotics
of G,(x, y) in planar grids can then be used to understand how the covariances fall off
with separation.

2. Finite state spaces

The following result gives a representation of the figldn terms of independent
Gaussian random variables and hence furnishes a simple way to simulate such a field.

PrRoOPOSITION 2.1. —Let X be a reversible Markov chain with finite state spate
Form a graph with vertex set’ by placing an undirected edge fraomto y if Q(x, y) > 0.
Choose an orientation for each edg®f the graph, that is, a function from the edge set
to {+1}. This orientation may be chosen arbitrarily but, of courséx, y) = e(y, x).
Associate a mean zero, varianee (x, y), Gaussian random variabl& (x, y) to each
edge and a mean zero, varianeéx), Gaussian random variabl® (x) to each vertex,
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with all of these random variables being independent. Set

Zy= > ex,)W(x,y) + W),
y:0(x,y)>0

then the Gaussian fiellZ, }.cx has covariance:.

Proof. —The random variabl&, has mean zero and variance

— Y T Hk@) =) 7@)0x, y) = > wx)0(x,y)
y:0(x,y)>0 y#x y
=—nm(x)0(x,x) =2(x,x).

Further, forx # y,

ElZ,Z,] = > e(x,a)e(y, HE[W(x,a)W(y,b)].
a,b: Q(x,a)Q(y,b)>0

The sum is zero unles3(x, y) > 0, and then it contains the single term

—e(x,y)e(y, x)Z(x,y) = X(x, y),

as desired. O
Remark2.2. -

@)

(ii)

The construction is not limited to Gaussian variables. It gives a 2nd order field
with the prescribed covariance for other uncorrelated choice® @©f, y) and

W (x) with the variances set out in Proposition 2.1. Vertices with no edge between
them are uncorrelated.

If « =0 (that is, there is no killing), thel, .+ Z, =0.

(i) For simple random walk orZ, (Example 1.2), choose a clockwise orientation

(iv)

v)

and letZ; = W; — W;_, (indices mod) with W, independentv (0, ) variables.
Conversely, ifE = (2(x, y)).,yex IS a covariance matrix with positive diagonal
entries, non-positive off-diagonal entries, and non-negative row sums,Xhen
can be realized as a matrix arising from the Markov chain constructiomany
different waysJust taker to be an arbitrary probability measure on the finite set
X with 7 (x) > 0 for all x and putQ(x, y) = - (x)"1Z(x, y).

The representation of Proposition 2.1 can be thought of as a factorisatien
AA’, where A is a matrix that has a row for each elementXfand a col-

umn corresponding to each of the random variatdés:, y) and W(x). This
factorisation should be compared to the Karhunen—-Loeve decompogitien
(T'DY?)(I'DY?) = ' DT where the columns of are the normalised eigen-
vectors ofX corresponding to non-zero eigenvalues d@ne- diag(ry, ..., Ax),

k =rankX, is the diagonal matrix that has these eigenvalues down the diagonal.
Of course, the Karhunen-Loeve decomposition leads to another representatio
of the fieldZ, namely

Zx:ZkaV)m xeX,
)
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whereV,,, ..., V,, are independent mean zero Gaussian random variables, with
V,. having variance..

For then x n discrete torus field in Example 1.1, raBk~ n? whereas the
construction of Proposition 2.1 requires4n? independent Gaussian random
variables. However, the computation of a particul&y requires only 4 of
these variables, whereas the Karhunen—Loeve expansion requires the use
all rankz ~ n? variables. Thus simulation the entire field requires~ 4n?
additions using our representation and the ordembfmultiplications and
additions for the Karhunen—Loeve representation. In this particular example, the
fast Fourier transform can be used to cut the latter number of operations down tc
the order of:?logn, but this improvement is not available for general chains that
lack such group structure.

Most constructions of Gaussian fields lead to positive correlations for near
neighbours. Of course, this is often scientifically natural. However, fields in
which all sites are negatively correlated could arise in settings where growth
in one region deletes supplies from other regions. In situations like ours in which
all sites are negatively correlated, there are constraints on the strength of the
correlation. This is related to the well-known fact thaéxchangeable random
variables have correlations at Ieasﬁ—l.

