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ABSTRACT. — We find exact convergence rate in the Strassen’s functional law of the iterated
logarithm for a class of elements on the boundary of the limit set. Our result applies, in particular,
to the power functions,x® with « €]1/2, 1[, thus solving a small ball estimate problem which
was open for ten years.
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RESUME. — Nous établissons la vitesse de convergence exacte dans la loi fonctionnelle di
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Notre résultat s’applique en particulier aux fonctions puissape® aveca €11/2, 1[, résolvant
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1. Introduction
1.1. Strassen’slaw
Let W be a standard Brownian motion. Consider for- 3 the random processes

W(Tx)
/2T loglogT

indexed byx € [0, 1]. Let C be the space of real valued continuous functiongGyi]
starting from 0, equipped with the supremum nofm ||. According to Strassen’s
functional law of the iterated logarithm (see [12]) the sequeie, T > 3} is almost
surely relatively compact ifC, | - ||) and its almost sure limit set is

Wr(x) =

H1={h: h(x)= / h'dx, J(h)gl}
[0.x]

where A denotes the Lebesgue measureany Lebesgue derivative of /aabsolutely
continuous functiork and the energy of is given byJ (k) = f[o,l]h’zdk. SinceH; is
closed, this implies

o =0 ifheH;
||m|£f||WT—h||{>o if h ¢ Hy

ThusJ (k) quantifies at the first order the difficulty f&¥; to look like 2. Recall further
thatW satisfies the usual large deviation principle(6n|| - ||) with the good rate function
J(h)/2, in the sense of Deuschel and Stroock [5]. According to De Acosta/[&],/2
also governs the small deviations Wf in the direction of enlarged.

a.s. ()

1.2. Functional Chung'slaw

Fix an accumulation point € H;. In [3] (see also [6]) Csaki proved that.Jf(h) < 1,
then the exact rate in (1) depends.bth) only, namely,

liminf loglogT Wy — k|| = ———— a.s @)
T egiog iy BN =T

This reduces to Chung’s law whén= 0 (see [2]). Conversely, wheh(h) = 1, the limit
(2) is infinite. Moreover Goodman and Kuelbs obtained in [7]

c(h) = liminf (log logT)?3|Wr —h| <00 a.s. (3)
In this case the increasing function, which we call ¢habal energy lossf 7,

=1-— inf J
on(e) ||g—|h||<a (&)

is crucial with respect to the exact rate in (1). The infimum is taken amesigsolutely
continuous functiong. More precisely, if/ (k) = 1, we distinguish betweesiowestand
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intermediaterates according to the criterion

o on(€) [€[2,00[, c(h)>0,
d(h) = !ILT]OT { = 00, c(h) =0, )

sinced (h) always exists (see [10, Section 5]) and determir(@3 as recalled below.

Remark 1. — The question of exact rates and constants in (2) under various horms ha
been intensively investigated in the last decade (see Berthet and Shi [1] and referenc
therein). For instance, (4) remains unchanged urigemetric as shown by the exact
rates for thel, version of (1) calculated in Kuelbs, Li and Talagrand [10].

Let us picture out the situation on the borderHf,
dHy={h: he Ha, J(h) =1}.
1.3. Slowest functions

The behaviour of, at zero is closely related to the length and smoothnegs bét
y be a signed Borel measure @) 1] such thaty ([x, 1]) defines a version of’(x). If
y can be chosen of bounded variation, tHé’, B) denotes the total variation of
over any Borel seB c [0, 1] and we writeV (k') = V (/’, [0, 1]) < co. Otherwise we set
V(h', B) =00 andV (h') = oc.

Theslowestfunctions are

PHi={h: heHs, J(h)=1, V(h') < o0},

since Grill showed in [9] that(k) > 0 in (3) if, and only if, 2 € 3*H; which is also
equivalent tad(h) € [2, o0) in (4) (see e.g. [7,10]). It is very difficult for the Brownian
motion to follow uniformly such smooth trajectories.