More generally, letc = (X, E) be an undirected graph with vertex sétand

edge sef. Suppose that the automorphism gra@f G is such that given two
edged(x’, y'} and{x”, y"} there exists an elemegtof G such thatgx’ = x” and

gy =y". LetY ={Y,}.cx be a mean zero Gaussian field that is invariant under
the action ofG. By renormalising if necessary, we may suppose that the common
value oﬂE[YxZ], x € X,isd/(2|E|), whered is the common degree of the vertices

of G. Suppose thé&[Y,Y,] <0 for all x, y € X'. Write p for the common value

of E[Y,Y,] when{x, y} is an edge. We have

2
0<EKZ Yx> } =1+ E[V.Y,]
xeX

x#y
=1+2Elp+2 Y E[X.Y,]<1+2Elp.
{x.ylI¢E
Thusp > —1/(2| E]) with equality if and only ifE[Y,Y,] =0 for all {x, y} ¢ E.
This extremal case when all the non-edge covariances are zero corresponds |
our Markov chain construction with

and
-1, ifx=y,
Q(XJ’):{‘%’ ifx;é;

That is, the chairX exits from any state at rate 1, and when it exits it jumps to
each of thed neighbouring states with equal probability. Examples 1.1 and 1.2
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fit into this framework. The exchangeable case also fits into this framework, with
the graphG being the complete graph.

3. Prediction and conditional distributions

The following result relates the dependence structure of the GaussianZfield
{Z.}.ex tO the properties of the occupation times of the original Markov chaifor
B a proper subset ot’, suppose the field is observedxat B and we want to predict
itaty ¢ B. The mean square optimal prediction is a linear combination of the observed
valuesZz = {Z,},cp. In order to describe the associated weights in terms of quantities
for the chainX, let

t
L(C) ::/l{XseC}ds, t>20, CCX,
0

denote theccupation time fieldior the chainX. Write
t :=inf{s > 0: L,(C) =1}

and letX¢ be the chainX time-changedaccording toL,(C): that is,X€ is a Markov
chain with state spac€ such that the law oKX starting atc € C is the same as that of
{X;c1120} starting atc. Denote by

S:=inf{r > 0: X, # Xo}
the first time that the chaiK leaves its initial state and by
Rp=inf{r>S: X, e D}, DCAX,

the first time after leaving its initial state that the ch&irenters the subset of statBs

ProPOSITION 3.1. —LetZ = {Z,},.x be a mean zero Gaussian field with covariance
¥ given by(1.2). For a proper subseB c X andA = X'\ B, the conditional distribution
of Z, ={Z,: x € A} givenZy ={Z,: x € B} is Gaussian with meaf[Z, | Zg] =
MZ g, where
n(a)Q(a,a)
M(a,b) = WEG [LRA({b})» Xs € B],

and covariance given by
—m(a)Q%a',a"), d'.a" €A,

where Q4 is the infinitesimal generator of the time-changed chéih

Proof. —Classical theory gives that the conditional distributionZof given Z is
Gaussian with mean

E[Z4|Zp)=2apX5aZs.
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Now ¥ = —I1Q whereIl := diag(x (x)), and thus
-1 _ -1+9-1
EABEBB — HAAQAB Q33H33~
By direct expansion,

—(033)y =Ew [Lr,({b"D)], b,b"€B.

Moreover,
Qupr=—0Q(a,a)P,[Xs=b], acA, beB.
Therefore,
w(a a,a
(ZaZ5p) 0 = %Ea [Lg,({b}), X5 € B].

Classical theory also gives that the covariance of the conditional distributi@n of
givenZgp is

YA — EABEEtlgEBA = —(TTaaQua —M4aQus QE%;QBA),

and it is straightforward to see that

0" = Qua+T4aQus (—lelg) Opa- a

The following result is immediate from Proposition 3.1.

COROLLARY 3.2. —In the notation of PropositioB.1, construct a graph with vertex
setX by placing an(undirected edge between two vertices# y if X (x, y) < 0. Fix
a pointa € A. Say that a point € B is shielded fromu if every path froma to b
passes through a point of \ {a}. Write B, for the set of points irB that are shielded
froma. ThenZ, is conditionally independent @ givenZg 3, (equivalently,Z, is
conditionally independent af 3, givenZ g, 3,). Moreover, ifB\ B, € B C B, thenZ,
is not conditionally independent @f; givenZ ;.

Remark3.3. —

(i) For large state spaces, Ylvisaker [40] suggested using simulation of the Markov
chain as an aid to computing regression coefficients via Dynkin’s construction.
Proposition 3.1 can be used similarly.

(i) Note from the assumption of reversibility that

m(a) _ Q(b,a)
n() Qa,b)’

if the numerator and denominator on the right—hand side are positive. In this case

M. py = 2L9e@a (L, ({b}). Xs € B],

Q(a,b)

In any casey only needs to be determined up to a constant.

acA, beB,
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(iii) The coefficientsM (a, b) are always non-positive.
(iv) Note the parallel with the form of the coefficients in Dynkin's construction
described in the Section 1.

Example 3.4. — Consider our running example of simple random walkZgn(Ex-
ample 1.2). Choose a partitioA, B of Z, into two non-empty subsets. Fix a point
aC A.Ifwe havea+1,a+2,...,a+r e Banda+r+ 1ec A, then setB, =
{a+1,a+2,...,a + r}. Similarly, if we havea — 1,a — 2,...,a — £ € B and
a— L+ eA thensetB.={a—1a—2,...,a — ¢}. Of course,B, or B_ may
be empty. Then, in the notation of Corollary 3R, = B\(B. U B_).

More generally, standard probability calculations can be used to calculate the matri
M of Proposition 3.1 for various configurations. For example, suppose:thad and
B, ={1,2,...,r}. The probability that the random walk gets to<lb < r before
returning toa or hitting another point ofi is, by the classical Gambler’s Ruin problem,
%% Moreover, the probability that the walk returns #idefore hittingA is, again by

Gambler’s Ruin,
1 1 1 1
2 r+1-—5> 2 b

and so the distribution of the number of visitsi@iven thatb is reached at all is the
same as the number of trials up to and including the first success in Bernoulli trials with
this return probability as the failure probability. It follows after a little algebra that

b

4. Minimizing variances subject to constraints

In this section we will study the problem of minimizing the variance

()]

of a linear combinatiory ", f(x)Z, under certain constraints on the coefficients. Here
Z=1{Z,},ex IS amean zero Gaussian field with covaria@téhat has positive diagonal
entries, non-positive off-diagonal entries, and non-negative row sums. We will also
assume tha® is irreducible in the sense that far # y we can find a sequence
X=z9#z1%# - Fzx=ysuchthat(z;, z;41) #0for0<i <k —1.

PROPOSITION 4.1. —Suppose that has at least one row sum positive. Given a
proper subsetB C X, consider the problem of minimizinB[(>", f(x)Z,)?] subject
to f(x) =1, x € B. The minimum is achieved byz(x) := P {Tp < oo} where
Tg =inf{r > 0. X, € B} for X a Markov chain with infinitesimal generata@® (x, y) =
—m(x)"12(x, y) for any probability vectorr with positive entries.

Proof. —This follows immediately from Theorem 4.3.3 of [23] once we note that the
condition that at least one row sum Bfis positive is equivalent to the chak being
transient. O
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PROPOSITION 4.2. —Suppose thak has all row sums zero. Given a proper subset
B C X and a probability vectorr with positive entries, consider the problem of
minimizingE[(>", f(x)Z.)?] subject tof(x) =1, x € B, and}_, f(x)7(x) = 0. The
minimum is given byE,[T3])~%, where Ty = inf{r > 0: X, € B} for X the Markov
chain with infinitesimal generato@ (x, y) = —m (x) "X (x, y). Moreover, the minimum
is achieved by
_EX[TB] + EH[TB]
fB(x) E_[T5] .
Proof. —We first recall some standard facts. kot 0, let&, denote the inner product
E+af-|-). Write Cap, for the corresponding capacity. Then

Cap,(B) =inf{&(f, ): =1} = &(Pg, P) (4.1)
wherep$ (x) := P*[exp(—aTg)] (see Theorem 4.2.5 of [23] for the case- 1, the proof
for generak involves just obvious changes). By Theorem 4.3.1 of [28]and 1— p%
are orthogonal with respect & and so

0=¢&,(p%, 1— p%) = —Cap,(B) + a{p% | 1) = —Cap,(B) + «E, [exp(—aTp)],
where we have used the fact tigatl, 1) = 0. Thus

¢ =Y pi)m(x) =E, [exp(—aTp)] =« *Cap,(B). (4.2)
We have
% =a tinf{E,(f, f): f=1o0nB)
:a‘linf{é’a(f, fif=1onB, ) fx)mw(x)= c%}.

Thus, if we put

o . p%(x) - C%’
fB ('x) L 1—C% ’
then
nt{e, (7.0 =1onB, 3 feone =0) =& (f5. /) = 75 @)
X B

after a little algebra. By the assumption of irreducibiliy, {7 = oo} = 0, and so
Tp

H -1 A i —os _
Ioll%a (1 CB) —E%En [/e dS] =E,[Ts] (4.4)
0

and the last term in (4.3) converges(i®,[75])~* asa |, 0.
Note, by the same argument that gave (4.4), that ljm—1(1 — p%(x)) = E,[T].
Therefore, in order to establish the claim of the proposition, it suffices to observe that
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im mf{sa(f, P f=10nB, Y oo = 0}

=inf{£(f, f): f=1o0nB, Zf(x)n(x):O}

and that lim 0 & (f5. f5)=E(f. f8). O
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