The exact constant(k) is obtained by Csaki in [3,4] wheh is piecewise linear or
guadratic. Recently, in [8] Gorn and Lifshits extended Cséaki’'s method to characterize
c(h) for any h € 9°H; as the unique solution of an equation and provided a procedure
for its numerical calculation.

1.4. Intermediate functions

In his seminal work [9], Grill proved that anintermediatefunction 4 € 9'H, =
9H1\0°H; satisfies

liminf

T—o0

Wr = hll [1,2] as. (5)
&(

where the rate(7T) is the unique solution of

Vone) = ——— (6)

~ 4eloglogT’
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Note that liny_ .. e(T) = 0, limy_ . e(T)loglogT = oo and ¢(T) is decreasing.
Further,d(h) = oo and thus, by (5) and (63,(2) = 0 in (3). Also, in practice it suffices
to find an equivalent fog, (¢) and hence foe(T).

The functions ofd’’H; are more easily approached by a Brownian path because they
have a larger global energy loss function. This may be due to their irregular behaviour -
oscillating or just non-smooth pieces admit efficient rectification.

Remark 2. — Interestingly, the statements (5) and (6) remain true fok alf; and
the liminf in (5) is 1 whenever, is slowly varying at 0. For instance, it is the case
whenJ (k) < 1 and (2) immediately follows. Conversely,/ife 9*H1 thend(h) in (4)
is explicited in [10] and (6) then yields the right ordgoglog7)~%3 but comparing
(5) and (3) via the result of [8] shows thét6r ~2d (h))*/ # c(h) for someh € 3°H;.
Hence the constant in (5) is not 1 in general.

Surprisingly, many years after (5) has appeared, the exact rate was not obtained eve
for simple power functions (cf. Example 1 below). We intend to show that the liminf in
(5) is 1 for a large class df € 3'H;.

1.5. Typical intermediate functions

In order to illustrate our results let us introduce elementary critical functions — having
Lebesgue derivative of infinite variation and uhig norm. All are locally Hélder with
indexa €]1/2, 1[ and have loss function

on(e) = O(e @~ D/)

with exact constants easily computed by invoking optimization argumentsAj et
a?(1— a)9/*2x — 1)1, We assume everywhere thais small enough.

Example 1. — The functiom(x) = bx* = /20 — 1x%/a € 9'H; has energy loss

@ny(8) = 2/b|7* Age DI
— 2(20( _ 1)(1—2a)/(2a)a(2a—1)/ot(1 _ O()(l—ot)/ag(2a—l)/a

localized at the origin. The constant belonggto2[.

Next, a smooth perturbation is added with almost no effect.

Example2. —Let 0< c®? <2 =20 —1)(1—a) %, a=c(-1% \/c2—¢;?) and
ha(x) = cx® 4+ ax. Thenhy € 3"H; and

Oy (&) = 2lc|M* Aye @V 4 2q¢.

In Examples 3 and 4 we consider a singldHdlder pointy €10, 1[ away from the
origin. Denotel, €]0, 1 — y] (respectivelyl_ €]0, y]) the length of an interval starting
(respectively ending) at. Interestingly,y andi.. eventually play no role.

Example 3.—Leths = I[ogy[h3_ + I[y,y+l+[h3a + I[y+1+,1]h-3+ with hay(x) = ha_ )+
b(x —y)*, b # 0 andhy, of bounded variation. Thehys € 9'H, satisfies

(/’h3(<9) — 2(301—1)/01|b|1/aAa8(201—1)/ot + 0(8)
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In particular, takingh; _ = a andhj, = c constant yields @) = —sign(b) x 2as —
y~le? + ¢ (e) where, ifch € [0, ab?1%7], ¢ (¢) =0 and, ifch < 0, ¢ (&) = |4cle — 4(1—
y — )" *e? whereas, ith > ab?%71, ¢ (e) = |4c|(1 — al?b/c)e + O(¥?).

Observe thatp,,(e) ~ ¢5,(2¢) when hy, = 0 becauseg(y) — h(y)| < ¢ is less
restrictive thang(0) = 0. Compare this with another situation of the kind — a doubly
Holder point:

Example4. —Lety €10,1[, a® <y, by # 0, hys(x) = a + by|y — x|* and hj,
of bounded variation be such thak = Ijo,—; 1ha— + Ly—i_ yiha— + Ity y+i (hat +
Ity41,,11hay belongs taH;. If b_b, > 0 we have

@ng(8) = 257D (b + b [V) Age @7V + OCe)
whereas, ib_b, < 0 less energy can be spared, since then
¢h4(8) — 2(30[—1)/0!(|b_|1/(1—a) + |b+|l/(l—a))(l—Ol)/OtAag(Za—l)/a + 0(8)

We end with a natural extension of Example 3 in the spirit of Theorem 2 below.

Example5.—Fori =0,...,n let o; €]11/2,1], b; # 0, x; €10, 1[, x; < x;41, ; €
10, xiy1 — xi1, hsi(x) = a; + bj(x — x;)*, Io = [0, 1\ U;_1[xi, x; + [;] and hg, of
bounded variation be such that

h5 = Z I[x;,x,--i—l;]hS,i + Ioh5,o S 37‘[1.
i=1

Then, fora = min; «; we have

whs(e>=2<3°‘—1>/°‘( > |bl-|1/°‘)Aae<2"—”/“+O(e>.

i oj=o

2. Main results

The exact constant in (5) depends on the naturedciffiedtrajectories
Riu(e) = {he he € Ha, |lhe —hl <&, J(he) =1—g@u(e)} (7)

which are close ta: with shortened paths. Unfortunately, the study7of is not an
easy task — except for simple functions/as i, or particularizedhsz — since there is
no general way to evaluate the crucial functign Our answer concerns the case where
the energy loss of occurs on the neighborhood of a finite subsefyfl] due to a few
isolated critical points. This framework includes the above examples.

The main innovation which enables to solve the problem in this case, has geometri
nature. Namely, for the lower estimate of probabilitie§| W, — h|| < ¢) we use the
probabilities of the kindP(Wr € A(h, €)) whereA(h, ¢) is a subset of the-ball around
h but it is not a ballitself. Instead,A (%, ¢) turns out to be a set of trajectories running
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inside of a very narrow strip at the most critical pointskoéind inside of a large one
elsewhere.
For any Borel subse® of [0, 1] and/ absolutely continuous we write

l7llg = suplhl, J(h, B):/h’sz
B
B

and consider thiocal energy lossunction of#,

,By=J(h,B)— inf J(h,B
on(e. B)=J(h. B)~ inf_J(h.B)

so thaty,, (e, [0, 1]) = ¢, (¢). First consider the generic situation where the energy must
be spared at 0.

THEOREM 1. —If h € 3"'H; is such that for any €10, 1[,

V(h,[0,x]) =00 and V(i [x,1]) <oo (8)
then
lim M -1 9
=0 gy(e)

and the unique solution(T) of Eg.(6) satisfies

liminf M
T—00 g(T)

=1 as.

Note that (9) allows to solve (6) using agy (e, [0, x]) instead ofy, (¢). Henceg,
needs to be studied locally only — optinialin (7) is not required.

Remark 3. — Concerning the relationship between (7) and (8), consider the simple
situation whereh follows the assumptions of Theorem 1 ahds either (i) concave
on [0, xo] with /'(0) = oo or (ii) convex on[0, xo] with A’ (0) = —co. Defines, as the
smallest solution of (il (8) > e+38h'(8) or (i) h(8) < —e+8h'(8) so thats, decreases to
0 ase tends to 0. Then for alf > 0 small enough there exisks € R, () andx € (0, xg)
such thatly;, 4, = 15, k' a.e. Further, (9) can be refined into

on(e) = J (h.10,8.]) — (1h(3:)| — £)°/8. + OCe).

We provide a detailed proof of Theorem 1 to help the reader in understanding wha
makes the following more general version work.

THEOREM 2. —Let h € 3"H; be such that there exis® < x; < --- < x, < 1
satisfying, forany > 0, Ag; =[x; — 6,x; + 61N [0, 1] and Ay = U/_; Ay,

V(h',Agp)=0c and V(i',[0,1]\Ap) < co. (10)
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Then the conclusion of Theorehiolds true, with(9) replaced with

. A
||mM:1

e=>0  @p(e)

Remark4. — Comparing the quantities, (¢, Ay ;) can tell us how many; are really
essential. We call a point sub-criticalwhenever for alb > 0 such thaf)!_; As; =9,

) ,Ag
lim 7%(8 0.0) =0.
e=>0 @ (e)
If x; is sub-critical, then the resulting rat€T’) is not affected by, (¢, Ag ;).

Remark5. — The actual positiow; of the most critical oscillation slightly influences
¢, and the exact constant #(7) but not the rate. Usually, having; = O leads to
highere(T) because translating the same oscillatiorxat- 0 turnsgy, (e, [0, 6]) into
on(2¢, [x;, x; +6]) — comparer; andhs.

We now deduce from Theorem 2 the functional Chung law for our examples.

COROLLARY 3. —If h € 3'H; satisfieg10)and
d,(h) = Iimos‘”«)h(s) € (0, 00)
with p < 1then

T
164, (h)

2 1/(p+2)
) as.

Ii;n inf (loglogT)?**2||Wy — k| = (
Corollary 3 applies tay; for i =1,...,5 with p =2 — 1/« and explicitd, (k;). In
particular,
liminf (log log 7)2/ =Dy W — |l

(7.[2/32)01/(401—1)(20( _ 1)(20!—1)/(801—2)
= o a=1)/(4a=1)(1 — ) (1-e)/ (4 =1)

a.s. (11)

The power &/(4a — 1) fills the gap between /3 and 1, as announced in erroneous
Corollaries 1 and 4 in [9]. Our results fér now provide right power, exact constants
and remainder terms.

Remark6. — Wheno — 1/2, the limiting constant tends to/4, hence (11) falls in
agreement with Chung’s law, that is (2) fbr= 0. Clearly, fora very close to 12 both
h, and Wy expend most of their energy at the origin and then, roughly speaking, stay
within the interval[—¢, ¢] while the time varies from almost zero to one. The same
comment stands fatz whenhj, = 0 but the limiting constant is smaller than Chung’s
one. Whenx — 1, the limiting constant tends ter?/32)%/3, thus (11) also provides a
correct interpolation towards the exact rate/iox) = x given in Csaki [3].
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3. Proofs
In this section we achieve the lower bound in (5) under (8), then under (10).
3.1. Proof of Theorem 1
Our preliminary lemma justifies (9).
LEMMA 4. —Leth € 3'"H; obey(8). For all x €]0, 1] we have

im en(e, [0, x]) on(e, [x,1]) oo

I =o0 and limsup (12)
>0 & e—0 3
Further, there exists a positive functign(e) such thatim,_, p,(¢) = 0and
en(€) = @ (e,10,x1) = (1 — px(e))@n(e). (13)

Proof. —Under (8), Propositions 1 and 2 in [10] respectively imply

lim on(e, [x,1])

lim == ="+ [ D]+ V(¥ [x,1]) <00

and
lim @n(e, [0, x])
=0 28
whence (12). In the same way, limg g, (g)/e = oo. The upper bound in (13) comes
from the fact that replacing’ with 4" on [x, 1] yields

on(e)=1— inf (J(g,[0,x])+ J (g, [x,1]))

= |W'(0)| + V (', [0, x]) = o0

llg—hl<e
>1- inf_ (J(g.10,x]) +J (k. [, 11)) = g (e. 10, x1).
Since
en(e. [0.x]) +en(e br. 1) =1 = nf /(e 10.x1) + inf_ J(gLx.1]))
>1— inf_ (J(g,10,x1) +J (g, [x, 11) = g e),

we see thap, (¢) = ¢y (¢, [x, 1]) /o (¢) satisfies (13) together with

. e en(e[x, 1D /e
![])’]Opx(g)_![])’]o on(e)/e =0

d

Fix h € 3"H, satisfying (8). For brevity, we writd) = (2loglog7T)¥/? and lete =
¢(T) be the solution of (6). The forthcoming constafi{s- 0 are everywhere sufficiently
small. The following steps aim to evaluate

P(I1Wr —hll < (1+ Boe) (14)

for all sufficiently largeT .
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Stepl. Let us start with useful consequences of the assumptions in force. Since
d(h) = 00 in (4), we have lim_ @, (e)/e = oo whereas lim_.q¢,(¢) = 0 by semi-
continuity of the energy function. Moreover, (6) means

on(e) _ n?
€ 4DAg3

(15)

thus limy_ o & =0, limy_ o, D%3¢ =0 but lim;_, .. D% = oo. Next, (8) and (12) ensure
that for every fixedr €10, 1[, 82 > 0 and arbitrarily smalt,

9 0’
B ()] + V(. [x.1]) < ,BZM. (16)

Mixing (13) and (15) further gives, for an§s > 0 ande small enough,

on (e, [0, x]) @n (8) n?
— 2= (1-83) (1_’33)W'

17)

For anye > 0 andx € ]0, 1[ consider:, € H, such that|k, — h| < e andJ (h, [0, x]) =
J(h, [0, x]) — @ (e, [0, x]). We introduce the mixture, = (1 — B4)h, + Bsh. Obviously,

llge — hll < (1 — Bae. (18)

Step2. We split the lower bound in two parts observing that the most probable way of
fulfilling our small ball requirement (14) for Brownian path is to follgwon [0, x] very
closely, then to stay in a larger tube aroundn [x, 1]. By independence and stationarity
of the increments o,

P(|W — Dh| < (1+ B1) De)
>P({IW — Dhlljo < De} N {IIW — Dhl|p..1) < (1+ p1) De})
>P(|W — Dhlljo. < De¢)

x inf P(Ha—i—W DAh|0.1-x) < (1+ B1) De) (19)

lal<De

whereA h(s) =h(x +s) —h(x) fors € [0, 1 — x], W(s) =Wk +s)— W()isstilla
Brownian motion and = W(x) — Dh(x) is controlled by the first event.
Step3. Using (18) and the Cameron—Matrtin formula, we get

P(IlW — Dhlljo.x < De) ZP(IW — Dgelljo.x < BaDe)

D2
> P([Wllox < BaDe) eXp<—71(ga, [0, X])).

Now, by Chung’s estimate (see [2]) and the scaling property, for egery O all D¢
small enough satisfy

P(IW 0.0 < BaDe) > exp( (’:ws)(ﬁj/gg)_z).
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Recalling the definition of,, assumption (8), and(k.) < J(h) = 1 we have
J (g6, 10, x1) = J (1 — Ba)he + Bah, [0, x1)
< (- Ba)?J (he,[0,x]) + BZJ (.10, x])
+284(1 — )/ (he. [0, x1) T (h, [0, x1)
< (1= Ba)*(J (h.10.x]) — @i (e. 0. x1))
+ ,34](h, [0, x]) + 2B4(1 — Ba)J (h, [0, x])

= J (h.[0,x]) — (1 — Ba)’eu (e, [0, x]).
Therefore, ultimately iDe — 0,

DZ
P(|W — Dhlljo.x < De) > exp(—7(J(h, [0, x]) — (1 — Ba)?¢u(e. [0, x1))

(nz P 5) (BaDe >2> (20)

Step4. Fix |a| < De. The Cameron—Martin formula implies

P(lla + W — DA hlljo1-v < (1+ B1) De)

2

XE<I{||a+vV||[o,1X]<<1+ﬁ1>Ds}eXp<_D / (Ach) dW))' (1)
[0,1—x]

Now, remind that'(x + s) = v ([x + s, 1]) is a version oflA k) ons € [0,1 — x] and
let v, denote the corresponding measure[@rl — x], i.e. y translated by-x. Taking
into account (16) and the indicator function in (21), the integration by parts then gives

/ (Ach) dW = WL —x)(Ah) (1 x) + / W dy,
[0,1—x] [0,1—x]

< Sup IWI(|' D]+ V (K, [x,11))

< (lal + (1+ B De) B2
< (24 B1)B2Dyy (e, [0, x1).

Next we rescaléV to a standard Wiener proceBsagain and apply a boundary crossing
estimate (see [11] or e.g. Theorem 4.5 in [1]). Uniformlydh< De we get, adDe — 0,

P(la 4+ Wlljo1-x < (1 + B1) De)
=P(la +vVI—xWloy < (14 B1) De)

en(e, [0, x])
e
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—p1De (2+ By De.

>P<{m sWOs=g— <l 11})
72(1—x) +0(1) )

22+ 1+ B?(De)? )

Thus (21) is bounded below by

= exp(—

D? (1~ 1
exp<_7 7, 1, 1) — (g(l(Tf))z + ,36> Doy~ @+ BBD (.10, x])) (22)

for every8s > 0 providede and D¢ are small enough.
Step5. Combining (19), (20) and (22), all smalkatisfy

P(|W — Dhl| < (1+ By De)
D? 1—x 865\ x 8P6 n?
> exp<_7 - ((1+ BE " (” ?> gt ?> 8(De)?

DZ
(A= o~ 22+ BB2) (e, [0, x]))

which, in view of (17), yields

P(IlW — Dh|l < (1+ B1) De)
2 2

D T
> exp<—7 + 5 (((1 B?— 22+ Bu)Ba) (L — fo)

_Flﬁl)z_(ﬁ%—(lfi%ﬁm)ﬂ%_%))

D? B7
> exp<_7 * (De>2>

wherep; > 0 providedB, < (14 B1) 11 andpBs, B3, Bs, x are chosen sufficiently small
with respect tg8; and 8. Hence, ifT is so large thaD*3¢ < /B7, and (15), (20), and
(22) simultaneously hold, we obtain the precise estimate

D? 1
P(|W — Dh|| < (1+ B1)De) > exp(—7 + D2/3> = logT exp((2loglogT)Y/3).

Step6. The lower bound of Step 5 allows to conclude the proof by the following
standard argument, as in [3]. Applying divergent part of Borel-Cantelli lemma along the
sequencd,, = n" with slightly modified Wy and’ to ensure independence, we easily
deduce that for everg, > 0

. [Wr —h|
liminf ——— <1 a.s.
T—oo  &(T) th
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3.2. Proof of Theorem 2

Fix & > 0 so small thaf");,, As.; = ¥ and henceBy; = [0, 1]\Ag = U, Bo.; IS @
union ofm, disjoint intervals. Clearlyy, = n exept when(xy, x,,) = (0, 1) (m, =n—1)
orO0<x;<x, <1(m,=n+1).

Under (10), Lemma 4 holds witfD, x] changed intad, and[x, 1] into By, by the
same arguments. Alsd, (h, Ag;) < oo implies lim._.q (e, Ag.;)/@n(e, Ag) = 0 thus
we can assume with no loss of generality that

igf V(h, Ag,;) = 00. (23)

In step 1, (16) becomes

mp mp
> W (Bg) = (|n'(infBy ;)| + |h'(SUpBy, )|+ V (K, By.)))
j=1 j=1
A
- ’32%(8» 9)'

In step 2, we progressively enlarge the size of the main strip araubg using
constantsfy = 0 < g} < B,1 < B, 1n_1 = P1. Let (z,8) = (. 1) wheneverx; =0
and (z, §) = (x1 — 6, 0) otherwise. Writinge; = A(Ap,;) andn; = A(By ;)) the basic
decomposition (19) now reads

P(||W — Dh| < (14 B1)De)
> P(|IW — Dhlljo,; < De)

(24)

inf ~ P(Ilb+ Wi — DAhlljoe < (1+ By_1_s) De)
i=1qs 1bISAHB5 5 De

mp

11 inf P({lla+W; ~ DAjhllog, < (1+B3j_p.5) De})
j:2—5 |a|<(1+ﬂ2j,3+5)D8

where an empty product is W; ande are mutually independent standard Brownian
paths,
A,’]’l(S) = h(x,- -0+ S) — h(x,- — 9)
and
Ajh(s) = h(inf By ; 4 5) — h(inf By, ;).

The following estimates do not depend on the exit levefsom A, ; andb from B, ;
controlling the chain of conditioning events singds fixed and crucial rectifications
occur very close to the;’s, ase — 0.

In step 3, a new argument is required wiieg 0. For fixedi > 1+ § we consider
hg’i € H, such thaﬂlh&i _h”AH,[ <Le and.](hg,,’, Ag,,') = J(h, Ag,,') — oy (e, Ag,,'). Under
(23) we have, fod, ; = [x; — 6, x; — 6/2],

. . €, Ay,
lim = lim enie, Ag) _ .
e=>0@p(e, Ag i)  e=0qy(e, Ag)

Therefore i, ; can be modified o, ; at almost no energy cost.
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LEMMA 5.— If ¢ is small enough, then, for any> 1+ § and |c|] < & one can
find h..; € Hy such thath..;(x; — 0) = h(x; — 0) + ¢, |hcei — hlla,, < e and
J(hegi, Agi) < J(h, Agi) — (1= Bo)gn(e, Agi).

A solution is given by letting, , ; = h' + 2(h. ;(x; — 6/2) — h(x; —6/2) — ¢)/6 on
Ay, andh, ;= h., onAg;\Ay, since then
J(heeis Agi) =J(h, Ag;) +O(e) + J (hei, Agi\Ay ;)
=J(h, Ao;i) — on(e, Agi) +0(e) + (J(h, Ay,) — T (he i, Ay)).

Let O < Ba < infock<my+n—2(Bi1 — BE). Combining Lemma 5 with the arguments of
step 3 we obtain, uniformly itb| < (14 B)De < (1+ BL.4) De,
P(b + Wi — DAkl 0.0 < (1+ Bi,y) De)
= IP’(”VV, - DAl'hb/D,(l-}-IB]}Jrl)g,i”[O,ai] < ,34D<9)

D2 1+ %a;
> exp<—7(.](h, Agi) — (L= Bodgn(e, Api)) — (8(,6148%)2“)

Next, along the lines of step 4, we get, fat < (1+ B}) De and De small enough,

P({lla + W; — DAhllo.,;) < (1+ BL, ) De})

D? 721+ Be)n;
> — = J(h,By ;) —
eXp< 5 /(- Bo.j) 8(1+ BE 1)2(De)?

—@+pl+ ﬁéﬂwwe,,-wze) .

Taking care of?(||W — Dhl|j0.-) < De¢) in one or the other way — according dand
recalling thatz = b = 0 in this case — it follows that

P(IlW — Dh|l < (14 B1) De)

n? 1+ Bs 1485\
>exp(_8<Ds>2<<1+ﬁi>zz”"+( p2 )Z“">

j=1 i=1

D2 mpy
- (1 — (1= Bo)gn(e, Ag) + 41+ D) Y W(Be,j)*?))
j=1

where we use@i < g; < B1for k > 1 andg (e, Ag) <X, @n(e, Ag,). Since
mp n
1-) =) <216
j=1 i=1

is arbitrarily small, we conclude as for Theorem 1, by (24) ands, Ay) > (1 —
Ba)m?/4D%2. O
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